首页

> 论文发表知识库

首页 论文发表知识库 问题

矩阵计算方法研究论文

发布时间:

矩阵计算方法研究论文

我会的,要自创的吗?论文——称谢 论文的辅导者、技术协助者、供给特别试剂或器件者、经费赞助者和提出过首要建议者都归于称谢方针。论文称谢应当是真挚的、真实的,不要庸俗化。不要泛泛地称谢、不要只谢教授不谢旁人。写论文称谢前应征得被称谢者的赞同,不能拉大旗作虎皮。

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则[2] 。矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦()讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词[3] 。英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯()于1898年给出的[2] 。1854年时法国数学家埃尔米特()使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具[4] 。

我的毕业论文题目是矩阵的乘法及其应用~个人感觉相当简单~我是数学与应用数学专业

好写哦!科技论文,专业性这么强,写出来,也是只有专业人员才能明白。首先,序言:把矩阵的乘法原理,加以介绍、解释和说明,这些就是书上现成的东西。接着介绍其应用都有哪些,具体在哪些方面。最后说明本文主要介绍哪些方面的具体应用及事例。进入正文,集中写清楚,你要介绍的应用及事例。字数要多,就多写,写详细一些;字数一般,就写得一般,就可以啦。。。祝成功!

矩阵论文的研究方法

就是你准备怎么样来完成毕业论文。写出你打算采用的方法就可以了。如:某方面的研究“课题拟采用的研究方法和手段”是:采用高等数学和微积分的方法计算,采用矩阵理论的方法计算,采用概率论的方法进行模拟,进而比较得出更合理确切的结论。

告诉你拟就会写吗。不如我给你写得了

论文文献研究方法部分怎么写

论文文献研究方法部分怎么写,毕业论文对大学生是很重要的一项内容,如果毕业论文不通过就可能毕不了业了,论文的研究方法是很重要的,下面我和大家分享论文文献研究方法部分怎么写,一起来了解一下吧。

1、调查法

调查法是最为常用的方法之一,是指有目的、计划的搜集与论文主题有关的现实状况以及历史状况的资料,并对搜集过来的资料进行分析、比较与归纳。调查法会用到问卷调查法,分发给有关人员,然后加以回收整理出对论文有用的信息。

2、观察法

观察法是指研究者用自己的感官或者其他的辅助工具,直接观察被研究的对象,可以让人们的观察的过程中,可以拥有新的发现,还可以更好的启发人们的思维。

3、文献研究法

以一定的目标,来调查文献,从而获得关于论文的更加全面、正确地了解。文献研究法有助于形成对研究对象的一般印象,可以对相关资料进行分析与比较,从而获得事物的全貌。

论文研究方法最为典型的有调查法、观察法以及文献研究法,都是值得大家采用的方法。

论文写作中的研究方法与研究步骤

一、研究的循环思维方式

二、研究的路径

三、研究的分析方法

四、研究过程的设计与步骤

五、对传统研究思维模式的再思考

在我们指导研究生写论文的过程中,甚至于我们自己从事课题研究时,不禁让我们思考一系列有关研究的基本问题。例如,我们为什么要写论文?我们为什么要做研究?在我们探讨论文写作的过程中,我们是为了完成论文本身的写作,还是完成一个研究过程?写论文与做研究之间有什么联系与区别?如果论文写作应该反映一个研究过程,那么研究过程应该是什么样的?我们用什么样的方法进行研究?我们发现这些问题的解决,对指导研究生的论文写作有非常大的帮助。因此,本文就以我个人在从事教学课题研究和指导研究生完成论文中总结的一些有关研究方法与研究步骤的问题与大家交流共享。欢迎大家参与讨论。

世界上无论哪个领域都存在许多未知的事物,也存在着许多未知的规律。我们研究者的主要任务就是要不断地从大量的事实中总结规律,将之上升到可以指导实践的理论。然而理论也并不是绝对的真理,它也要在实践中不断地被修正,因此,就会有人对理论的前提和内容进行质疑,并提出新的猜想和新的思维。新的猜想和新的思维又要在实践中进行验证,从而发展和完善理论体系。我们探求未知事物及其规律就需要有研究的过程。这个过程,我们称之为研究的循环思维方式(Research Cycle)。用概念模型来表述就是[1]:

Facts —Theory—Speculation

事实——理论——猜想

上述从“事实”到“理论”,再进行“猜想”就构成了一般研究的思路。从事科学研究的人员既要侧重从事实到理论的研究过程,也同时在研究中要有质疑和猜想的勇气。而这一思路并不是一个终极过程,而是循环往复的过程。当猜想和质疑得到了事实的证明后,理论就会得到进一步的修正。

上述研究的循环思维方式就是我们通常说的理论与实践关系中理论来源于实践的过程。这个过程需要严密的逻辑思维过程(Thought Process)。通常被认为符合科学规律,而且是合理有效的逻辑思维方法为演绎法(Deduction)和归纳法(Induction)。这两种逻辑思维方式应该贯穿研究过程的始终。

另外,从知识管理角度看研究的过程,在某种意义上,研究的过程也可以被理解为,将实践中的带有经验性的隐性知识转化为可以让更多的人共享的系统规律性的显性知识。而显性知识的共享才能对具体的实践产生普遍的影响。研究者除了承担研究的过程和得出研究的结论之外,还要将这一研究的过程和结论用恰当的方式表述出来,让大家去分享。不能进行传播和与人分享的任何研究成果,对社会进步都是没有意义的。

我们认为,研究人员(包括研究生)撰写论文就是要反映上述研究过程,不断探索和总结未知事物及其规律,对实践产生影响。我们强调,论文的写作不是想法(idea)的说明,也不仅是过程的表述。论文的写作要遵循一定的研究方法和步骤,在一定的假设和前提下,去推理和/或验证某事物的一般规律。因此,对研究方法的掌握是写好论文的前提条件。

研究的路径(Approaches)是我们对某事物的规律进行研究的出发点或者角度。研究通常有两个路径(Approaches):实证研究和规范研究。

实证研究(Empirical Study)一般使用标准的度量方法,或者通过观察对现象进行描述,主要用来总结是什么情况(what is the case)。通常研究者用这种研究路径去提出理论假设,并验证理论。规范研究(Normative Study):是解决应该是什么(what should be)的问题。研究者通常是建立概念模型(Conceptual Model)和/或定量模型(Quantitative Model)来推论事物的发展规律。研究者也会用这种路径去建立理论规范。

