首页

> 学术发表知识库

首页 学术发表知识库 问题

干细胞临床研究国际发展现状论文

发布时间:

干细胞临床研究国际发展现状论文

您好,基因治疗、细胞治疗等生物治疗技术。目前我国有6项干细胞治疗产品在开展不同阶段的临床试验,核酸药物研发与世界保持同步。到2015年全球干细胞医疗潜在市场大约为800亿美元,核酸药物市场将达到2000亿美元。我国未来有望培育1000亿元人民币规模的个性化治疗体系。

我国干细胞治疗、干细胞临床研究不断推进,取得了不少成果。除了医院方面的研究推进外,不少干细胞存储机构也献出了一份力,比如博雅干细胞目前与国内40多家三甲医院开展干细胞临床研究,并在治疗自身免疫系统疾病、早衰症等疾病研究项目上获得突破,积极推进干细胞临床应用的转化。

成体干细胞是指存在于一种已经分化组织中的未分化细胞,这种细胞能够自我更新并且能够特化形成组成该类型组织的细胞。成体干细胞存在于机体的各种组织器官中。在特定条件下,成体干细胞或者产生新的干细胞,或者按一定的程序分化,形成新的功能APSC多能细胞,从而使组织和器官保持生长和衰退的动态平衡。成年个体组织中的成体干细胞在正常情况下大多处于休眠状态,在病理状态或在外因诱导下可以表现出不同程度的再生和更新能力。早在20世纪60年代,我国就开始骨髓移植的研究,到了70年代末80年代初,临床骨髓移植治疗血液病在我国陆续开展;90年代以来,除骨髓移植外,外周血和脐带血造血干细胞移植也逐步普及,用于治疗血液病;进入21世纪,干细胞的研究转入再生医院和损伤修复上。1964年北京大学人民医院的陆道培教授用同基因骨髓移植1例女性重型再障获得成功,率先在我国进行了骨髓移植,这次移植成为我国干细胞研究和应用的开端;1998年1月我国首例同胞相合脐带血造血干细胞移植治疗重型β-地中海贫血成功;国内数十家科研临床单位从各自不同的学科、专业角度,对干细胞进行了全方位多角度的基础研究和临床应用研究,涉及血液、免疫、神经、心血管、消化等几乎人体所有系统和肿瘤学科;2013年解放军323医院(NCT01547091)的临床研究是全球首个间充质干细胞治疗类风湿关节炎的大样本临床试验,临床结果表明:间充质干细胞明显缓解类风湿关节炎。2015年7月,解放军307医院宣布经过16个月术后观察,首例胎盘造血干细胞移植治疗重型再生障碍性贫血获得成功。2016年7月,北京大学第三医院为14岁患有早衰症的女孩,使用其弟弟的胎盘干细胞进行回输治疗,开创干细胞在早衰症的首例尝试。中国在NIH上注册的关于干细胞临床研究超过600项。干细胞对于软骨组织的修复效果是很好的,在人体中,关节软骨覆盖在关节表面上,其能够承受一定的压力,并减少摩擦,有效地维持关节的正常功能和运动。关节软骨损伤在临床上较常见,由于关节软骨无血液供应和神经支配,自身修复能力很差,关节软骨一旦损伤即很难修复,继而会发生不可逆的病理变化,造成关节的退行性改变,严重影响患者的生活质量。 目前,关节软骨损伤临床上尚无特效的治疗方法。该病主要临床表现为反复发作性关节疼痛,僵硬及进行性受限等。目前,其治疗措施为非手术保守治疗和手术治疗,但只能缓解临床症状,维持关节一定范围内的生理活动,而不能修复关节软骨原有结构及恢复软骨细胞和组织特有生物学功能。细胞治疗是运用结构和功能正常的细胞植入人体内,以修复细胞、组织和器官,恢复细胞功能,达到治疗疾病的新技术,为关节软骨退行性疾病治疗开辟了新途径。表1:近年来干细胞在软骨再生方面的临床试验研究表1:近年来干细胞在软骨再生方面的临床试验研究在国内一项利用脐血干细胞移植治疗膝盖软骨损伤的研究中[1],研究者将脐血间质干细胞(含单个核细胞≥1×108/份),经手背浅静脉输注患者体内,每次输注2份,间隔 3天后再次输注,输注3次为1个疗程,共治疗3个疗程,每个疗程之间间隔3个月。随后MRI(磁共振)检查:治疗前与治疗10个月后分别为患者做膝关节 MRI,比较治疗前后关节软骨及周围组织变化。1、临床表现:脐血间充质干细胞治疗 3个疗程后,患者日常生活恢复正常,膝关节屈伸自如,剧烈运动时的疼痛感显著缓解,整个治疗过程未见明显免疫排斥反应。2、MRI表现:T1WI上软骨内斑片状、斑点状低信号,边缘较模糊;T2WI上骨挫伤表现为高信号、混杂信号,在STIR上,病灶呈高信号、边缘清晰(见下图)。MSCs(间充质干细胞)目前被认为是最有希望实现软骨再生的细胞,已经被应用到临床中并取得良好的效果。MSCs向软骨细胞分化是通过某些分子和细胞活素(其中起主要作用的是生长因子)、细胞所处的微环境所诱导。不同的生长因子在MSCs 向软骨分化的不同阶段起到了不同的作用。诸多试验证实,间充质干细胞可促进组织的修复和再生,在不同的诱导条件下可以分化成许多不同的组织,如骨组织、软骨组织、脂肪组织、内皮组织、肌肉组织、神经组织、上皮组织等。基于间充质干细胞的这种多向分化的潜能,将有望成为组织工程骨构建过程中最常用的种子细胞。以上研究表明自体成体干细胞体外培养注射到血液或软骨损伤患者患部,对于软骨组织再生有很好的作用。至于干细胞在延缓衰老方面的效果,一直也是一大热议话题,美国南加州大学(USC)再生医学干细胞实验室与美国赛奥金在此基础上共同研究并取得突破性成果,解决了免疫干细胞不可复制的科学壁垒。用于细胞抗衰后,能激活、恢复、重建免疫系统,靶向针对衰老细胞进行定向清除,对比没有清除衰老细胞的实验体,清除衰老细胞后寿命延长28%,相当于人类寿命年轻数十年。此项研究成果已获得世界干细胞领域诺贝尔级别最高奖,正在进行美国FDA申报,并已引入中国进行临床研究,获得可喜成果。从理论上来讲,只要干细胞能源源不断地修复好身体的损伤,“长生不老”就不再是遥不可及的梦想!

