首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

毕业论文问卷信效度不过关

发布时间:

毕业论文问卷信效度不过关

一般我们做的所谓信度都是alpha系数,这个指标其实是对你问卷所用的题目的内部一致性,即内部相关的一种检测,相关越高,代表信度越好,那就要想办法提高项目间的相关。一般就两种法子:第一,增加题目,自己根据理论依据和自己的合理论证给问卷添加符合其概念的题目,好题目(同质的题目)加的越多,信度越好。第二,删题目,把和其他项目明显不一样的题目删掉,也能增加alpha系数值,至于删哪个,你可以根据spss求alpha系数的操作来进行,在spss里面选分析——可靠性分析——然后在对话框里面找到有一项是 如果删除该项目后所得的alpha系数,这个操作会告诉你每个题目删除后alpha系数的变化,这样你就知道该删哪个了,另外也可以根据理论依据,把不符合理论的题目删掉。总而言之,就是增加同质的题目,删掉不同质的题目信度是效度的必要条件,也就是说,要想效度高,首先要信度好,那么提高信度的方法也可以用来提高效度可以说,增删题目是最常见也最有效的方法,本来增加样本容量也是个好办法,不过既然你说没时间,那就没法子了。另外的话,就是去除异常数据,把乱答的找出来,比如全部填同一个答案的,规律作答的,还可以按均值上下3个标准差去除极端值

不可以。论文本身是对某领域的研究和成果的描述。具有一定的实际意义。在论文审核时候有一项标准即为论文的可行性。过低则没有实际的参考意义,需要修改。信度即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。信度分析就是论文的可实现性。

做量表研究的人,或多或少都曾因为量表效度不达标困扰过,尤其在很多研究领域并没有特别权威的经典量表可以引用。使用自制的量表来研究,容易信效度不达标,那么如果遇到效度非常糟糕的情况时应该怎么办呢?

在解决效度低的这个问题之前,我们不妨一起来回顾下,判断效度达标的指标都有哪些。以使用探索性因子分析检验结构效度为例:

( 1 ) KMO >0.6 、通过巴特莱球形检验

SPSSAU效度分析 中可自动输出KMO 和 Bartlett 的检验结果。

如果KMO值高于0.8,则说明效度高;如果此值介于0.7~0.8之间,则说明效度较好;如果此值介于0.6~0.7,则说明效度可接受,如果此值小于0.6,说明效度不佳(如果仅两个题;则KMO无论如何均为0.5)。

通过Bartlett 球形度检验意味着变量之间有一定的相关性,适合使用因子分析检验效度。

(2)分析项归类清晰

结构效度分为两种:一种是使用探索性因子分析的方法;另一种是使用验证性因子性分析。其中探索性因子分析适合非经典量表使用。

比如说预期有5个维度,但是分析后得到3个公因子,可能就是某些分析项预期与实际分析时出现了偏差,这时可以适当删减不合理的分析项,当分析项与维度的划分与专业意义上的内在逻辑结构基本一致,此时则说明数据具有较好的效度。

通常分析项的在某个因子下的因子载荷系数绝对值>0.4,即认为该分析项可以归属于这个因子下。

比如上表中的分析项d1,预期归属于因子5里,但实际在因子1里。此时就应该移出d1重新分析。

(3)其他效度分析判断指标: 共同度 、相关系数矩阵等

如果变量相关性过高,可能会存在共线性问题,区分效度较低等问题;如果相关性太低,则说明变量之间的内在联系比较弱,不适合进行因子分析。通常共同度值>0.4即可。

共同度值可在 效度分析 结果中获得,相关系数矩阵可通过SPSSAU【 通用方法 】--【 相关 】得到。

(1)怎么都划分不清维度

(2)实际分析项归类与预期维度不同

(3)有很多共同度很低的题项

(1)怎么都划分不清维度

建议每次 放入一个维度的题项 ,移出共同度低的问题。重复以上操作,将每个维度分析一遍,确保每个维度内部没有太糟糕的题。然后再放入全部的题目,整体分析。这样就可以看到维度之间划分得是否清晰。

(2)实际分析项归类与预期维度不同

分析项归类与预期维度不同,是一个非常常见的问题。

CFA检验流程轻参考:

建议每次放入一个维度的题项,移出共同度低的问题。重复所有维度操作一遍,确保每个维度内部没有太糟糕的题。然后再放入全部的题目,整体做一遍。这样就可以看到维度之间划分得是否清晰。