我们认为,上述两种研究的路径不是彼此可以替代的关系。二者之间存在着彼此依存和相辅相成的关系。对于反映事物发展规律的理论而言,实证研究与规范研究二者缺一不可,前者为理论的创建提供支持和依据;后者为理论的创建提供了可以遵循的研究框架和研究思路。

针对上述两个路径,研究过程中都存在着分析(Analytical)过程,也就是解释为什么是这样的情况(Explaining why the case is as it is),而分析过程就需要具体的研究分析方法来支持。

[2]。然而,更多的学者倾向认为,定量与定性的方法问题更多的是从分析技术上来区别的[3]。因为,任何的研究过程都要涉及数据的收集,而数据有可能是定性的,也有可能是定量的。我们不能将定量分析与定性分析对立起来。在社会科学和商务的研究过程中既需要定量的研究分析方法,也需要定性的研究分析方法。针对不同的研究问题,以及研究过程的不同阶段,不同的分析方法各有优势。两者之间不存在孰优孰劣的问题。对于如何发挥各自优势,国外的一些学者也在探索将两者之间的有机结合[4]。

因此,定性分析方法是对用文字所表述的内容,或者其他非数量形式的数据进行分析和处理的方法。而定量分析方法则是对用数量所描述的内容,或者其他可以转化为数量形式的数据进行分析和处理的方法。一项研究中,往往要同时涉及到这两种分析方法[5]。定性分析是用来定义表述事物的基本特征或本质特点(the what),而定量分析是用来衡量程度或多少(the how much)。定性分析往往从定义、类推、模型或者比喻等角度来概括事物的特点;定量分析则假定概念的成立,并对其进行数值上衡量[6]。

定量分析的主要工具是统计方法,用以揭示所研究的问题的数量关系。基本描述性的统计方法包括:频数分布、百分比、方差分析、离散情况等。探索变量之间关系的方法包括交叉分析、相关度分析、多变量之间的多因素分析,以及统计检验等。定量研究之所以被研究者所强调,是因为定量分析的过程和定量结果具有某种程度的系统性(Systematic)和可控性(Controlled),不受研究者主观因素所影响。定量分析被认为是实证研究的主要方法。其优势是对理论进行验证(Theory Testing),而不是创建理论(Theory Generation)。当然,相对自然科学的研究,社会科学和商务研究由于人的因素存在,其各种变量的可控性被遭到质疑,因此,定量分析被认为是准试验法(Quasi-experimental approach)

定性研究有其吸引人的一面。因为文字作为最常见的定性研究数据是人类特有的,文字的.描述被认为具有“丰富”、“全面”和“真实”的特点。定性数据的收集也最直接的。因此,定性分析与人有最大的亲和力。恰恰也就是这一点,定性分析也具有了很大的主观性。如果用系统性和可控性来衡量研究过程的科学性。定性分析方法比定量分析方法更被遭到质疑[7]。然而,定性数据被认为在辅助和说明定量数据方面具有重要价值[8]。实际上,定性分析方法往往贯穿在研究过程的始终,包括在数据的收集之前,有关研究问题的形成、理论的假设形成,以及描述性分析框架的建立等都需要定性的分析过程,即对数据进行解释和描述等。如果遵循系统性和可控性的原则,那么定性分析方法在数据的收集过程中也有一些可利用的辅助工具,例如,摘要法、卡片法、聚类编码法等。在研究结论的做出和结论的描述方面,像矩阵图、概念模型图表、流程图、组织结构图、网络关系图等都是非常流行的定性分析工具。另外,从定性的数据中也可以通过简单的计算、规类等统计手段将定性分析与定量分析方法结合起来。

这里要指出的是,科学研究不能用想法(idea)本身来代替。科学研究需要有一个过程,而这个过程是用一定的方法来证明有价值的想法,并使之上升为理论;或者通过一定的方法来证明、创建或改进理论,从而对实践和决策产生影响。研究过程的科学性决定了研究成果是否会对实践和决策产生积极的影响效果[9]。

第五步、进行数据的处理和分析

数据的处理主要是保证数据的准确性,并将原始的数据进行分类,以便转化成可以进行进一步分析的形式。数据处理主要包括数据编辑、数据编码和数据录入三个步骤。数据编辑(Data Editing)就是要识别出数据的错误和遗漏,尽可能改正过来,以保证数据的准确性、一致性、完整性,便于进一步的编码和录入。数据编码(Data Coding)就是对所收集的第一手数据(例如对问卷开放式问题的回答)进行有限的分类,并赋予一个数字或其他符号。数据编码的主要目的是将许多的不同回答减少到对以后分析有意义的有限的分类。数据录入(Data Entry)是将所收集的第一手或者第二手数据录入到可以对数据进行观察和处理的计算机中,录入的设备包括计算机键盘、光电扫描仪、条形码识别器等。研究者可以用统计分析软件,例如SPSS等对所形成的数据库进行数据分析。对于少量的数据,也可以使用工作表(Spreadsheet)来录入和处理。

数据的分析就是运用上述所提到的定性或定量的分析方法来对数据进行分析。研究者要根据回答不同性质的问题,采取不同的统计方法和验证方法。对于有些研究,仅需要描述性的统计方法,对于另一些研究可能就需要对假设进行验证。在统计学中,假设的验证需要推论的统计方法(Inferential Statistics)。对于社会科学和商务的研究,一些研究是针对所获取的样本进行统计差异(Statistical Significance)的验证,最终得出结论是拒绝(Reject)还是不拒绝(Fail to Reject)所设定的假设条件。另一些研究则是进行关联度分析(Measures of Association),通常涉及相关分析(Correlation)和回归分析(Regression)。相关分析是通过计算来测度变量之间的关系程度;而回归分析则是为预测某一因变量的数值而创建一个数学公式。