近年来干细胞已经被应用至多种疾病的临床研究中,这些疾病大多数都是当前临床治疗十分有限的病种,例如渐冻症、老年痴呆等。未来,多种过去无计可施的疾病将在干细胞新药的帮助下得到救治。

文汇网上的新闻曾经谈到,“黄斑变性、糖尿病、帕金森病、脊髓损伤等疾病,既是困扰医学界的难题,也给患者带来了极大痛苦,能带来突破性治疗进展的,非干细胞治疗莫属。”

目前,国内治疗糖尿病足、骨关节炎的干细胞新药的临床试验已经获得批准,治疗牙周炎如慢性牙周炎所致骨缺损、移植物抗宿主病、溃疡性结肠炎等疾病的干细胞新药的注册申请也通过了监管部门的受理。同时治疗急性心梗、小儿脑性瘫痪、帕金森病、失代偿性乙型肝炎肝硬化、黄斑变性、卵巢早衰等疾病的干细胞临床研究也正在进行中。

相比前几年,国内干细胞治疗正朝着更加规范的方向发展,也朝着离造福人类更近的方向迈进。

国内干细胞药物研发现状

自2009年国际上首款干细胞药物获批上市以来,至今全球共有十余款干细胞药物上市,涉及的适应症包括急性心梗、退行性关节炎、移植物抗宿主病、克罗恩病、赫尔勒综合征、血栓闭塞性动脉炎等。欧洲、美国、加拿大、韩国、日本均已有干细胞药物上市,细胞来源包括不同组织来源的自体间充质干细胞、造血干细胞等,异体来源细胞较少。而我国在这一领域的空白仍待填补。

全球干细胞上市产品盘点

不过,当前我国干细胞药物发展进入了全新的阶段。我国监管框架正在逐步完善,《细胞治疗产品研究与评价技术指导原则(试行)》的颁布明晰了干细胞治疗作为药品申报的标准,同时“60天临床试验默示许可”的新药审批新制度,给我国干细胞新药的研发和申报提供了新的发展机遇。

据国家药监局药品审评中心(CDE)官网信息,2018年6月至今,国内相继有10款干细胞新药的IND申请获CDE受理,其中4款干细胞新药IND获得临床默示许可,分别是胎盘、脐带、异体/自体脂肪来源的间充质干细胞,适应症分别为糖尿病足溃疡、膝骨关节炎和膝骨关节炎。

同时,国家“干细胞及转化研究”重点专项也在推动干细胞治疗药物的研制。例如,重点专项申报指南指出的考核目标之一是针对某种重大疾病或罕见病研制细胞治疗药物,申请干细胞新药注册以及申请干细胞临床批件。在政策的支持以及行业快速发展的新时代里,我国干细胞药物的空白有望得到填补。

在第47期理解未来科学讲座上,中科院专家预测,未来五到十年将会有经过国家批准的干细胞药物的正规产品上市销售。

间充质干细胞药物将成趋势

间充质干细胞是当今干细胞药物研发中最受欢迎的一种,在所有干细胞新药研发中占比十分显著。目前全球十余个获批上市的干细胞药物中,超过一半以上是间充质干细胞治疗产品。我国获得临床批件的4款干细胞药物也均属于间充质干细胞治疗产品。当前全球范围内处在临床研究阶段的许多干细胞疗法也属于间充质干细胞产品,并且数量在逐年增加。

根据PolarisMarketResearch发布的最新研究报告,全球间充质干细胞市场前景明朗,在多种综合因素的影响下,整个市场将保持增长趋势。2018年至2026年,全球间充质干细胞市场预计以7.3%的复合年增长率增长。

同样的,全球市场调研机构ARC(AnalyticalResearchCognizance)发布的报告显示也显示,全球间充质干细胞市场发展迅速,平均增长率为6.2%。2018年,全球间充质干细胞市场值为1.7亿美元,预计至2024年底将达到2.2亿美元。报告指出,未来几年亚太地区将占据更多的市场份额,尤其是中国。

促进间充质干细胞市场增长的主要因素包括临床对这类干细胞的需求增加,例如对间充质干细胞作为膝关节置换术的有效替代治疗方法的需求增加。此外,全球老年人口的增加以及癌症等各种慢性病患病率的不断攀升,也将推动间充质干细胞的市场发展。

胎盘及脐带等围产组织中含有丰富的间充质干细胞,越来越受到科学家家的青睐。

研究表明,间充质干细胞的增殖能力会随着年龄的增长而降低,而且与骨髓、脂肪等来源的间充质干细胞相比,围产组织的间充质干细胞的分化潜能和免疫调节的能力更强,免疫原性也更低。

目前,围产组织来源的间充质干细胞已经被应用到多种疾病的治疗研究中,如早衰症、系统性红斑狼疮、干燥综合征等等。截止到2019年11月,国内62个完成备案的干细胞临床研究项目中超过半数使用围产组织来源的间充质干细胞。同时国内已经有2款围产组织来源的间充质干细胞新药获得了临床批件。

展望

干细胞的研究和发展对于人类健康和生命将会是一个颠覆性的变革。干细胞已经被广泛应用到了诸如帕金森、老年痴呆、老龄化导致的肌肉萎缩等机能退行性疾病、心血管疾病、不孕不育以及意外损伤等疾病的治疗研究中。随着干细胞新药研发的发展,人类医学的发展也将进入全新的阶段——一些过去无计可施的疾病有望结束“病无所医”的临床困局。

以上就是我的全部回答,希望对大家有所帮助,望采纳!

