首页

> 论文发表知识库

首页 论文发表知识库 问题

矩阵探讨与研究论文

发布时间:

矩阵探讨与研究论文

告诉你拟就会写吗。不如我给你写得了

找点文献给你自己看看吧,需要就发邮件给我[1]高朝邦,祝宗山.关于矩阵的秩的等价描述[J].成都大学学报(自然科学版),2006,25(1)从行列式、矩阵的等价、线性方程组、线性空间、线性映射等角度来刻画矩阵的秩,进而用这些命题来证明与矩阵的秩有关的一些命题.[2]费绍金.用矩阵的秩判断空间中平面与平面、直线与直线及直线与平面间的位置关系[J].牡丹江教育学院学报,2007,(6)利用线性方程组解的理论讨论空间中平面与平面、直线与直线及直线与平面间的位置关系,给出用矩阵的秩判定以上关系的方法及结论.[3]严坤妹.一类矩阵的秩[J].福建商业高等专科学校学报,2005,(4)矩阵的秩是矩阵的一个重要不变量,根据两个重要的矩阵的秩的不等式以及分块矩阵的初等变换的性质,本文研究了一类矩阵的秩的特征.[4]戴红霞.关于矩阵的秩的例题教学[J].南京审计学院学报,2005,2(2)本文通过三个典型例题的具体讲解,加深学生对抽象概念"矩阵的秩"的理解和掌握.[5]余航.试论分块矩阵的秩[J].桂林师范高等专科学校学报,2001,15(3)任一矩阵都可求得它的秩,而在矩阵运算中,矩阵的分块是一个很重要的技巧.本文从不同角度,从特殊到一般地探求了分块矩阵的秩.[6]徐兰.利用分块矩阵探讨矩阵的秩的有关定理[J].昌吉学院学报,2003,(4)矩阵是线性代数的主要研究对象之一,利用分块矩阵,研究高阶矩阵的秩及矩阵在运算后秩的变化,得到有关的定理.[7]邹晓光.互素多项式矩阵的秩的一个简单结论及其应用[J].金华职业技术学院学报,2006,6(1)本文给出了互素多项式在矩阵的秩讨论中的一个简单结果:定理:设f(x),g(x)∈P[x],A是n阶方阵,若(f(x),g(x))=1,则n+r[f(A)g(A)]=r(f(A))+r(g(A)).以及结果的一些简单应用,对文献[1]中的一些结论进一步讨论.[8]张丽梅,乔立山,李莹.可逆坡矩阵与坡矩阵的秩[J].山东大学学报(理学版),2007,42(9)坡是两个元素的乘积小于等于每个因子的加法幂等半环.讨论了可逆坡矩阵的若干性质,证明了可逆坡矩阵必是满秩的.讨论了坡矩阵的行秩、列秩与Schein秩.给出了坡矩阵的Schein秩的一个重要性质.

建议你去论文网上搜索下..里面很全的.什么都有..

一类特殊对称矩阵的特征值与特征向量陆全 徐仲 【摘要】:【作者单位】:西北工业大学西北工业大学【关键词】:矩阵的特征值正交特征向量特征值与特征向量对称矩阵实对称阵特征问题矩阵A正交变换《线性代数》正交阵【分类号】:O151【DOI】:CNKI:SUN:【正文快照】:同济大学《线性代数》第130页例10要求一个正交变换.把二次型化为标准形,其中需要求矩阵的特征值与单位正交特征向量。事实上,这个矩阵R是一种具有特殊对称性的矩阵。这类矩阵的特征问题有如下的一般结论。考虑如下的特殊对称矩阵其中A、B均为m阶实对称阵,u是m维列向量,