值得注意的是,随着我们研究和分析的`问题越来越复杂,计算机和统计软件的发展使得多变量统计工具应用越来越广泛。如果多变量之间是从属关系,我们就需要从属关系的分析技巧(Dependency Techniques),如多元回归分析(Multiple Regression)、判别分析(Discriminant Analysis)、方差的多元分析(MANOVA,Multivariate Analysis of Variance)、典型相关分析(Canonical Analysis)、线性结构关系分析(LISREL,Linear Structural Relationships)、结合分析(Conjoint Analysis)等。如果多变量之间是相互依赖关系,我们就需要相互依赖关系的分析技巧(Interdependency Techniques),如因子分析(Factor Analysis)、聚类分析(Cluster Analysis)、多维尺度分析(Multidimensional Scaling)等。如果收集的数据有明显的时间顺序,我们不考虑变量之间的因果关系,而是重点考察变量在时间方面的发展变化规律,我们就需要时间序列分析(Time Series Analysis)。目前流行的统计软件,如SPSS对上述各种分析方法都提供非常好的支持。

第六步、得出结论,并完成论文

论文的撰写要结构合理、文字表达清楚确定,容易让人理解。形式上要尽量采取可视化的效果,例如多用图表来表现研究过程和研究结果。具体论文的撰写要考虑包含如下内容:摘要、研究介绍(包括背景、研究的问题、研究的目的)、研究的方法和步骤(样本选择、研究设计、数据收集、数据分析、研究的局限性)、研究的发现、结论(简要结论、建议、启示意义)、附录、参考文献。

针对社会科学和商务领域的问题研究,我们传统上所遵循的研究思维模式是:“提出问题、分析问题和解决问题”。我们承认这是一种创造性的思维过程。遵循这种思维方式可以帮助决策者快速找到问题,并解决问题。然而,用这一思维模式来指导研究的过程,容易使我们混淆研究者与决策者的地位,找不准研究者的定位。首先,这一研究思路和模式将问题的解决和问题的研究混在一起了。其次,没有突出,或者说掩盖了对研究方法的探讨和遵循。这种传统的思维方式是结果导向的思维方式。它忽略了问题的识别过程和研究方法的遵循过程。而从科学研究的角度看,问题的识别过程和研究方法的遵循过程是一项研究中非常重要的两个前提。问题的识别过程可以保证所研究的问题有很强的针对性,与理论和实践紧密联系,防止出现只做表面文章的情况,解决不了根本问题。研究方法的遵循过程可以保证研究结果的可靠性,使研究结果有说服力。当然,在此,我们并不是说明“提出问题、分析问题和解决问题”这一传统模式是错误的,也不否认研究的目的是指导实践。然而,我们觉得,这一传统研究思维模式太笼统,太注重结果导向,不足以说明科学的研究的一般方法和研究步骤。

在社会科学和商务研究中,运用这一传统的研究思路和模式来指导学生撰写论文,容易出现两个不良的倾向。一是使我们过于重视论文本身的写作过程,而忽略了论文写作背后的研究过程和研究方法。也就是只强调结果,不重视过程。在此情况下,论文的写作多半是进行资料的拼凑和整合。当然我们并不能低估资料的拼凑和整合的价值。可是,如果一味将论文的写作定位在这样的过程,显然有就事论事的嫌疑,无助于问题的澄清和问题的解决,也有悖于知识创造的初衷。特别是,既没有识别问题的过程,也没有形成研究问题和研究假设,甚至没有用任何可以遵循的研究分析方法,就泛泛对一个问题进行一般描述,进而提出感觉上的解决方案。这种研究结果是很难被接受的。第二个不良的倾向是上述传统的研究思路和模式使我们辨别不清我们是在做研究,还是在做决策。研究通常是在限定的一个范围内,在一定的假设前提下进行证明或推理,从而得出一定的结论。我们希望这个结论对决策者能产生影响。然而,决策者毕竟与研究者所处的地位是不一样的,考虑的问题与研究者或许一致,或许会很不一致。有价值的研究是要给处在不同地位的决策者(或者实践者)给予启示,并促其做出多赢的选择。因此,传统的研究思维模式缺乏研究的质量判定标准,缺乏系统性和可控性,也不具备可操作性,容易让研究者急功近利,盲目追求片面的终极的解决方案。

在指导对外经济贸易大学研究生的实践中,我们曾试图改变以往的传统思维模式,尝试让我们的研究生将论文的写作与研究过程结合起来,特别注重研究的过程和研究方法,并且要求在论文的写作中反映这些研究的方法与步骤。例如,2002届研究生万莲莲所写的《电子采购系统实施中的管理因素-摩托罗拉公司电子采购系统实施案例研究》硕士论文就是在这方面所做的最初探索。此论文的结构就分为综述、指导理论、方法论、数据分析,以及研究结论和启示等五个主要部分,运用了问卷调查和深度访谈等定性和定量的各种具体方法。其研究结论具有非常强的说服力,因为研究者并不限于第二手资料的收集、整理和加工,而是借鉴前人的理论研究框架,运用问卷定量调查等手段,遵循案例研究的方法,对第一手资料进行收集、处理和分析之后得出的结论,对实践具有较强的指导意义。相同的研究方法,我们又应用在其他研究生的论文写作过程中,例如2002届龚托所写的《对影响保险企业信息技术实施的主要因素的研究》、2003届王惟所写的《对中国铜套期保值现状的研究》,以及2003届马鸣锦所写的《中国银行业知识管理程度与网络银行发展程度的关系研究》等。通过论文写作,这些研究生的确掌握了一般研究的方法和研究的步骤。以上的研究结论对教学和实践直接有借鉴的意义。在教学和咨询过程中,其方法和结论都得到了肯定。据多方反馈,效果还是非常好的。

【注释】:

[1]这是笔者在美国芝加哥自然博物馆看恐龙展览时了解的美国科学家的基本研究思路而得到的启示。

[2] Robson, Colin (1993), Real World Research: A Resource for Social Scientists and Practitioner-Researcher. Blackwell Publishers, P303。

[3] Bryman, A. (1988), Quality and Quantity in Social Research. London: Unwin Hyman.我们发现许多文献资料将定量与定性分析方法称为定量与定性技术(techniques)

[4] Cook, . and Reichardt, . (1979) Qualitative and Quantitative Methods in Evaluation Research. Newbury Park and London: Sage. Ragin, C. C. (1987) The Comparative Method: moving beyond qualitative and quantitative strategies. Berkeley, Cal.: University of California Press.