干细胞的临床研究进展论文

[1]党建红,金志军.脐血干细胞的生物学特性及其应用.国际妇产科学杂志2011;38:89-92.[2] 瞿勇,缪应雷. 干细胞移植在炎症性肠病中的治疗. 世界华人消化杂志2010; 35:3772—377.[3] 魏蕊,洪天配.干细胞技术治疗糖尿病的研究进展与应用前景. 世界华人消化杂志2011;19:441—450.[4] 王紫菲,赖文玉,柯琼,等.Nestin.GFP小鼠胚胎干细胞的建系及体外神经分化. 中山大学学报(医学科学版)2011;32:155-162.[5] 林育辉,何晓青,倪晓彬,等.hBcl一2和hVEGF165双基因重组腺病毒载体转染大鼠骨髓间充质干细胞的实验研究. 广东医学2011;32:548-551.[6] 袁源,但齐琴,刘佳.人脐带干细胞携带NGF基因脑内移植对脑损伤大鼠神经行为学的影响.中华行为医学与脑科学杂志2011;20:298-301.[7] 杨志宏,田诗政.骨髓问充质干细胞在皮肤创面修复中应用的研究进展.中国美容医学2011;20:161-163。[8] 何乐人,庄洪兴.血管内皮祖细胞在整形外科方面的研究进展.中国美容医学2009;18:1213-1217.[9] 徐红珍,苏俭生. 骨组织工程常用间充质干细胞的研究进展. 中国美容医学2010;19:620-622.[10]仝朋飞,杨大平. 脂肪来源干细胞在脂肪移植中的作用及其临床应用进展. 中国美容医学2010;19:1097-1099.[11] 洪晓娅,徐靖宏. 脂肪干细胞在皮下软组织充填中的研究进展. 中国美容医学2008;17:1540-1542.

研究的目的要说明问题是如何发现的,即该研究的研究背景是什么,是根据什么、受什么启发而搞这项研究。也要说明该选题在理论上的创新性,来突出自己选题与各个主流观点的差异。而研究的意义,要对所研究问题的实际用处有所了解从生活实际出发进行解读。

细胞生物学研究发展现状论文

论细胞生物学的发展 悠悠300余年,关于细胞的研究硕果累累;近50年来更进入了分子水平,老树又绽新花。许多研究成果已经或将要走进我们的生活:植物细胞在培养瓶中悄然长成幼苗;动物体细胞核移植诞生了克隆动物;不同生物细胞间DNA的转移创造出新的生物类型及其产品;病危的生命期盼着干细胞移植的救助…… 现在,生物学在人类的生产生活中的使用愈加广泛。美国细胞生物学家威尔逊曾经说过:“每一个生物科学问题的答案都必须在细胞中。”这句话明显说明了细胞生物学对整个生物科学的研究有着怎样的重要性。细胞生物学的发展,越来越受到人们的重视。 谈起细胞生物学,不得不提的是建立于19世纪的《细胞学说》。《细胞学说》的建立可谓是自然科学史上的一座丰碑。《细胞学说》的两位建立者——德国科学家施莱登和施旺。经过长时间不断的探索和研究,分别从结构、功能和分裂三个方面对细胞进行了探究,并从中提炼出了三个要点,构成了《细胞学说》的主体。《细胞学说》的建立,不仅为达尔文的《进化论》奠定了基础,更为后人对细胞生物学的研究,做出了巨大贡献。 在细胞学说创立的100年间,人们对细胞的研究基本停留在简单观察和形态描述的水平,细胞在生物学家的眼中多多少少还像一团胶状物,里面杂乱地散布着一些含混不清的东西。此时出现了一名科学家——美国的细胞生物学科学家克劳德,他决心把细胞内部的组分分离开,探索细胞内组分的结构和功能。当时分离细胞器所遇到的困难是今天的人们难以想象的。许多人对他冷嘲热讽,认为把好好的细胞弄碎是毫无意义的。但是克劳德坚信,要深入了解细胞的秘密,就必须将细胞内的组分分离出来。经过艰苦的努力,他终于摸索出采用不同的转速对破碎的细胞进行离心的方法,将细胞内的不同组分分开。这就是一直沿用至今的“转速离心法”。 如果说《细胞学说》是通往细胞生物学的一扇门,那么我认为克劳德的“转速离心法”便是这扇门的钥匙。这种方法的发现,使人类对细胞内部的进一步探究,有着非常重要的意义。 随着对细胞内更深入的探究,人类发现了细胞中一个新的世界。细胞中每个组分如此精巧,一个个小小的细胞器,在细胞中都起到了非常关键的作用。霍中和院士在《细胞生物学》中写到:“我确信哪怕最简单的一个细胞,也比迄今为止设计出的任何只能电脑更精巧。”人类也曾经试图组装出一个细胞。1990年,科学家发现人体生殖道支原体可能是最小、最简单的细胞。1995年,美国科学见文特尔领导的研究小组,对这种支原体的基因组进行了测序,发现它仅有480个基因。如果在480个基因中辨认出对细胞生活必不可少的“基本基因”,那么就有希望人工合成这些基因——一段不很长的DNA分子。 文特尔的方法是破坏一个又一个的基因,看那些基因是绝对不可或缺的,终于筛选出了300个对生命活动必不可少的基因,但其中100个基因的重要性尚不清楚。 文特尔以及其他一些科学家认为,如果能人工合成这300个基因的DNA分子,再用一个细胞膜把它和环境分隔开,在培养基中培养,让他能够生存、生长和繁殖,组装细胞就成功了。科学家现在已经能够合成长度为5000个碱基因对的DNA片段,文特尔估计生殖道支原体的DNA的碱基对比这要多100倍,因此,DNA的人工合成还需要方法上的创新。怎样给DNA分子包上细胞膜也是一个难题。他们的设想是,把生殖道支原体细胞的DNA破坏掉,再把人工合成的基因组“注入”支原体细胞。 有关实验还在进行中,不过可以确信的是,人类对细胞生物学的研究愈加深入,对人类今后的发展就愈加有利。通过不断的科学探究和深入研究,我相信在不久的将来,细胞生物学将成为一个重要的科学领域,会吸引更多的人去探索、研究。它也会绽放出他耀眼的光辉,来迎接着这崭新的时代!