如果仍然无法解决建议可增加样本量,或重新收集数据修改量表内容。

如果结果的维度划分比较清晰,且符合专业知识认知,建议以分析结果为准,根据假设和结果,修正量表。

同样的样本数据,不同的分析思路,有可能出现结果不相同,但只要符合效度的思维概念即可。

(3)有很多共同度很低的题项

有很多共同度低的分析项,意味着分析项之间的关联性较低,通常这时候分析项归类也不好。

此时建议可以从共同度最低的分析项开始移出,依次分析直至删除所有共同度小于0.4的项,需要来回多次进行对比,找出最佳结果。

当然,最根本的改善效度的方法,还是要做好预调研工作,保证数据收集质量。设计量表时每个维度的题目最好有出处可寻。这样做才能为后续分析工作提供便利。

毕业论文问卷的信度和效度

信度是指内容的可靠性、真实性,效度是指内容的准确度、精确度。信度和效度都是研究内容的可靠性、真实性的度量,但信度侧重于研究内容的可靠性、真实性的程度,效度侧重于研究内容的精确性、准确性的程度。信度高,效度就高,反之则低。效度高,信度也高,反之则低。信度是指内容的可靠性、真实性。

信度指的是测量结果的稳定性程度,以及可靠性。效度指一个测量或量表能测出其所要测的某种特征的程度。

信度(Reliability)即可靠性,是指采用同一方法对同一对象进行调查时,问卷调查结果的稳定性和一致性,即测量工具(问卷或量表)能否稳定地测量所测的事物或变量。

信度指标多以相关系数表示,具体评价方法大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。

效度(Validity)即有效性,它是指测量工具或手段能够准确测出所需测量的事物的程度。效度分为三种类型:内容效度、准则效度和结构效度。效度分析有多种方法,其测量结果反映效度的不同方面。

扩展资料:

信度与效度二者的关系:

1.信度低,效度不可能高。因为如果测量的数据不准确,也并不能有效地说明所研究的对象

2.信度高,效度未必高。例如,如果我们准确地测量出某人的经济收入,也未必能够说明他的消费水平。

3.效度低,信度很可能高。例如,即是一项研究未能说明社会流动的原因,但它很有可能很精确很可靠地调查各个时期各种类型的人的流动数量。

4.效度高,信度也必然高。

参考资料:百度百科-信度

益派调查网可以免费发布调查问卷,可以免费使用样本。调查问卷包含的题型多种多样,开放题、矩阵题什么的都能做,基本满足论文中设计的数据调查及分析。

信度和效度的关系和区别在于一个是稳定性与效率性得不同,因为信度你可以把它理解为可靠度、一致性、稳定性,效度分析,简单来说就是问卷设计的有效性、准确程度,当我们在为研究主题设计问卷时,都会希望问题实际测量到的是我们希望测量的。两者的关系是信度低,效度不可能高,信度高,效度也不一定高,但相反如果效度低,信度很有可能高,效度高,信度也必然高。

两者的区别在于估计对象不同,分析方法也不一样,还有就是建立的前提不同,比如,效度必须在信度的基础上才能建立,而如果没有了效度,信度再高结果是没有意义的,这也才有了前面的两者关系。

其信度就是指同一个人在几次参加同一份试卷的考试假设此人并未有改变分数不会有大的差异,而效度是指这份试卷能勾多大程度测量你的智力水平。

信度是指其可信度,既是在多大程度上是正确的,效度是指能够多有效地表示所需表达的含义,以一份量表测量智力,记忆力之类的标准化试卷为例。

毕业论文问卷信度和效度分析方法

可用专家法和因子分析,菜单Analyze->通常使用克朗巴哈信度系数法(Cronbachα)来测量此种问卷的信度;Reliabilityanalysis效度没有公认的一个指标。如果用SPSS;Scale->.7以上问卷的可信度较高。一般认为在0。克朗巴哈信度系数是目前最常用的信度系数

通常使用克朗巴哈 信度系数法(Cronbach α)来测量此种问卷的信度。 克朗巴哈 信度系数是目前最常用的信度系数。一般认为 在0.7以上问卷的可信度较高。如果用SPSS,菜单Analyze->Scale->Reliability analysis效度没有公认的一个指标,可用专家法和因子分析。

信度分析,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。信度指标多以相关系数表示,大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。

效度分析,它是指测量工具或手段能够准确测出所需测量的事物的程度。效度分为三种类型:内容效度、准则效度和结构效度。效度分析有多种方法,其测量结果反映效度的不同方面。

一、信度分析信度(Reliability)即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。信度分析的方法主要有以下四种:

1、重测信度法这一方法是用同样的问卷对同一组被调查者间隔一定时间重复施测,计算两次施测结果的相关系数。显然,重测信度属于稳定系数。2、复本信度法复本信度法是让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。复本信度属于等值系数。3、折半信度法折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。4、α信度系数法Cronbach α信度系数是目前最常用的信度系数,其公式中,K为量表中题项的总数, 为第i题得分的题内方差, 为全部题项总得分的方差。从公式中可以看出,α系数评价的是量表中各题项得分间的一致性,属于内在一致性系数。这种方法适用于态度、意见式问卷(量表)的信度分析。二、效度分析效度(Validity)即有效性,它是指测量工具或手段能够准确测出所需测量的事物的程度。效度分为三种类型:内容效度、准则效度和结构效度。效度分析有多种方法,其测量结果反映效度的不同方面。常用于调查问卷效度分析的方法主要有以下几种:

1、单项与总和相关效度分析

这种方法用于测量量表的内容效度。内容效度又称表面效度或逻辑效度,它是指所设计的题项能否代表所要测量的内容或主题。2、准则效度分析准则效度又称为效标效度或预测效度。准则效度分析是根据已经得到确定的某种理论,选择一种指标或测量工具作为准则(效标),分析问卷题项与准则的联系。3、结构效度分析结构效度是指测量结果体现出来的某种结构与测值之间的对应程度。结构效度分析所采用的方法是因子分析。因子分析的主要功能是从量表全部变量(题项)中提取一些公因子,各公因子分别与某一群特定变量高度关联,这些公因子即代表了量表的基本结构。

不同的指标有不同的要求,α系数大于0.7比较好。

信度和效度分析在问卷分析中大多都会用到的,即使是成熟的问卷,一般也是需要做的,在本科和研究生的论文中均适用。

信度和效度相当于是对于问卷质量的一个前置条件,如果问卷的信度和效度比较好,证明问卷的数据可靠性比较高,问卷数据内部一致性比较高,所以可以用来做后续的建模分析,相反,如果信度和效度不高,可能就需要重新设计问卷,发放问卷。

功能强大

具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。

以上内容参考:百度百科-spss

论文答辩问卷调查信效度

一般要大于0.7说明问卷调查质量比较良好。效度的特征:1、效度具有相对性:任何测验的效度是对一定的目标来说的,或者说测验只有用于与测验目标一致的目的和场合才会有效。所以,在评价测验的效度时,必须考虑效度测验的目的与功能。2、效度具有连续性:测验效度通常用相关系数表示,它只有程度上的不同,而没有“全有”或“全无”的区别。效度是针对测验结果的。

论文写作中,导师常常告诉我们,调研要有信效度检验,那么信度、效度是什么?怎么分析信效度呢? 信度是指测量的可信程度。 我们来看一个比较理想的状态。当我们用一个测量工具,对我们需要测量的对象测量了很多次后,得到的结果都是一样的。这时我们可以说这个测量工具是可以信赖的。 但是现实中,由于随机误差的影响,不可能达到这种状态。 那么我们怎么评估我们的测量工具是可以信赖的呢? 我们可以计算我们用自己的测量工具得到的结果与理想状态的差距。如果差距越小,那么我们的测量工具就越可靠。 这个差距就是信度。 信度有不同的指标,我们只要明白什么时候用什么指标来检验信度就可以了。剩下的计算,统计软件可以帮我们完成,我们只要选择我们需要的计算公式进行计算,就能得出我们想要的结果。 效度则是考察我们使用的测量工具是否能有效度量我们要测量的变量。  较为公认的说法是,效度分为三种:内容效度、校标效度和构念效度。 内容效度指问题的撰写是否能准确反映测量的初衷。 校标效度指测量工具与某个公认的标准的关系是否紧密。(研究目的是测量是否能较为准确地进行预测。) 构念效度指测量工具能测量出的结果和理论预测或理论结论之间的关系是否紧密相关。(研究目的是验证理论用于测量的有效性。)那么文献中经常看到的表面效度,聚合效度,区别效度呢? 表面效度:题项的表述是否明确、清晰、规范。(一般依据专家的意见来检验,具有主观性,不够牢靠。) 构念效度包含区分效度,聚合效度。当测量对象包含较为复杂的相互关系时,需要细化分析了。 区别效度:一个测量中,不同项目得到的测量结果能够得到区分。 聚合效度:测量一个特征的项目中,项目中不同题项应该指向同一相同特征。 那我们具体要怎么做呢? 和信度一样,我们只要了解在什么情况下用什么指标检验效度就好,剩下的计算软件会帮我们完成。在写文章时,我们只要依据自己的问卷或量表,选择合适的信度、效度检验指标,利用软件计算出结果,就可以验证问卷或量表设计是否可信、有效了。