[5]Robson, Colin (1993), Real World Research: A Resource for Social Scientists and Practitioner-Researcher. Blackwell Publishers, P307。

[6] John Van Maanen, James M. Dabbs, Jr., and Robert R. Faulkner, Varieties of Qualitative Research (Beverly Hills: Calif.: Sage Publications, 1982), P32

[7] 这是因为社会科学和商务研究中包括了人的因素,而人本身作为分析者具有自身的缺陷。例如:数据的有限性、先入为主的印象、信息的可获得性、推论的倾向性、思维的连续性、数据来源可靠性、信息的不完善性、对信息价值判断误差、对比的倾向性、过度自信、并发事件与相关度的判断,以及统计数据的不一致性等。上述缺陷的总结与分析来源于Sadler, D. R. (1981) Intuitive Data Processing as a Potential Source of Bias in Educational Evaluation. Educational Evaluation and Policy Analysis, 3, P25-31。

[8] Robson, Colin (1993), Real World Research: A Resource for Social Scientists and Practitioner-Researcher. Blackwell Publishers, P371。

[9] Ronald R. Cooper, C. William Emory (1995, 5th ed) Business Research Methods, IRWIN, P352

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则[2] 。矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦()讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词[3] 。英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯()于1898年给出的[2] 。1854年时法国数学家埃尔米特()使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具[4] 。

矩阵计算的毕业论文

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

好写哦!科技论文,专业性这么强,写出来,也是只有专业人员才能明白。首先,序言:把矩阵的乘法原理,加以介绍、解释和说明,这些就是书上现成的东西。接着介绍其应用都有哪些,具体在哪些方面。最后说明本文主要介绍哪些方面的具体应用及事例。进入正文,集中写清楚,你要介绍的应用及事例。字数要多,就多写,写详细一些;字数一般,就写得一般,就可以啦。。。祝成功!

这种文体一般是先指出对方错误的实质,或直接批驳(驳论点),或间接批驳(驳论据、驳论证);继而,针锋相对地提出自己的观点并加以论证。驳论是跟立论紧密联系着的,因为反驳对方的错误论点,往往要针锋相对地提出自己的正确论点,以便彻底驳倒错误论点。侧重于驳论的议论文是驳论文.驳论文往往破中有立,边破边立,即在反驳对方错误论点的同时,针锋相对地提出自己的正确观点.批驳错误论点的方法有三种:1.驳论点2.驳论据3.驳论证.但归根结底是为了驳论点。 驳论文是议论文常见的论证文体,在对一些社会丑陋现象的批判与揭露上价值尤为突出,但学生在写作中往往感到不知从何驳起,无从下笔。其实,这类文章写作有一个思路,那就是:1、列现象,2、示弊端,3、探根源,4、指出路。本文适宜高中课文,鲁迅先生的名篇《拿来主义》为例,对驳论文的这一特征予以探析。列现象对现实中不合道德、有碍社会健康发展的现象进行列举。事例选取的典型性,以求警醒人们;罗列的丰富性,以求引起读者共鸣;修辞的多样性,以求彰显行文文采,增强气势。例:单是学艺上的东西,近来就先送一批古董到巴黎去展览,但终“不知后事如何”;还有几位“大师”们捧着几张古画和新画,在欧洲各国一路的挂过去,叫作“发扬国光”。听说不远还要送梅兰芳博士到苏联去,以催进“象征主义”,此后是顺便到欧洲传道。示弊端每一种(类)丑陋的现象都会或多或少造成社会的损失。有些损失是明显的,人们不齿、唾弃;但一些损失在较长的时间段后才会出现,许多人看不到这种想象的危害,那就要揭示,这要求写作者既具有深邃的目光,透过现象看本质,又具有先知先觉的本领。(这种一味的送去,造成物质的枯竭。)虽然有人说,掘起地下的煤来,就足够全世界几百年之用。但是,几百年之后呢?几百年之后,我们当然是化为魂灵,或上天堂,或落了地狱,但我们的子孙是在的,所以还应该给他们留下一点礼品。要不然,则当佳节大典之际,他们拿不出东西来,只好磕头贺喜,讨一点残羹冷炙做奖赏。这种奖赏,不要误解为“抛来”的东西,这是“抛给”的,说得冠冕些,可以称之为“送来”,我在这里不想举出实例。