激光扫描共聚焦显微镜系统及其在细胞生物学中的应用》 摘要激光扫描共聚焦显微镜是近十年发展起来的医学图象分析仪器,现已广泛应用于荧光定量测量、共焦图象分析、三维图象重建、活细胞动力学参数监测和胞间通讯研究等方面。其性能为普遍光学显微镜质的飞跃,是电子显微镜的一个补充。本文以美国Meridian公司的ACASULTIMA312为例简要介绍了激光扫描共聚显微镜系统的结构,功能和生物学应用前景。 关键词; 激光;共聚焦显微镜;粘附细胞分析与筛选(ACAS) TheLaserScanningConfocalMicroscopySystemanditsBiologicalApplications ChenYaowen,LinJielong,LaiXiaoying,MeiPinchao (ShantouUni.Med.College,CentralLab,ShantouGuangdong515031) AhstractTheLaserScanningConfocalMicroscopyisanewmedicalimageanalysisinstrument,whichisdevelopedinthelastdecade.Nowitiswidelyappliedinsuchfieldsasfluorescentquantitativemeasurement,conpocalimageandlyusis,3-Dreconstruction,Kineticsignalmonitioringoflivingcell,cellcellcommunicationresearches,etc.Inthispaper,ACSAULTIMA312(MeridianCo,USA)istakenasanexampletointroducetheprincipleofconfocalmicroscopy,itsfunetionsandbiologicalapplications. KeywordsLaserConfocalMicroscopyAdherentCellAnalysisandsorting(ACSA) 激光扫描共聚焦显微镜(LaserscanningConfocalMicroscopy,简称LSCM)是近代生物医学图象仪器的最重要发展之一,它是在荧光显微镜成象的基础上加装激光扫描装置,使用紫外光或可见光激发荧光探针,利用计算机进行图象处理,从而得到细胞或组织内部微细结构的荧光图象,以及在亚细胞水平上观察诸如Ca2+、pH值、膜电位等生理信号及细胞形态的变化。已广泛应用于细胞生物学、生理学、病理学、解剖学、胚胎学、免疫学和神经生物学等领域[1、2、3],对生物样品进行定性、定量、定时和定位研究具有很大的优越性,为这些领域新一代强有力的研究工具。 创建于1983年的美国Meridian公司,在90年代推出的“激光扫描共聚焦显微镜”这一项具有划时代的义意的高科技产品,曾获得美国“政府新产品奖”和两次“高科技领先技术奖”,它能达到每秒120幅画面的高速扫描激光共聚焦观察,可提供实时,真彩色的激光共聚焦原色图象。我院最近引起的ACASuLTIMA312是Meridian公司最新的高科技产品,为同类仪器中档次最高、功能最全的精密仪器。现以该仪器为例介绍激光扫描共聚焦显微镜系统及其在细胞生物学中的应用。 1、激光扫描共聚焦显微镜成像原理及组成 有关共聚焦显微镜的某些技术原理,早在1957年就已提出,二十年后由Brandengoff在高数值孔径透镜装置上改装成功具有高清晰度的共聚焦显微镜[5],1985年WijnaendtsVanResandt发表了第一篇有关激光扫描共聚焦显微镜在生物学中应用的文章,到了1987年,才发展成现在通常意义上的第一代激光扫描共聚焦显微镜。 激光扫描共聚焦显微镜成像原理如图1所示,激光器发出的激光束经过扩束透镜和光束整形镜,变成一束直径较大的平行光束,长通分色反射镜使光束偏转90度,经过物镜会聚在物镜的焦点上,样品中的荧光物质在激光的激发下发射沿各个方向的荧光,一部分荧光经过物镜、长通分色反射镜、聚焦透镜、会聚在聚焦物镜的焦点处,再通过焦点处的针孔,由检测器接收。 从图1中可以看出,只有在物镜的焦平面上发出的荧光才够到达检测器,其它位置发出的光均不能过针孔。由于物镜和会聚透镜的焦点在同一光轴上,因而称这种方式成像的显微镜为共聚焦显微镜为共聚显微镜。在成像过程中针孔起着关键作用,针孔直径的大小不仅决定是以共聚焦扫描方式成像还是以普遍学显微镜扫描方式成像,而且对图像的对比度和分辨率有重要的影响。 ACASULTIMa312采用快速镜扫描或台阶扫描对样品逐点扫描成像,由于样品中不同的扫描点始终在物镜和会聚透镜的光轴上,因而它以相同的信噪比扫描整个样品,扫描精度达0.1μm,扫描面积最大的为10cm×8cm,当激光逐点扫描样品时,针孔后的光电倍增管也逐点获得对应光点的共聚焦图像,并将之转化为数字信号传输至计算机,最终在屏幕上聚合成清晰的整个焦平面的共聚聚焦图像。一个微动步进马达控制栽物台的升降,使焦平面依次位于标本的不同层面上,可以逐层获得标本相应的光学横断面的图像。这称为“光学切片”。再利用计算机的图像处理及三维重建软件。可以得到高清晰度来表现标本的外形剖面,十分灵活、直观地进行形态学观察。 2、激光扫描共聚焦显微镜硬件和软件系统 2.1ACASULTIMa312硬件及参数指标 激光光源:氩离子激光(50mW的紫外光、999mW的可见光),能同时/顺序/分别输出紫外光和可见光,激发波长为351-364nm;488nm;514nm。 计算机系统:80586/133MHzPCI/80MBRAM/2000MBSCSI硬盘/150MBBernoulli盘驱动器/17’’大屏幕显示器。 共聚焦系统:计算机自动控制光路准调节;计算机控制孔径校准;计算机调节孔径大小;自动Z轴调节(最小0.1μm)。 光学探测系统:3个测窗式PMT采集荧光;1个CCD系统;12位的高速A/D转换器。 图像分辨率:图像大小1535×1535;像素最小距离:0.1μm;灰度为4096级。 扫描方式:快速镜扫描DualScan台阶扫描;扫描精度0.1μm;扫描面积最大为10cm×8cm;扫描平面:XY和XZ和独特点、线、面扫描。2.2激光扫描共聚焦显微镜软件系统 ACASULTIMa312系统采用独特设计的软件将激光细胞仪与先进的计算机技术结合,产生快速、高效、灵活的操作系统,完备的数据采集、分析与管理功能。基于生物医学研究有如下的软件。 