探讨与研究论文

1、关于论文开始创作的时间经常听别人说什么“没有毕不了业的硕士”,什么“一周就写完了”。这话确实没有错,其实单就一篇论文来说一周写完也没有什么,并且学校一般情况都不会为难你的。但是我们需要注意一些事情:研究生毕竟是研究生,和本科一样糊弄是不行的,所以如果你的论文需要做模型或者发放问卷的话,那还是尽早准备的好,即使编也有要有时间。2、关于论文的格式论文有一定的格式,这个格式老师一般都会交代。事实上,学校会指定打印社去帮你排版,所以你要做的就是把内容写完,不必在格式上花费时间。3、关于论文的结构说实话本人认为这个论文有点八股的性质,按照中文摘要、英文摘要、导论、理论回顾、正文、参考文献、后记的顺序写,一点不能缺。每一部分都有一定的文字,所以在开始动手写前一定要想好每一部分有多少字,这样整个文章的结构就会很严谨。再就是写作前一定要想好要写哪些内容,按照自己所写的内容搜集资料,而不是根据资料写内容。按照后者的写法,最后你会发现真的很难,并且很累!4、关于脚注论文肯定是要加脚注的。这个脚注可以从别人的论文里面抄过来,这样是一种很偷懒的、确实很现实可行的方法,不然你会为这三四十个脚注操心死的。另外就是抄的时候一定要变写论文边加脚注,不要先引用了别人的资料,等论文写完后再加脚注,那样你就找不到脚注的来源了。5、关于写论文的便捷方法以上说的脚注其实也算是便捷方法啦,但是这里主要将的是抄袭的方法。其实现在说是写论文,基本也就是拼凑论文,所以在写之前一定要下载大量的资料,尤其特别是别人的毕业论文,确定几篇你主要抄袭的论文,每一篇指定一种文字用颜色,在拼凑的时候不用来源的资料用不同颜色的文字,这样以便你日后醒目地看出自己那篇文章抄多了,哪里抄少了,还可以混杂在一起拼凑。另外注意的是以后你自己的论文也会上网,所以要是让别人看出你论文的抄袭肯定是不行的,所以一定要改。如果有一段资料只有一篇文章里面有,你就必须先看那篇文章,理解后自己写,这样思路是一样的但是语言绝对不同,不算抄袭。如果你有多篇文章一起拼凑的话,一定要把语言充分融合,这样也不算是抄袭。6、关于论文定稿完成的时间学校有一个关于论文定稿完成时间的规定,但是具体的操作还是在于你自己。如果你不想改动,基本写了就写了,那么最好晚一点给导师交初稿,这样导师看没有时间了,就只会改动一下文章的结构不会变动内容。如果你想往优秀那里靠,最好一直写的时候就和导师充分联系,尽早写完尽早给导师修改。当然其实现在的导师一般情况下也不会怎么改的,她们很尊重你写的东西,偶有写导师会认真地和你探讨,这样的话你可就要更用心了。7、关于论文打印时间一般到最后学校会指定专门的打印店去打印论文。这个时候全校就集中在那个小小的店铺里面,因此时间的安排很重要。最好赶早去,比如8点开门,你不到8点就在排队比较好。我应该来说算是很运气了,我是下午4点送去的,刚进门正好一个同学弄完空闲了一台电脑,我旋即开始修改版式,在我打印店的小工帮我刚开始弄目录的时候,就有若干个同学进来,可惜只有排队了。最可怜的就是排在我后面的美术学院的男生,竟然排了一个多小时。

我有题材可以参考.