矩阵的基本运算的研究论文

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

什么叫作矩阵矩阵乘法是线性代数中最常见的运算之一,它在数值计算中有广泛的应用。若A和B是2个nn的矩阵,则它们的乘积C=AB同样是一个nn的矩阵。A和B的乘积矩阵C中的元素C[i,j]定义为:若依此定义来计算A和B的乘积矩阵C,则每计算C的一个元素C[i,j],需要做n个乘法和n-1次加法。因此,求出矩阵C的n2个元素所需的计算时间为0(n3)。60年代末,Strassen采用了类似于在大整数乘法中用过的分治技术,将计算2个n阶矩阵乘积所需的计算时间改进到O(nlog7)=O()。首先,我们还是需要假设n是2的幂。将矩阵A,B和C中每一矩阵都分块成为4个大小相等的子矩阵,每个子矩阵都是n/2n/2的方阵。由此可将方程C=AB重写为:(1)由此可得:C11=A11B11 A12B21(2)C12=A11B12 A12B22(3)C21=A21B11 A22B21(4)C22=A21B12 A22B22(5)如果n=2,则2个2阶方阵的乘积可以直接用(2)-(3)式计算出来,共需8次乘法和4次加法。当子矩阵的阶大于2时,为求2个子矩阵的积,可以继续将子矩阵分块,直到子矩阵的阶降为2。这样,就产生了一个分治降阶的递归算法。依此算法,计算2个n阶方阵的乘积转化为计算8个n/2阶方阵的乘积和4个n/2阶方阵的加法。2个n/2n/2矩阵的加法显然可以在c*n2/4时间内完成,这里c是一个常数。因此,上述分治法的计算时间耗费T(n)应该满足:这个递归方程的解仍然是T(n)=O(n3)。因此,该方法并不比用原始定义直接计算更有效。究其原因,乃是由于式(2)-(5)并没有减少矩阵的乘法次数。而矩阵乘法耗费的时间要比矩阵加减法耗费的时间多得多。要想改进矩阵乘法的计算时间复杂性,必须减少子矩阵乘法运算的次数。按照上述分治法的思想可以看出,要想减少乘法运算次数,关键在于计算2个2阶方阵的乘积时,能否用少于8次的乘法运算。Strassen提出了一种新的算法来计算2个2阶方阵的乘积。他的算法只用了7次乘法运算,但增加了加、减法的运算次数。这7次乘法是:M1=A11(B12-B22)M2=(A11 A12)B22M3=(A21 A22)B11M4=A22(B21-B11)M5=(A11 A22)(B11 B22)M6=(A12-A22)(B21 B22)M7=(A11-A21)(B11 B12)做了这7次乘法后,再做若干次加、减法就可以得到:C11=M5 M4-M2 M6C12=M1 M2C21=M3 M4C22=M5 M1-M3-M7以上计算的正确性很容易验证。例如:C22=M5 M1-M3-M7=(A11 A22)(B11 B22) A11(B12-B22)-(A21 A22)B11-(A11-A21)(B11 B12)=A11B11 A11B22 A22B11 A22B22 A11B12-A11B22-A21B11-A22B11-A11B11-A11B12 A21B11 A21B12=A21B12 A22B22由(2)式便知其正确性。至此,我们可以得到完整的Strassen算法如下:procedureSTRASSEN(n,A,B,C);beginifn=2thenMATRIX-MULTIPLY(A,B,C)elsebegin将矩阵A和B依(1)式分块;STRASSEN(n/2,A11,B12-B22,M1);STRASSEN(n/2,A11 A12,B22,M2);STRASSEN(n/2,A21 A22,B11,M3);STRASSEN(n/2,A22,B21-B11,M4);STRASSEN(n/2,A11 A22,B11 B22,M5);STRASSEN(n/2,A12-A22,B21 B22,M6);STRASSEN(n/2,A11-A21,B11 B12,M7);;end;end;其中MATRIX-MULTIPLY(A,B,C)是按通常的矩阵乘法计算C=AB的子算法。Strassen矩阵乘积分治算法中,用了7次对于n/2阶矩阵乘积的递归调用和18次n/2阶矩阵的加减运算。由此可知,该算法的所需的计算时间T(n)满足如下的递归方程:按照解递归方程的套用公式法,其解为T(n)=O(nlog7)≈O()。由此可见,Strassen矩阵乘法的计算时间复杂性比普通矩阵乘法有阶的改进。有人曾列举了计算2个2阶矩阵乘法的36种不同方法。但所有的方法都要做7次乘法。除非能找到一种计算2阶方阵乘积的算法,使乘法的计算次数少于7次,按上述思路才有可能进一步改进矩阵乘积的计算时间的上界。但是Hopcroft和Kerr(197l)已经证明,计算2个22矩阵的乘积,7次乘法是必要的。因此,要想进一步改进矩阵乘法的时间复杂性,就不能再寄希望于计算22矩阵的乘法次数的减少。或许应当研究33或55矩阵的更好算法。在Strassen之后又有许多算法改进了矩阵乘法的计算时间复杂性。目前最好的计算时间上界是O()。而目前所知道的矩阵乘法的最好下界仍是它的平凡下界Ω(n2)。因此到目前为止还无法确切知道矩阵乘法的时间复杂性。关于这一研究课题还有许多工作可做。关于应用简单一点的表格,像考试分数求和复杂一点的魔方的解决方法,用矩阵代换方法

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则[2] 。矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦()讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词[3] 。英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯()于1898年给出的[2] 。1854年时法国数学家埃尔米特()使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具[4] 。

矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个述语。而实际上,矩阵这个课题在诞生之前就已经发展的很好了。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。英国数学家凯莱 () 一般被公认为是矩阵论的创立者,因为他首先把矩阵作为一个独立的数学概念提出来,并首先发表了关于这个题目的一系列文章。凯莱同研究线性变换下的不变量相结合,首先引进矩阵以简化记号。 1858 年,他发表了关于这一课题的第一篇论文《矩阵论的研究报告》,系统地阐述了关于矩阵的理论。文中他定义了矩阵的相等、矩阵的运算法则、矩阵的转置以及矩阵的逆等一系列基本概念,指出了矩阵加法的可交换性与可结合性。另外,凯莱还给出了方阵的特征方程和特征根(特征值)以及有关矩阵的一些基本结果。凯莱出生于一个古老而有才能的英国家庭,剑桥大学三一学院大学毕业后留校讲授数学,三年后他转从律师职业,工作卓有成效,并利用业余时间研究数学,发表了大量的数学论文。1855 年,埃米特 () 证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。后来 ,克莱伯施 () 、布克海姆 () 等证明了对称矩阵的特征根性质。泰伯() 引入矩阵的迹的概念并给出了一些有关的结论。在矩阵论的发展史上,弗罗伯纽斯 () 的贡献是不可磨灭的。他讨论了最小多项式问题,引进了矩阵的秩、不变因子和初等因子、正交矩阵、矩阵的相似变换、合同矩阵等概念,以合乎逻辑的形式整理了不变因子和初等因子的理论,并讨论了正交矩阵与合同矩阵的一些重要性质。 1854 年,约当研究了矩阵化为标准型的问题。 1892 年,梅茨勒 () 引进了矩阵的超越函数概念并将其写成矩阵的幂级数的形式。傅立叶、西尔和庞加莱的著作中还讨论了无限阶矩阵问题,这主要是适用方程发展的需要而开始的。矩阵本身所具有的性质依赖于元素的性质,矩阵由最初作为一种工具经过两个多世纪的发展,现在已成为独立的一门数学分支——矩阵论。而矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论。矩阵及其理论现已广泛地应用于现代科技的各个领域。相关搜索矩阵切换器矩阵运算法则矩阵公式矩阵计算基本公式视频矩阵特征向量怎么求 例题高中矩阵基本知识混合矩阵New专业百科知识,尽在搜