ImageAnalyze—对于单色、比色和三色标记的二维荧光图像的定量分析,可产生透射光图像重叠,同时AutoImage可多个区域的自动扫描和荧光定量,以及相同区域的时间顺序扫描。 RatioAnalysis和Kinetics—测定细胞内的离子变化,可有点扫描、线扫描及图像扫描三种测定形式,以监测各种速率的生物反应。 Cell–CellCommunicationandFRAP-相邻细胞的FRAP分析。该软件首先用可光淬灭特异的细胞荧光,然后在多个时间点扫描,此扫描可对单一区域或细胞的多个选择区域,可产生透射光图像并与其它图像重叠。 CellList—储存被选择细胞的位置,即可自动对较大样品进行扫描,又可产生较小样品特异部位的网络位置表,以进行自动的测量、筛选和重复测定。 CellSorting—ACAS具备如下四种分选方式: AblationSort:预选定义一个荧光阈值,然后对特定细胞杀伤。②CookieCutterSort在用户定义的中心点四周切割Cookies。③QuickSort:对已定义的细胞表列,用Ablation或CookieCutter作分选。④ManualSort:直接使用鼠标控制载物台位置及激光脉冲,并杀灭和分选细胞,进行细胞显微外科,染色体切割和光隐阱等操作。 ConfocalImaging—共聚焦分析,可实现Z轴定量,三维立体图像分析(包括SFP模拟荧光处理法,DP深度投影法和SP文体投影法),以及视点移动动画。 3激光扫描共聚焦显微镜在细胞生物学中的应用 3.1定量荧光测量 ACAS可进行重复性极佳的低光探测及活细胞荧光定量分析。利用这一功能既可对单个细胞或细胞群的溶酶体,线粒体、DNA、RNA和受体分子含量、成份及分布进行定性及定量测定,还可测定诸如膜电位和配体结合等生化反应程度。此外,还适用于高灵敏度快速的免疫荧光测定,这种定量可以准确监测抗原表达,细胞结合和杀伤及定量的形态学特性,以揭示诸如肿瘤相关抗原表达的准确定位及定量信息。 3.2定量共聚焦图像分析 借助于ACAS激光共焦系统,可以获得生物样品高反差、高分辨率、高灵敏度的二维图像。可得到完整活的或固定的细胞及组织的系列及光切片,从而得到各层面的信息,三维重建后可以揭示亚细胞结构的空间关系。能测定细胞光学切片的物理、生物化学特性的变化,如DNA含量、RNA含量、分子扩散、胞内离子等,亦可以对这些动态变化进行准确的定性、定量、定时及定位分析。 3.3三维重组分析生物结构 ACAS使用SFP进行三维图像重组,SFP将各光学切片的数据组合成一个真实的三维图像,并可从任意角度观察,也可以借助改变照明角度来突出其特征,产生更生动逼真的三维效果。 3.4动态荧光测定 Ca2+、pH及其它细胞内离子测定,利用ACAS能迅速对样品的点,线或二维图像扫描,测量单次、多次单色、双发射和三发射光比率,使用诸如Indo-1、BCECF、Fluo-3等多种荧光探针对各种离子作定量分析。可以直接得到大分子的扩散速率,能定量测定细胞溶液中Ca2+对肿瘤启动因子、生长因子及各种激素等刺激的反应,以及使用双荧光探针Fluo-3和CNARF进行Ca2+和pH的同时测定。 3.5荧光光漂白恢复(FRAP)--活细胞的动力学参数 荧光光漂白恢复技术借助高强度脉冲式激光照射细胞某一区域,从而造成该区域荧光分子的光淬灭,该区域周围的非淬灭荧光分子将以一定速率向受照区域扩散,可通过低强度激光扫描探测此扩散速率。通过ACAS可直接测量分子扩散率、恢复速度,并由此而揭示细胞结构及相关的机制。 3.6胞间通讯研究 动物细胞中由缝隙连接介导的胞间通讯被认为在细胞增殖和分化中起非常重要的作用。ACAS可用于测定相邻植物和动物细胞之间细胞间通讯,测量由细胞缝隙连接介导的分子转移,研究肿瘤启动因子和生长因子对缝隙连接介导的胞间通讯的抑制作用,以及胞内Ca2+,PH和cAMP水平对缝隙连接的调节作用。 3.7细胞膜流动性测定 ACAS设计了专用的软件用于对细胞膜流动性进行定量和定性分析。荧光膜探针受到极化光线激发后,其发射光极性依赖于荧光分子的旋转,而这种有序的运动自由度依赖于荧光分子周围的膜流动性,因此极性测量间接反映细胞膜流动性。这种膜流动性测定在膜的磷脂酸组成分析、药物效应和作用位点,温度反应测定和物种比较等方面有重要作用。 3.8笼锁—解笼锁测定 许多重要的生活物质都有其笼锁化合物,在处于笼锁状态时,其功能被封闭,而一旦被特异波长的瞬间光照射后,光活化解笼锁,使其恢复原有活性和功能,在细胞的增值、分化等生物代谢过程中发挥功能。利用ACAS可以人为控制这种瞬间光的照射波长和时间,从而达到人为控制多种生物活性产物和其它化合物在生物代谢中发挥功能的时间和空间作用。 3.9粘附细胞分选 ACAS是目前唯一能对粘附细胞进行分离筛选的分析细胞学仪器,它对培养皿底的粘附细胞有两种分选方法:(1)Coolie-CutterTM法,它是Meidian公司专利技术,首先将细胞贴壁培养在特制培养皿上,然后用高能量激光的欲选细胞四周切割成八角形几何形状,而非选择细胞则因在八角形之外而被去除,该分选方式特别适用于选择数量较少诸如突变细胞、转移细胞和杂交瘤细胞,即使百万分之一机率的也非常理想。(2)激光消除法,该方法亦基于细胞形态及荧光特性,用高能量激光自动杀灭不需要的细胞,留下完整活细胞亚群继续培养,此方法特别适于对数量较多细胞的选择。 3.10细胞激光显微外科及光陷阱技术 借助ACAS可将激光当作“光子刀”使用,借此来完成诸如细胞膜瞬间穿孔、切除线粒体、溶酶体等细胞器、染色体切割、神经元突起切除等一系列细胞外科手术。通过ACAS光陷阱操作来移动细胞的微小颗粒和结构,该新技术广泛用于染色体、细胞器及细胞骨架的移动。 4、结语 激光扫描共聚焦显微镜是近十年发展起来的医学图像分析仪器,与传统的光学显微镜相比,大大地提高了分辨率,能得到真正具有三维清晰度的原色图象。并可探测某些低对比度或弱荧光样品,通过目镜直接观察各种生物样品的弱自发荧光。能动态测量Ca2+、pH值,Na1+、Mg2+等影响细胞代谢的各种生理指标[9],对细胞动力学研究有着重要的意义。同时激光扫描共聚显微镜可以处理活的标本,不会对标本造成物理化学特性的破坏,更接近细胞生活状态参数测定。可见激光扫描共聚焦显微镜是普遍显微镜上的质的飞跃,是电子显微镜的一个补充,现已广泛用于荧光定量测量,共焦图像分析,三维图像重建、活细胞动力学参数分析和胞间通讯研究等方面,在整个细胞生物学研究领域有着广阔的应用前景。