提供一份研究性小论文,供参考。 环境与光污染一、课题背景:随着现代都市的发展,出现了一种新的污染——光污染,它已成为现在都市的环境公害,影响人们的身心健康。而这种光污染是由反光、反热的建筑材料造成的,如一些大厦的玻璃幕墙。在下午约2~4时折射的太阳光正好对着公路,司机们的视线受到干扰,存在安全隐患。在深圳也存在此种问题,特别是繁华地段的高层反光反热的玻璃幕墙,因此,本小组在我市的繁华地段进行调查研究,开展了“光污染”的课题研究。二、课题目的:1.认识和了解光污染的有关知识。2.调查城市光污染,并提出有关建议。3.学会团结合作,学会对知识的探讨与研究。��三、课题研究过程与方法:1.查找资料:上网查找,翻阅书报。收集资料。(1)光污染分为人造光与自然光,这些光照对人体有害处。(2)人对光的色彩有何反应。(3)光污染对各种人群的危害。2.实地调查(1)对行人、司机的采访。 (2)采用拍照,进行实情记录。3.总结整理(1)整理资料,分析内容。(2)制作网页。四、研究结果和分析:1.光污染及其危害根据环境科学的解释,光污染是指过量的光辐射,紫外线辐射和红外线辐射对人体健康,人类生活和工作环境造成不良影响的现象。(1)眩光�造成光污染的光辐射中常见的是眩光。眩光是指在视野内有光亮度范围不适宜,在空间或时间上存在着极端的光亮度对比,以致引起不舒服或降低可见度的视觉现象,玻璃幕墙的光污染就是由于其反射太阳光、灯光等光线过强造成眩光。眩光使人的视力下降并迅速疲劳,日常生活中的眩光污染有很多,如夜间迎面而来的汽车前灯的眩光会使受到光刺激的司机和行人控制力降低,很容易发生危险等。 (2)自然光自然光主要来源太阳辐射。太阳光主要有紫外线、红外线、可见光等。而光污染是指过量的光的辐射,紫外光的辐射,能对人体健康、人类生活和工作环境造成不良影响。如:受日光中的紫外线过度的照射,便会引起日光性皮肤炎,会使人身体暴露部位红肿,严重者起水疱,患部有灼热,刺痒或疼痛感;病情严重时,可伴随身体不适、发烧、恶心及心跳加速,长期日晒过量会造成慢性损害,长期照射阳光,紫外线能诱发皮肤癌。但适量的阳光照射是必要的。(3)反射太阳光反射太阳光,这种光污染是城市中最为严重的。例如,我市的建筑,虽然以玻璃幕墙为主,是很美观,但在美丽的背后却潜藏着杀机,它给周围的人带来了很多危险,如:使正常细胞衰亡,出现血压升高,心急燥热等不良症状,还可以使人的视力下降尤其是眩光。(4)人造光人造光就是指我们日常使用的电灯,舞厅用的彩灯等。在舞厅里,我们看到的灯光五光十色,美丽万分,可你对它的危害又认识多少呢?各式各样的彩灯是光污染的来源之一。彩灯虽然能够强烈的刺激感官,同时刺激也能病发细胞,使人的眼睛不适,影响人的中枢神经,令人产生头晕目眩,站立不稳的感觉,长期处于这种灯光下会引起头痛,失明,食欲不振。此外经科学研究表明,彩光能给人产生心理压力,不同的颜色有不同程度的心理压力。 �(5)彩光心理压力指数灯光颜色 白光 黄光 绿光 蓝光 紫光 红光 黑光压力指数 100 113 133 152 155 158 187(6)光污染如何导致近视作为学生的我们受到光污染的危害就更严重了,现代学生的近视眼有不断上升的趋势,其中必不可少原因是光污染。学生所用的台灯,光质分为红外光、紫外光。红外光易被水分吸收,而人的眼球80%左右是水分,长期吸收红外光会使眼组织变异;紫外光有穿透力,杀伤力强,长期受紫外光辐射,眼细胞受到伤害。台灯的光污染会对眼睛造成疲劳,损伤,从而使视力下降。2.光污染的防治与建议(1)在光污染比较严重的地区,可以多植树,树木可以减少光污染的强度,从而减少光污染对人体的影响和危害。(2)在交通繁忙地区的建筑物应少用或不用反光、反热的建筑材料,最好使用不反光、不反热的建筑材料。(3)住宅区不用反光、反热性强的建筑材料,因为它会直接危害到人们的健康,生活习惯。(4)若使用反光的建筑材料做外墙,应有自动转向反光系统。如:两栋楼隔着一定的距离而对立,若太阳光从对面大楼方向射过来,那么这栋大楼的反光外墙通过自动反光系统调节一定的角度,射向另一栋大楼再经过自动反光系统,把光反射到天空去,这种设想的可行性是可以的,但依现在的科技水平要完成这一系统是不可能的,它需要高新的科技与高能量的消耗,因此这种想法只有在未来实现了。

正定矩阵的判别探究毕业论文

定义如下设M是n阶实系数对称矩阵, 如果对任何非零向量 X=(x_1,...x_n) 都有 X′MX>0,就称M正定(Positive Definite)。 正定矩阵在相合变换下可化为标准型, 即单位矩阵。 所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。 另一种定义:一种实对称矩阵.正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵.