深度矩阵分解算法软件学报

矩阵分解funkSVD:该矩阵分解不像是线代中的,他属于伪分解。其主要思想是,用两个m*k和k*n的矩阵代替m*n的矩阵。因为在推荐系统中,矩阵十分稀疏,分解后的矩阵一般是密集的,且可以通过行列相乘来得到空缺的值。(其预测的是第u个用户对第i个商品的评分)其通过机器学习最小化损失函数来得到矩阵, 其学习方式有两种,一种是随机梯度下降,一种是交替最小二乘。 第一种不说,随处可见。第二种是通过 该式子实现的。 我们先随机化一个Q,因为R是那个稀疏矩阵已知,所以能得到P,我们再反过来用PR求Q。直到模型的误差低于一个阈值。 上面的svd是对于评分的算法,还有svd++等对用户,物品做了偏移项。隐式矩阵分解(最常见)ALS 我们一般的推荐问题不是通过评分推荐,因为评分的产生十分的困难,一般用户没有这个习惯。我们与其预测评分,不如去预测用户行为。如果我们给用户一个页面有十个商品,我们预测到用户会点击哪一个,这不就说明用户喜欢这个。而且基于用户的信息很多。 我们的矩阵由1,0和空缺组成,1表示该用户点击过该商品(即表示用户对它有想法),0表示用户对它没有想法(怎么是没想法呢,我们定义用户知道他却不想了解他。即我们在所有没有点击该商品的用户中抽样,该商品越火热抽取的人越多。因为热门的东西大家应该都知道,而你却没点击他,说明他不感兴趣) 我们要将该矩阵分解。 我们的损失函数是 Cui是置信度,比如我点击10次当时比只点击一次的喜欢置信度高。对于学习方法,我们使用加权交替最小二乘法初始化Y,我们计算出x,再通过 计算出y。再反复交替,直到小于阈值。该算法目前在spark上有实现。且sparkml将其作为唯一的推荐系统算法。

整理一下自己的理解。对于一个users-products-rating的评分数据集,ALS会建立一个user*product的m*n的矩阵其中,m为users的数量,n为products的数量但是在这个数据集中,并不是每个用户都对每个产品进行过评分,所以这个矩阵往往是稀疏的,用户i对产品j的评分往往是空的ALS所做的事情就是将这个稀疏矩阵通过一定的规律填满,这样就可以从矩阵中得到任意一个user对任意一个product的评分,ALS填充的评分项也称为用户i对产品j的预测得分所以说,ALS算法的核心就是通过什么样子的规律来填满(预测)这个稀疏矩阵它是这么做的:假设m*n的评分矩阵R,可以被近似分解成U*(V)TU为m*d的用户特征向量矩阵V为n*d的产品特征向量矩阵((V)T代表V的转置,原谅我不会打转置这个符号。。)d为user/product的特征值的数量关于d这个值的理解,大概可以是这样的对于每个产品,可以从d个角度进行评价,以电影为例,可以从主演,导演,特效,剧情4个角度来评价一部电影,那么d就等于4可以认为,每部电影在这4个角度上都有一个固定的基准评分值例如《末日崩塌》这部电影是一个产品,它的特征向量是由d个特征值组成的d=4,有4个特征值,分别是主演,导演,特效,剧情每个特征值的基准评分值分别为(满分为):主演:(大光头还是那么霸气)导演:特效:剧情:矩阵V由n个product*d个特征值组成对于矩阵U,假设对于任意的用户A,该用户对一部电影的综合评分和电影的特征值存在一定的线性关系,即电影的综合评分=(a1*d1+a2*d2+a3*d3+a4*d4)其中a1-4为用户A的特征值,d1-4为之前所说的电影的特征值参考:协同过滤中的矩阵分解算法研究那么对于之前ALS算法的这个假设m*n的评分矩阵R,可以被近似分解成U*(V)T就是成立的,某个用户对某个产品的评分可以通过矩阵U某行和矩阵V(转置)的某列相乘得到那么现在的问题是,如何确定用户和产品的特征值?(之前仅仅是举例子,实际中这两个都是未知的变量)采用的是交替的最小二乘法在上面的公式中,a表示评分数据集中用户i对产品j的真实评分,另外一部分表示用户i的特征向量(转置)*产品j的特征向量(这里可以得到预测的i对j的评分)在上面的公式中,a表示评分数据集中用户i对产品j的真实评分,另外一部分表示用户i的特征向量(转置)*产品j的特征向量(这里可以得到预测的i对j的评分)用真实评分减去预测评分然后求平方,对下一个用户,下一个产品进行相同的计算,将所有结果累加起来(其中,数据集构成的矩阵是存在大量的空打分,并没有实际的评分,解决的方法是就只看对已知打分的项)参考:ALS 在 Spark MLlib 中的实现但是这里之前问题还是存在,就是用户和产品的特征向量都是未知的,这个式子存在两个未知变量解决的办法是交替的最小二乘法首先对于上面的公式,以下面的形式显示:为了防止过度拟合,加上正则化参数为了防止过度拟合,加上正则化参数首先用一个小于1的随机数初始化V首先用一个小于1的随机数初始化V根据公式(4)求U此时就可以得到初始的UV矩阵了,计算上面说过的差平方和根据计算得到的U和公式(5),重新计算并覆盖V,计算差平方和反复进行以上两步的计算,直到差平方和小于一个预设的数,或者迭代次数满足要求则停止取得最新的UV矩阵则原本的稀疏矩阵R就可以用R=U(V)T来表示了以上公式内容截图来自:基于矩阵分解的协同过滤算法总结一下:ALS算法的核心就是将稀疏评分矩阵分解为用户特征向量矩阵和产品特征向量矩阵的乘积交替使用最小二乘法逐步计算用户/产品特征向量,使得差平方和最小通过用户/产品特征向量的矩阵来预测某个用户对某个产品的评分不知道是不是理解正确了有几个问题想请教一下~

------------------------------------------------------------------------------------------------------------------------------------------------

对于推荐系统来说存在两大场景即评分预测(rating prediction)与Top-N推荐(item recommendation,item ranking)。矩阵分解主要应用于评分预测场景。