给点对文特尔的评价

造血干细胞移植研究现状论文

在我国,国家十分重视并大力支持有关研究院所与学校积极开展这项研究工作和成立专门研究干细胞基地,已在北京、上海、天津分别成立干细胞研究中心。近年来北京大学、协和医科大学、上海二医大和军事医学科学院等单位在造血干细胞研究和成体干细胞建库等方面已有相当的基础,并积累了大量经验,相信我国的科学家在不久的将来,在干细胞生物工程研究上必将取得辉煌成就。干( gàn) 细胞(stem cell)是一类具有自我复制能力(self-renewing)的多潜能细胞。在一定条件下,它可以分化成多种功能细胞。根据干细胞所处的发育阶段分为胚胎干细胞(embryonic stem cell,ES细胞)和成体干细胞(somatic stem cell)。根据干细胞的发育潜能分为三类:全能干细胞(totipotent stem cell,TSC)、多能干细胞(pluripotent stem cell)和单能干细胞(unipotent stem cell)(专能干细胞)。干细胞(Stem Cell)是一种未充分分化,尚不成熟的细胞,具有再生各种组织器官和人体的潜在功能,医学界称为“万用细胞”。

干细胞技术自诞生以来,便成为医疗界的关注焦点,干细胞强大的组织修复能力与免疫调节能力能解决诸多的疑难杂症,颠覆了传统的临床治疗理念,开创了一种创新型的医学治疗模式,具有广阔的应用的前景。干细胞技术在全球掀起了一股研究热潮!在国家正确的指导下,我国干细胞技术近年来发展迅猛,取得了丰硕的成果,为进一步推进干细胞的临床转化奠定了扎实的基础。2020年特殊之年,我国干细胞技术取得了重要的意义,在突发公共卫生事件中展示了强大的修复能力。截至目前,共有104家医疗机构和51项干细胞临床研究项目完成了备案。1.我国将进一步完善干细胞技术临床转化的规范性和合法性近期,国家卫生健康委员会在政协十三届全国委员会第二次会议第3324号(医疗体育类367号)提案答复的函提及,目前国家已制定了《干细胞临床研究管理办法(试行)》、《干细胞制剂质量控制和临床前研究指导原则(试行)》和《细胞治疗产品研究与评价技术指导原则》等干细胞临床转化文件,进一步修改完善干细胞等法规和规章,并做好相关管理能力储备,促进细胞治疗临床研究和转化应用,推动产业发展,造福人民群众健康。2.我国将干细胞转化研究作为重点项目国拨科研基金我国自2016年启动“干细胞及转化研究”重点专项,国拨26.4亿资助了136个干细胞研究项目,其中2020年国家发放2.4亿支持15项项目,项目涉及干细胞基础研究、干细胞动物试验与临床研究,研究的疾病包括2型糖尿病、银屑病及银屑病型关节炎、视神经脊髓炎谱系疾病、神经性致盲眼病和自身免疫性疾病等。