一、正定矩阵判定:1、正定矩阵的任一主子矩阵也是正定矩阵。2、若A为n阶对称正定矩阵,则存在唯一的主对角线元素都是正数的下三角阵L,使得A=L*L′,此分解式称为正定矩阵的楚列斯基(Cholesky)分解。3、若A为n阶正定矩阵,则A为n阶可逆矩阵。二、判定一个矩阵半正定:1、对于半正定矩阵来说,相应的条件应改为所有的主子式非负。顺序主子式非负并不能推出矩阵是半正定的。2、半正定矩阵:设A是实对称矩阵。如果对任意的实非零列矩阵X有XT*A*X≥0,就称A为半正定矩阵。3、A∈Mn(K)是半正定矩阵的充分条件是:A的所有主子式大于或等于零。三、负定矩阵判定:1、设A是实对称矩阵。如果对任意的实非零列矩阵X有XTAX<0,就称A为负定矩阵。2、A∈Mn(K)是负定矩阵的充要条件是:-A是正定矩阵。3、A∈Mn(K)是负定矩阵的充要条件是:$A^{-1}$是负定矩阵。4、A∈Mn(K)是负定矩阵的充要条件是:A的所有奇数阶顺序主子式小于零,所有偶数阶顺序主子式大于零。扩展资料:正定性n×n的实对称矩阵A如果满足对所有非零向量对应的二次型:若Q>0就称A为正定矩阵。若Q<0则A是一个负定矩阵,若Q>=0则A为半正定矩阵,若A既非半正定,也非半负定,则A为不定矩阵 。对称矩阵的正定性与其特征值密切相关。矩阵是正定的当且仅当其特征值都是正数。实对称矩阵A是负定的,如果二次型f(x1,x2,...,xn)=X'AX负定。矩阵负定的充分必要条件是它的特征值都小于零。若矩阵A是n阶负定矩阵,则A的偶数阶顺序主子式大于0,奇数阶顺序主子式小于0。实对称矩阵A称为半正定的,如果二次型X'AX半正定,即对于任意不为0的实列向量X,有X'AX≥0;参考资料:搜狗百科-矩阵参考资料:搜狗百科-半正定矩阵参考资料:搜狗百科-负定矩阵

正定矩阵在相合变换下可化为规范型, 即单位矩阵。所有特征值大于零的对称矩阵(或厄米特矩阵)是正定矩阵,其等价条件是:

1、AA是半正定的;

2、AA的所有主子式均为非负的';

3、AA的特征值均为非负的;

4、存在n阶实矩阵C,使A=C'CC,使A=C′C;

5、存在秩为r的r×n实矩阵BB,使A=B'BA=B′B。

正定矩阵有以下性质:

1、正定矩阵的行列式恒为正;

2、实对称矩阵A正定当且仅当A与单位矩阵合同;

3、若A是正定矩阵,则A的逆矩阵也是正定矩阵;

4、两个正定矩阵的和是正定矩阵;

5、正实数与正定矩阵的乘积是正定矩阵。

广义定义:设M是n阶方阵,如果对任何非零向量z,都有zTMz> 0,其中zT 表示z的转置,就称M为正定矩阵。

例如:B为n阶矩阵,E为单位矩阵,a为正实数。在a充分大时,aE+B为正定矩阵。(B必须为对称阵)。

狭义定义:一个n阶的实对称矩阵M是正定的的条件是当且仅当对于所有的非零实系数向量z,都有zTMz> 0。其中zT表示z的转置。

扩展资料

正定矩阵在相合变换下可化为规范型, 即单位矩阵。所有特征值大于零的对称矩阵(或厄米特矩阵)是正定矩阵。正定矩阵的性质:

1、正定矩阵的行列式恒为正;

2、实对称矩阵A正定当且仅当A与单位矩阵合同;

3、若A是正定矩阵,则A的逆矩阵也是正定矩阵;

4、两个正定矩阵的和是正定矩阵;

5、正实数与正定矩阵的乘积是正定矩阵。

等价条件:

1、AA是半正定的;

2、AA的所有主子式均为非负的;

3、AA的特征值均为非负的;

4、存在n阶实矩阵C,使A=C'CC,使A=C′C;