推荐系统的评分预测场景可看做是一个矩阵补全的游戏,矩阵补全是推荐系统的任务,矩阵分解是其达到目的的手段。因此,矩阵分解是为了更好的完成矩阵补全任务(欲其补全,先其分解之)。之所以可以利用矩阵分解来完成矩阵补全的操作,那是因为基于这样的假设:假设UI矩阵是低秩的,即在大千世界中,总会存在相似的人或物,即物以类聚,人以群分,然后我们可以利用两个小矩阵相乘来还原它。

矩阵分解就是把原来的大矩阵,近似的分解成小矩阵的乘积,在实际推荐计算时不再使用大矩阵,而是使用分解得到的两个小矩阵。

具体来说就是,假设用户物品的评分矩阵A是m乘n维,即一共有m个用户,n个物品.通过一套算法转化为两个矩阵U和V,矩阵U的维度是m乘k,矩阵V的维度是n乘k。

这两个矩阵的要求就是通过下面这个公式可以复原矩阵A:

说起矩阵分解,我们第一个想起的就是SVD。

SVD分解的形式为3个矩阵相乘,左右两个矩阵分别表示用户/项目隐含因子矩阵,中间矩阵为奇异值矩阵并且是对角矩阵,每个元素满足非负性,并且逐渐减小。因此我们可以只需要前个K因子来表示它。

但SVD分解要求矩阵是稠密的,也就是说矩阵的所有位置不能有空白。有空白时我们的M是没法直接去SVD分解的。大家会说,如果这个矩阵是稠密的,那不就是说我们都已经找到所有用户物品的评分了嘛,那还要SVD干嘛! 的确,这是一个问题,传统SVD采用的方法是对评分矩阵中的缺失值进行简单的补全,比如用全局平均值或者用用户物品平均值补全,得到补全后的矩阵。接着可以用SVD分解并降维。

虽然有了上面的补全策略,我们的传统SVD在推荐算法上还是较难使用。因为我们的用户数和物品一般都是超级大,随便就成千上万了。这么大一个矩阵做SVD分解是非常耗时的。那么有没有简化版的矩阵分解可以用呢?我们下面来看看实际可以用于推荐系统的矩阵分解。

FunkSVD是在传统SVD面临计算效率问题时提出来的,既然将一个矩阵做SVD分解成3个矩阵很耗时,同时还面临稀疏的问题,那么我们能不能避开稀疏问题,同时只分解成两个矩阵呢?也就是说,现在期望我们的矩阵M这样进行分解:

SVD分解已经很成熟了,但是FunkSVD如何将矩阵M分解为P和Q呢?这里采用了线性回归的思想。目标是让用户的评分和用矩阵乘积得到的评分残差尽可能的小,也就是说,可以用均方差作为损失函数,来寻找最终的P和Q。

在实际应用中,为了防止过拟合,会加入一个L2的正则化项。加入了正则化系数,需要调参。对于这个优化问题,一般通过梯度下降法来进行优化得到结果。

在FunkSVD算法火爆之后,出现了很多FunkSVD的改进版算法。其中BiasSVD算是改进的比较成功的一种算法。BiasSVD假设评分系统包括三部分的偏置因素:一些和用户物品无关的评分因素,用户有一些和物品无关的评分因素,称为用户偏置项。而物品也有一些和用户无关的评分因素,称为物品偏置项。这其实很好理解。比如一个垃圾山寨货评分不可能高,自带这种烂属性的物品由于这个因素会直接导致用户评分低,与用户无关。

一个用户给一个物品的评分会由四部分相加:

从左到右分别代表:全局平均分、物品的评分偏置、用户的评分偏置、用户和物品之间的兴趣偏好

BiasSVD增加了一些额外因素的考虑,因此在某些场景会比FunkSVD表现好。

SVD++算法在BiasSVD算法上进一步做了增强,这里它增加考虑用户的隐式反馈。它是基于这样的假设:用户除了对于项目的显式历史评分记录外,浏览记录或者收藏列表等隐反馈信息同样可以从侧面一定程度上反映用户的偏好,比如用户对某个项目进行了收藏,可以从侧面反映他对于这个项目感兴趣,具体反映到预测公式为:

学习算法依然不变,只是要学习的参数多了两个向量:x和y。一个是隐式反馈的物品向量,另一个是用户属性的向量,这样在用户没有评分时,也可以用他的隐式反馈和属性做出一定的预测。

它是基于这样的假设:用户的兴趣或者偏好不是一成不变的,而是随着时间而动态演化。于是提出了timeSVD,其中用户的和物品的偏置随着时间而变化,同时用户的隐含因子也随着时间而动态改变,在此物品的隐含表示并未随时间而变化(假设物品的属性不会随着时间而改变)。

其中,t为时间因子,表示不同的时间状态。

通过之前构建目标函数之后,就要用到优化算法找到能使它最小的参数。优化方法常用的选择有两个,一个是随机梯度下降(SGD),另一个是交替最小二乘(ALS),在实际应用中,交替最小二乘更常用一些,这也是推荐系统中选择的主要矩阵分解方法。 找到两个矩阵P和Q,让它们相乘后约等于原矩阵R:

P和Q两个都是未知的,如果知道其中一个的话,就可以按照代数标准解法求得,比如知道Q,那么P就可以这样算:

也就是R矩阵乘Q矩阵的逆矩阵就得到了结果,反之,知道了P 再求Q 也一样,交替最小二乘通过迭代的方式解决这个鸡生蛋蛋生鸡的难题: 1)、初始化随机矩阵Q里面的元素值

2)、把Q矩阵当做已知的,直接用线性代数的方法求得矩阵P

3)、得到了矩阵P后,把P当做已知的,故技重施,回去求解矩阵Q

4)、 上面两个过程交替进行,一直到误差可以接受为止

使用交替最小二乘好处: 1.在交替的其中一步,也就是假设已知其中一个矩阵求解另一个时,要优化的参数是很容易并行的; 2.在不是很稀疏的数据集合上,交替最小二乘通常比随机梯度下降要更快的得到结果。