造血干细胞移植人类造血干细胞形态上类似于小淋巴细胞,在骨髓中仅占有核细胞的1%左右。人类造血于细胞来自胚胎期卵黄囊的间皮细胞,是人体内最独特的体细胞群。具有极高的自我更新、多向分化与重建长期造血的潜能及损伤后自我修复的能力。另外还具有广泛迁移和特异的定向(所谓"归巢")特性,能优先定位种植于适当的微环境(如骨髓等处)内,并以非增殖状态和缺乏系列相关性抗原的方式存在。造血干细胞移植(HSCT)就是将各种来源的正常造血干细胞在患者接受超剂量化(放)疗后,通过静脉输注移植入受体内,以替代原有的病理性造血干细胞,从而使患者正常的造血及免疫功能得以重建。可应用于系统性红斑狼疮等多种风湿类疾病。造血干细胞移植将对难治性风湿病的根治产生深远的影响。造血干细胞移植能治疗哪些疾病?造血干细胞移植(HSCT):泛指将各种来源的正常造血干细胞在患者接受超剂量化(放)疗后,通过静脉输注移植入受体内,以替代原有的病理性造血干细胞,从而使患者正常的造血及免疫功能得以重建。平时所说的”骨髓移植”实际上就是造血干细胞移植。干细胞是指尚未分化的细胞,存在于早期胚胎、骨髓、脐带、胎盘和部分成年人细胞中,它能够被培育成肌肉、骨骼和神经等人体组织和器官。科学家认为,利用干细胞培育出的组织和器官对治疗癌症和其他多种恶性疾病具有重要意义,将为糖尿病患者、早老性痴呆症患者、帕金森氏症患者和脊髓受损患者等带来希望。近年来,干细胞研究成为生物医学领域研究的热点,20世纪90年代以来,造血干细胞移植技术飞速进展,更为安全有效,已成为治愈多种良性、恶性血液病与遗传性疾病的重要手段,治愈的病种还在不断的扩大。来源:在胚胎发育的过程中,造血干细胞是以卵黄囊全能间叶细胞分化而来的最原始造血细胞。胚胎发育至3—5个月时肝脏和脾脏中含有大量的 HSC。 近年发现脐血中亦含丰富的造血干细胞、其更原始,且免疫原性弱。成人时造血干细胞主要分布在骨髓中,外周血中也有一定量的造血干细胞。HSC移植最理想的供者是同卵双生子,因为他们之间的遗传物质是完全相同的。他们之间的HSC移植,效果好,排异反应少,但双胞胎毕竟少见。子女的HLA分型来自于父母,如父亲为A和B,母亲为C和D,那么子女有AC、AD、BC、BD四种分型可能,所以同胞间的HLA相配率为25%,因此患者从同胞中寻找供髓者较容易。然而家庭范围正在缩小,绝大多数的患者还是需要非血缘关系的HSC捐献者。适合捐献HSC的年龄为18-45岁,健康要求如同献血,即不能因捐HSC影响捐献者的健康,又不能因接受HSC而使患者增加新的不利因素,重要的是捐献者必须无可血液传播的传染病:如乙型肝炎、丙乙型肝炎等。造血干细胞移植能治疗哪些疾病? 利用造血干细胞移植治疗的疾病很多.可治疗肿瘤性疾病,如:白血病,某些恶性实体瘤等,以及非肿瘤性疾病,如:再生障碍性贫血,重症免疫缺陷病,急性放射病,地中海贫血等.目前,对造血干细胞的研究又有一些新突破,如对重症天疱疮严重并发症(双侧股骨头无菌性坏死)以及生症肌无力等疾病的患者治疗.

成体干细胞是指存在于一种已经分化组织中的未分化细胞,这种细胞能够自我更新并且能够特化形成组成该类型组织的细胞。成体干细胞存在于机体的各种组织器官中。在特定条件下,成体干细胞或者产生新的干细胞,或者按一定的程序分化,形成新的功能APSC多能细胞,从而使组织和器官保持生长和衰退的动态平衡。成年个体组织中的成体干细胞在正常情况下大多处于休眠状态,在病理状态或在外因诱导下可以表现出不同程度的再生和更新能力。早在20世纪60年代,我国就开始骨髓移植的研究,到了70年代末80年代初,临床骨髓移植治疗血液病在我国陆续开展;90年代以来,除骨髓移植外,外周血和脐带血造血干细胞移植也逐步普及,用于治疗血液病;进入21世纪,干细胞的研究转入再生医院和损伤修复上。1964年北京大学人民医院的陆道培教授用同基因骨髓移植1例女性重型再障获得成功,率先在我国进行了骨髓移植,这次移植成为我国干细胞研究和应用的开端;1998年1月我国首例同胞相合脐带血造血干细胞移植治疗重型β-地中海贫血成功;国内数十家科研临床单位从各自不同的学科、专业角度,对干细胞进行了全方位多角度的基础研究和临床应用研究,涉及血液、免疫、神经、心血管、消化等几乎人体所有系统和肿瘤学科;2013年解放军323医院(NCT01547091)的临床研究是全球首个间充质干细胞治疗类风湿关节炎的大样本临床试验,临床结果表明:间充质干细胞明显缓解类风湿关节炎。2015年7月,解放军307医院宣布经过16个月术后观察,首例胎盘造血干细胞移植治疗重型再生障碍性贫血获得成功。2016年7月,北京大学第三医院为14岁患有早衰症的女孩,使用其弟弟的胎盘干细胞进行回输治疗,开创干细胞在早衰症的首例尝试。中国在NIH上注册的关于干细胞临床研究超过600项。干细胞对于软骨组织的修复效果是很好的,在人体中,关节软骨覆盖在关节表面上,其能够承受一定的压力,并减少摩擦,有效地维持关节的正常功能和运动。关节软骨损伤在临床上较常见,由于关节软骨无血液供应和神经支配,自身修复能力很差,关节软骨一旦损伤即很难修复,继而会发生不可逆的病理变化,造成关节的退行性改变,严重影响患者的生活质量。 目前,关节软骨损伤临床上尚无特效的治疗方法。该病主要临床表现为反复发作性关节疼痛,僵硬及进行性受限等。目前,其治疗措施为非手术保守治疗和手术治疗,但只能缓解临床症状,维持关节一定范围内的生理活动,而不能修复关节软骨原有结构及恢复软骨细胞和组织特有生物学功能。细胞治疗是运用结构和功能正常的细胞植入人体内,以修复细胞、组织和器官,恢复细胞功能,达到治疗疾病的新技术,为关节软骨退行性疾病治疗开辟了新途径。表1:近年来干细胞在软骨再生方面的临床试验研究表1:近年来干细胞在软骨再生方面的临床试验研究在国内一项利用脐血干细胞移植治疗膝盖软骨损伤的研究中[1],研究者将脐血间质干细胞(含单个核细胞≥1×108/份),经手背浅静脉输注患者体内,每次输注2份,间隔 3天后再次输注,输注3次为1个疗程,共治疗3个疗程,每个疗程之间间隔3个月。随后MRI(磁共振)检查:治疗前与治疗10个月后分别为患者做膝关节 MRI,比较治疗前后关节软骨及周围组织变化。1、临床表现:脐血间充质干细胞治疗 3个疗程后,患者日常生活恢复正常,膝关节屈伸自如,剧烈运动时的疼痛感显著缓解,整个治疗过程未见明显免疫排斥反应。2、MRI表现:T1WI上软骨内斑片状、斑点状低信号,边缘较模糊;T2WI上骨挫伤表现为高信号、混杂信号,在STIR上,病灶呈高信号、边缘清晰(见下图)。MSCs(间充质干细胞)目前被认为是最有希望实现软骨再生的细胞,已经被应用到临床中并取得良好的效果。MSCs向软骨细胞分化是通过某些分子和细胞活素(其中起主要作用的是生长因子)、细胞所处的微环境所诱导。不同的生长因子在MSCs 向软骨分化的不同阶段起到了不同的作用。诸多试验证实,间充质干细胞可促进组织的修复和再生,在不同的诱导条件下可以分化成许多不同的组织,如骨组织、软骨组织、脂肪组织、内皮组织、肌肉组织、神经组织、上皮组织等。基于间充质干细胞的这种多向分化的潜能,将有望成为组织工程骨构建过程中最常用的种子细胞。以上研究表明自体成体干细胞体外培养注射到血液或软骨损伤患者患部,对于软骨组织再生有很好的作用。至于干细胞在延缓衰老方面的效果,一直也是一大热议话题,美国南加州大学(USC)再生医学干细胞实验室与美国赛奥金在此基础上共同研究并取得突破性成果,解决了免疫干细胞不可复制的科学壁垒。用于细胞抗衰后,能激活、恢复、重建免疫系统,靶向针对衰老细胞进行定向清除,对比没有清除衰老细胞的实验体,清除衰老细胞后寿命延长28%,相当于人类寿命年轻数十年。此项研究成果已获得世界干细胞领域诺贝尔级别最高奖,正在进行美国FDA申报,并已引入中国进行临床研究,获得可喜成果。从理论上来讲,只要干细胞能源源不断地修复好身体的损伤,“长生不老”就不再是遥不可及的梦想!