5、存在秩为r的r×n实矩阵BB,使A=B'BA=B′B。

参考资料来源:百度百科-正定矩阵

矩阵的研究现状与意义论文

怎么写开题报告呢?首先要把在准备工作当中搜集的资料整理出来,包括课题名称、课题内容、课题的理论依据、参加人员、组织安排和分工、大概需要的时间、经费的估算等等。第一是标题的拟定。课题在准备工作中已经确立了,所以开题报告的标题是不成问题的,把你研究的课题直接写上就行了。比如我曾指导过一组同学对伦教的文化诸如“伦教糕”、伦教木工机械、伦教文物等进行研究,拟定的标题就是“伦教文化研究”。第二就是内容的撰写。开题报告的主要内容包括以下几个部分:一、课题研究的背景。 所谓课题背景,主要指的是为什么要对这个课题进行研究,所以有的课题干脆把这一部分称为“问题的提出”,意思就是说为什么要提出这个问题,或者说提出这个课题。比如我曾指导的一个课题“伦教文化研究”,背景说明部分里就是说在改革开放的浪潮中,伦教作为珠江三角洲一角,在经济迅速发展的同时,她的文化发展怎么样,有哪些成就,对居民有什么影响,有哪些还要改进的。当然背景所叙述的内容还有很多,既可以是社会背景,也可以是自然背景。关键在于我们所确定的课题是什么。二、课题研究的内容。课题研究的内容,顾名思义,就是我们的课题要研究的是什么。比如我校黄姝老师的指导的课题“佛山新八景”,课题研究的内容就是:“以佛山新八景为重点,考察佛山历史文化沉淀的昨天、今天、明天,结合佛山经济发展的趋势,拟定开发具有新佛山、新八景、新气象的文化旅游的可行性报告及开发方案。”三、课题研究的目的和意义。课题研究的目的,应该叙述自己在这次研究中想要达到的境地或想要得到的结果。比如我校叶少珍老师指导的“重走长征路”研究课题,在其研究目标一栏中就是这样叙述的:1、通过再现长征历程,追忆红军战士的丰功伟绩,对长征概况、长征途中遇到了哪些艰难险阻、什么是长征精神,有更深刻的了解和感悟。2、通过小组同学间的分工合作、交流、展示、解说,培养合作参与精神和自我展示能力。3、通过本次活动,使同学的信息技术得到提高,进一步提高信息素养。四、课题研究的方法。在“课题研究的方法”这一部分,应该提出本课题组关于解决本课题问题的门路或者说程序等。一般来说,研究性学习的课题研究方法有:实地调查考察法(通过组织学生到所研究的处所实地调查,从而得出结论的方法)、问卷调查法(根据本课题的情况和自己要了解的内容设置一些问题,以问卷的形式向相关人员调查的方法)、人物采访法(直接向有关人员采访,以掌握第一手材料的方法)、文献法(通过查阅各类资料、图表等,分析、比较得出结论)等等。在课题研究中,应该根据自己课题的实际情况提出相关的课题研究方法,不一定面面俱到,只要实用就行。五、课题研究的步骤。课题研究的步骤,当然就是说本课题准备通过哪几步程序来达到研究的目的。所以在这一部分里应该着重思考的问题就是自己的课题大概准备分几步来完成。一般来说课题研究的基本步骤不外乎是以下几个方面:准备阶段、查阅资料阶段、实地考察阶段、问卷调查阶段、采访阶段、资料的分析整理阶段、对本课题的总结与反思阶段等。六、课题参与人员及组织分工。这属于对本课题研究的管理范畴,但也不可忽视。因为管理不到位,学生不能明确自己的职责,有时就会偷懒或者互相推诿,有时就会做重复劳动。因此课题参与人员的组织分工是不可少的。最好是把所有的参与研究的学生分成几个小组,每个小组通过民主选举的方式推选出小组长,由小组长负责本小组的任务分派和落实。然后根据本课题的情况,把相关的研究任务分割成几大部分,一个小组负责一个部分。最后由小组长组织人员汇总和整理。七、课题的经费估算。一个课题要开展,必然需要一些经费来启动,所以最后还应该大概地估算一下本课题所需要 的资金是多少,比如搜集资料需要多少钱,实地调查的外出经费,问卷调查的印刷和分发的费用,课题组所要占用的场地费,有些课题还需要购买一些相关的材料,结题报告等资料的印刷费等等。所谓“大军未动,粮草先行”,没有足够的资金作后盾,课题研究势必举步维艰,捉襟见肘,甚至于半途而废。因此,课题的经费也必须在开题之初就估算好,未雨绸缪,才能真正把本课题的研究做到最好。