在很多推荐场景中,我们都是基于现有的用户和商品之间的一些数据,得到用户对所有商品的评分,选择高分的商品推荐给用户,这是funkSVD之类算法的做法,使用起来也很有效。但是在有些推荐场景中,我们是为了在千万级别的商品中推荐个位数的商品给用户,此时,我们更关心的是用户来说,哪些极少数商品在用户心中有更高的优先级,也就是排序更靠前。也就是说,我们需要一个排序算法,这个算法可以把每个用户对应的所有商品按喜好排序。BPR就是这样的一个我们需要的排序算法。

BPR根据像交替最小二乘那样完成矩阵分解,先假装矩阵分解结果已经有了,于是就计算出用户对于每个物品的推荐分数,只不过这个推荐分数可能并不满足均方根误差最小,而是满足物品相对排序最佳

得到了用户和物品的推荐分数后,就可以计算四元组的样本中,物品1和物品2的分数差,这个分数可能是正数,也可能是负数,也可能是0。如果物品1和物品2相对顺序为1,那么希望两者分数之差是个正数,而且越大越好;如果物品1和物品2的相对顺序是0,则希望分数之差是负数,且越小越好。 目标函数:

把这个目标函数化简和变形后,和把AUC当成目标函数是非常相似的,也正是因为如此,BPR模型宣称该模型是为AUC而生的。

SVDFeature 是由上海交大Apex Data & Knowledge Management Lab(APEX)开发的一个推荐系统工具包。他们提出了一种基于feature 的矩阵分解的框架。

它的目的是有效地解决基于特征的矩阵分解。新的模型可以只通过定义新的特征来实现。

这种基于特征的设置允许我们把很多信息包含在模型中,使得模型更加与时俱进。使用此工具包,可以很容易的把其他信息整合进模型,比如时间动态,领域关系和分层信息。除了评分预测,还可以实现pairwise ranking任务。

SVDFeature的模型定义如下:

输入包含三种特征<α,β,γ>,分别是用户特征,物品特征和全局特征。

SVD :要求矩阵是稠密的,时间复杂度高。不推荐使用。 FunkSVD :不在将矩阵分解为3个矩阵,而是分解为2个低秩的用户项目矩阵,同时降低了时间复杂度。 BiasSVD :考虑偏置项时使用,也就是用户的爱好。 SVD++ :考虑用户的隐式反馈时使用。主动点评电影或者美食的用户是少数,也就是说显示反馈比隐式反馈少,这个时候就可以根据用户的隐式反馈推荐。 timeSVD :考虑时间因素时使用。人是善变的,随着时间的流逝,兴趣也会发生变化。 ALS :考虑建模时间时使用。强烈推荐使用,这也是社交巨头 Facebook 在他们的推荐系统中选择的主要矩阵分解算法。 BPR :考虑排序结果时使用。 SVDFeature :当我们有多个特征时,可以使用。SVDFeature的目的就是解决基于特征的矩阵分解。

矩阵分解算法的缺点 :都没有解决冷启动问题

准确率表示预测正确的样本数占总样本数的比例。

TP(true positive):表示样本的真实类别为正,最后预测得到的结果也为正; FP(false positive):表示样本的真实类别为负,最后预测得到的结果却为正; FN(false negative):表示样本的真实类别为正,最后预测得到的结果却为负; TN(true negative):表示样本的真实类别为负,最后预测得到的结果也为负.

精确率表示预测为正样本的样本中,正确预测为正样本的概率。

召回率表示正确预测出正样本占实际正样本的概率。

折中了召回率与精确率。

对于评分预测任务,一般都是根据原有的评分数据,利用矩阵分解等方法去拟合原评分,使得优化后的模型可以去预测新的评分,这里就要衡量你预测的评分和实际评分的差异了,指标也很简单,分为RMSE和MSE。 MSE 是指参数估计值与参数真值之差平方的期望值; MSE可以评价数据的变化程度,MSE的值越小,说明预测模型描述实验数据具有更好的精确度。 RMSE :RMSE是MSE的算术平方根。

AUC 这个值在数学上等价于:模型把关心的那一类样本排在其他样本前面的概率。最大是 1,完美结果,而 就是随机排列,0 就是完美地全部排错。 这个非常适合用来评价模型的排序效果,很适合作为BPR的评价指标。得到一个推荐模型后,按照它计算的分数,可以把用户想要的物品排在最前面。

具体的计算过程可看我的另一篇 文章

其中Rel表示与用户 u 相关的商品集(测试集), Rec表示推荐给用户的前K个列表,二者的交集除以Rec的集合元素个数(其实就是K),得到Precision@K。一般是算出每个用户的Precision@K,然后取平均值。

其中Rel表示与用户u相关的商品集(测试集),Rec表示推荐给用户的前K个列表,二者的交集除以Rec的集合元素个数(也就是测试集中用户u评过分的商品数),得到Recall@K。一般是算出每个用户的Recall@K,然后取平均值。

MAP(Mean Average Precision):单个主题的平均准确率是每篇相关文档检索出后的准确率的平均值。

主集合的平均准确率(MAP)是每个主题的平均准确率的平均值。

MAP 是反映系统在全部相关文档上性能的单值指标。

系统检索出来的相关文档越靠前(rank 越高),MAP就可能越高。如果系统没有返回相关文档,则准确率默认为0。 例如:

假设有两个主题,主题1有4个相关网页,主题2有5个相关网页。

某系统对于主题1检索出4个相关网页,其rank分别为1, 2, 4, 7;

对于主题2检索出3个相关网页,其rank分别为1,3,5。

对于主题1,平均准确率为(1/1+2/2+3/4+4/7)/4=。对于主题2,平均准确率为(1/1+2/3+3/5+0+0)/5=。

则MAP= ()/2=。

正确检索结果值在检索结果中的排名来评估检索系统的性能。

其中Q是用户的个数,rank是对于第i个用户,推荐列表中第一个在ground-truth结果中的item所在的排列位置。

举个例子:假如检索三次的结果如下,需要的结果(cat,torus,virus)分别排在3,2,1的话,此系统地MRR为(1/3 + 1/2 + 1)/3 = 11/18

比较复杂,可参考这篇 文章

参考文章:

相关百科

热门百科

首页
发表服务