干细胞的研究进展论文

细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!

细胞因子的生物学活性

关键字: 细胞因子

细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。

一、免疫细胞的调节剂

免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)

二、免疫效应分子

在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。

三、造血细胞刺激剂

从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。

四、炎症反应的促进剂

炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。

五、其它

许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。

细胞衰老的分子生物学机制

摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。

关键词:细胞衰老;分子生物学;机制研究

细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。

细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。

衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。

1 细胞衰老的特征

科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。

衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。

2 分子水平的变化

①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。

3 细胞衰老原因

迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。

3.1差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。

3.1.1自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。

英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。

生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。

3.1.2端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。

3.2遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。

参考文献:

[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.

[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.

[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.

近期的科学研究新进展,科学家们已经十分接近量产血球细胞了!这个新进展将能解决血液供给不足,以及骨髓疾病患者的问题,将彻底改变需要频繁输血的疾病治疗模式。

近年来,干细胞的相关研究逐渐扩展,除了生物科学的研究外,更尝试应用于人类医学治疗上。干细胞与体内一般细胞不同,他具有特殊的编程,可以透过自然或诱导的方式,分化成为其他细胞。主要可分为两种,一为胚胎干细胞,具有较强的分化能力,可分化成为多种不同的细胞。另一种为成体干细胞,分化能力较为受限,仅能分化成特定几种细胞,用于修复组织或是汰换掉旧的细胞。2006年时,科学家首次将小鼠的细胞,经过诱导后转变成为iPS多能性干细胞。自此之后开启干细胞领域的大量研究。而从此时开始,科学家就不断尝试利用干细胞来生产新的血液细胞,然而,这是首次这么接近将干细胞分化成为完整功能的血球细胞。

利用干细胞生产血液细胞的目标,是希望可以透过提取患者自身的细胞,将其转变为iPS多能性干细胞后,利用此干细胞不断分化产生新的血液细胞,这样患者就可以自己生产无限供给的血球,不需要倚靠其他健康人们的捐赠。另外,这样的作法也能应用在一般的血液捐赠上,可以使用一般健康捐血者的细胞并将其转变为iPS多能性干细胞,这样将能大幅增加血液供给,提供需要输血的病患使用。来自波士顿儿童医院的Rio Sugimura研究员表示,遗传性的血液疾病患者,甚至可以利用基因编辑的方式,修复遗传缺陷,并成功制造出健康的血球细胞。

第一个发表相关研究的论文中,研究人员使用了iPS和胚胎干细胞,给予他们特殊的化学信号,使干细胞转化为血球前驱细胞,接着再给细胞转录因子,使其成为真正具功能的血球细胞。研究人员发现需要五种转录因子,分别为RUNX1、ERG、LCOR、HOXA5和HOXA9,来强制细胞进入正确的分化程序。波士顿儿童医院的研究负责人Gee Daley表示:「我们非常接近能够产生真正的人类血球细胞,这项工作是20多年努力的结果。」

第二篇研究的作法略有不同,来自纽约威尔康奈尔医学中心(Weill Cornell Medicine)的一个小组不再使用iPS多能性干细胞或胚胎干细胞,而是使用从小鼠肺壁获取的成体干细胞,培养于含有四种转录因子Fo *** 、Gfi1、Runx1和Spi1,且模拟人类血管内环境的培养皿中,此方法能够将成体干细胞直接分化为血球细胞,无需经过iPS的过程。带领团队完成研究的Shahin Rafii表示,他们的实验方法有如直航班机,可以挑过中间的复杂程序。而Daley团队的技术则是转机后才到达目的地。虽说如此,但目前结果仅止于动物实验,哪一种方法在人体中会有更好的效果暂时还不得而知。不过可以期待的是,未来人类或许可以透过简单的方式,自给自足需要的血液供给,在医疗上不再需要仰赖他人捐赠,并且可以修复遗传性的血液或骨髓疾病。

相关百科

热门百科

首页
发表服务