LZ是文科生吧

我会可以q我谈

所以你写完了吗?能不能给我参考参考

研究线性变换与矩阵的论文

告诉你拟就会写吗。不如我给你写得了

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则[2] 。矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦()讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词[3] 。英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯()于1898年给出的[2] 。1854年时法国数学家埃尔米特()使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具[4] 。

我们曾在线性代数里学过向量空间,它是由向量做成的集合。在这个集合里向量可以相加,向量可以乘以一个倍数,由此我们可以讨论向量的线性组合、向量的线性相关等概念。

如果上述运算满足以下规则,则称 为数域 上的 线性空间 。 中的元素也称为向量。

解:

令其对应项相等即可。

一般来说,一个元素在不同的基底下有不同的坐标,它们的坐标有什么关系呢?

设 是 上的 维线性空间, , , , 和 , , , 是 的两个 不同的基底 ,因为 , , , 是基底,所以 , , , 可以被这个基底线性表达,这两个基底的关系是:

利用 过渡矩阵 就可以得到这个元素的两个坐标之间的关系:

我们知道三维线性空间 的二维平面 也是一个线性空间,这种类型的空间叫作 子空间 。

这个子空间叫做 和 的 和子空间 。

由两个子空间 , 生成的子空间的维数 , 与原来的子空间的维数之间有一个关系,称之为 维数定理 ,即:

这个几个概念比较重要,需要记住。

则称 为 上的 线性变换 。线性变换保持 上的运算。

上面这个线性变换的公式需要记住,经常会考这个改变以及以下变种。比如下文的线性变换的矩阵的公式:

由:

能得到:

这时如果知道:

即可求出:

等于:

等于:

可以证明,线性空间中的所有线性变换也做成一个线性空间,记作

像子空间 是由 中所有元素的像构成的,即任取 ,则一定存在 ,使得 。

核子空间 是由所有 中的一些元素构成的,这些元素在线性变换的作用下是零。

上的所有线性变换构成的子空间是一个比较抽象的空间,我们知道一些具体的线性变换,但是任意一个线性变换是什么样子的,怎么表达呢?

设 ,

可以看出,决定线性变换结果的是:

即基底在这个线性变换之下变成了什么形式。

因为 ,仍然是 中的元素,当然可以被 的基底表达:

为线性变换 在基底 下的矩阵。

可见每一个 线性变换实际上与一个矩阵相对应 ,反过来,每一个矩阵也对应一个线性变换,即给定一个矩阵 ,只要定义:   则这个矩阵对应一个线性变换。

计算矩阵的除法,其实就是将被除的矩阵先转化为它的逆矩阵,它的逆矩阵相当于被除的矩阵分之一,那么矩阵的除法就相当于前面的矩阵和后面的矩阵的逆矩阵相乘的乘积。1、计算矩阵的除法,先将被除的矩阵先转化为它的逆矩阵,再将前面的矩阵和后面的矩阵的逆矩阵相乘。2、那么,一个矩阵的逆矩阵的求解方法是:先把一个单位矩阵放在目的矩阵的右边,然后把左边的矩阵通过初等行变换转换为单位矩阵,此时右边的矩阵就是我们要求的逆矩阵。3、我们再通过举一个实例来说明矩阵的除法的具体计算方法。4、先把单位矩阵放在矩阵A的右边并放在同一个矩阵里边。现用第二行和第三行分别减去第一行的3倍和-1倍。5、先用第一行和第三行分别加上第二行的2/5倍。再用第一行和第二行分别加上第三行的1/9倍和-1/5倍。6、最后用矩阵B与矩阵A的逆矩阵相乘即可得出最后的结果,即矩阵B除以矩阵A得出的商。拓展资料:在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

相关百科

热门百科

首页
发表服务