信度可以把它理解为可靠度、一致性、稳定性。用于测量样本回答结果是否可靠,即样本有没有真实作答量表类题项。比如说,在对同一对象进行测量,多次测量结果都很接近,就会认为这个结果是可信的,真实的,也就是信度高。如果每次测量的结果都有很大的差异,则说明信度较低。衡量信度的方法有很多种,常用的信度系数包括:克隆巴赫α系数和折半系数,可在spssau中进行分析。效度分析,简单来说就是问卷设计的有效性、准确程度,用于测量题项设计是否合理。效度又可分为内容效度、结构效度和效标效度。内容效度,通常是以文字来说明问卷的有效性。如通过参考文献,或者权威来源说明问卷的权威性和有效性。还有就是通过对问卷前测并结合结果进行题项的修正等工作来充分说明问卷的有效性。结构效度,指测量题项与测量维度之间的对应关系。测量方法有两种,一种是探索性因子分析,另外一种是验证性因子分析。其中,探索性因子分析是当前使用最为广泛的结构效度测量方法,SPSSAU提供此两种分析方法。效标效度,如果以前有一份权威且标准的量表数据,现在依旧使用该量表进行研究,并且收集回来一份数据。以前权威标准数据作为标准,当前数据与前一份数据之间进行相关分析,如果说相关系数值较高,则说明效标效度良好。但在实际分析中,效标效度很少使用。

益派调查网可以免费发布调查问卷,可以免费使用样本。调查问卷包含的题型多种多样,开放题、矩阵题什么的都能做,基本满足论文中设计的数据调查及分析。

毕业论文问卷如何进行信效度检测

一般是采用专业统计工具,如SPSS来进行信效度分析。信度分析的一般步骤:1)打开SPSS,进菜单栏 分析->度量->可靠性分析;2) 在随后出现的弹出框里,把需要纳入分析的变量从左栏拖到右栏;3)点击“统计量”按钮,勾选“如果项已删除则进行度量”,点继续;4)点确定,软件即开始呈现分析结果

信度(Reliability)即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。信度指标多以相关系数表示,大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。信度分析的方法主要有以下四种:

重测信度法:这一方法是用同样的问卷对同一组被调查者间隔一定时间重复施测,计算两次施测结果的相关系数。显然,重测信度属于稳定系数。重测信度法特别适用于事实式问卷,如性别、出生年月等在两次施测中不应有任何差异,大多数被调查者的兴趣、爱好、习惯等在短时间内也不会有十分明显的变化。如果没有突发事件导致被调查者的态度、意见突变,这种方法也适用于态度、意见式问卷。由于重测信度法需要对同一样本试测两次,被调查者容易受到各种事件、活动和他人的影响,而且间隔时间长短也有一定限制,因此在实施中有一定困难。

复本信度法:复本信度法是让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。复本信度属于等值系数。复本信度法要求两个复本除表述方式不同外,在内容、格式、难度和对应题项的提问方向等方面要完全一致,而在实际调查中,很难使调查问卷达到这种要求,因此采用这种方法者较少。

51调查网,让调查更简单方便!

做alpha信度检验啊一般要大于0.7说明问卷调查质量比较良好

一般要大于0.7说明问卷调查质量比较良好。

信度是指测验结果的一致性、稳定性及可靠性。指的是采取同样的方法对同一对象重复进行测量时,其所得结果相一致的程度。从另一方面来说,信度就是指测量数据的可靠程度。信度公式为X=T+B+E,T表示真实值,B表示偏差即系统误差,E表示测量的随机误差,X 表示测量结果。

效度,即有效性,是指测量工具或手段能够准确测出所需测量的事物或者所测量到的结果反映所想要考察内容的程度,测量结果与要考察的内容越吻合,则效度越高;反之,则效度越低。效度是科学的测量工具所必须具备的最重要的条件。

效度的特征:

1、效度具有相对性:

任何测验的效度是对一定的目标来说的,或者说测验只有用于与测验目标一致的目的和场合才会有效。 所以,在评价测验的效度时,必须考虑效度测验的目的与功能。

2、效度具有连续性:

测验效度通常用相关系数表示,它只有程度上的不同,而没有“全有”或“全无”的区别。效度是针对测验结果的。

相关百科

热门百科

首页
发表服务