首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

毕业论文中问卷的信效度怎么报告

发布时间:

毕业论文中问卷的信效度怎么报告

问卷调查法是教育研究中广泛采用的一种调查方法,为了保证问卷具有较高的可靠性和有效性,在形成正式问卷之前,应当对问卷进行试测,并对试测结果进行信度和效度分析,根据分析结果筛选问卷题项,调整问卷架构,从而提升问卷的信度和效度。说了这么多,我们先对一些调研小白解释一下,什么是信度和效度?信度:可靠性、一致性或稳定性。比如说,在对同一对象进行测量,多次测量结果都很接近,我们就认为这个结果是可信的,也就是信度高。如果每次测量的结果都有很大的差异,则说明信度较低。效度:正确性程度,效度越高表示测量结果越能显示出所要测量对象的真正特征。他们两的差别在于信度度量的是问卷测量结果是否一致的可靠程度,而不涉及结果是否正确的问题;效度则针对问卷测量的目的,重点考察测量结果的有效性。对于量表来说,效度是首要条件,而信度是效度的必要条件。也就是说有效的问卷必定是可信的问卷,但可信的问卷未必是有效的问卷。了解了定义后,我们来聊一聊检测调查问卷信效度的方法。信度分析(可靠性分析)1. 重测信度法用同样的问卷对同一被测间隔一定时间的重复测试,也可称作测试——再测方法,计算两次测试结果的相关系数。很显然这是稳定系数,即跨时间的一致性。重测信度法适用于事实性的问卷,也可用于不易受环境影响的态度、意见式问卷。由于重测信度需要对同一样本试测两次,而被测容易受到各种事件、活动的影响,所以间隔时间需要适当。较常用者为间隔二星期或一个月。2. 复本信度法 复本信度法是让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。复本信度属于等值系数。复本信度法要求两个复本除表述模式不同外,在内容、格式、难度和对应题项的提问方向等方面要完全一致,而在实际调查中,很难使调查问卷达到这种要求,因此采用这种方法者较少。3. 折半信度法 折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。这种方法一般不适用于事实式问卷,常用于态度、意见式问卷的信度分析。进行折半信度分析时,如果量表中含有反意题项,应先将反意题项的得分作逆向处理,以确保各题项得分方向的一致性,然后将全部题项按奇偶或前后分为尽可能相等的两半,计算二者的相关系数,最后求出整个量表的信度系数。4. α信度系数法 Cronbachα信度系数是目前最常用的信度系数,其公式为︰α=(n/n-1)*(1-(∑Si2)/ST2)其中,n为量表中题项的总数,Si2为第i题得分的题内方差,ST2为全部题项总得分的方差。从公式中可以看出,α系数评价的是量表中各题项得分间的一致性,属于内在一致性系数。这种方法适用于态度、意见式问卷(量表)的信度分析。效度分析1. 单项与总和相关效度分析 也称为内容效度或逻辑效度,指的是测量的内容与测量目标之间是否适合,也可以说是指测量所选择的项目是否“看起来”符合测量的目的和要求。主要依据调查设计人员的主观判断。这种方法用于测量量表的内容效度。内容效度又称表面效度或逻辑效度,它是指所设计的题项能否代表所要测量的内容或主题。对内容效度常采用逻辑分析与统计分析相结合的方法进行评价。2. 准则效度分析 准则效度又称为效标效度或预测效度。准则效度分析是根据已经得到确定的某种理论,选择一种指标或测量工具作为准则,分析问卷题项与准则的联系,若二者相关显著,或者问卷题项对准则的不同取值、特性表现出显著差异,则为有效的题项。评价准则效度的方法是相关分析或差异显著性检验。在调查问卷的效度分析中,选择一个合适的准则往往十分困难,使这种方法的应用受到一定限制。3. 结构效度分析 结构效度是为了说明从量表所获得的结果与设计该量表时所假定的理论之间的符合程度。研究者在设计量表时,通常会事先假定一定的量表结构(n个维度),这种结构是否与测量的数据相符合(是否确定存在上述几个维度),需要进行验证。为了提升调查问卷的质量,进而提升整个研究的价值,问卷的信度和效度分析绝非赘疣蛇足,而是研究过程中必不可少的重要环节。

信效度分析都需要的,两个验证说明是不一样的。一般都是在问卷调查的章节中,说明问卷调查的科学性。

毕业论文问卷的信度和效度

信度是指内容的可靠性、真实性,效度是指内容的准确度、精确度。信度和效度都是研究内容的可靠性、真实性的度量,但信度侧重于研究内容的可靠性、真实性的程度,效度侧重于研究内容的精确性、准确性的程度。信度高,效度就高,反之则低。效度高,信度也高,反之则低。信度是指内容的可靠性、真实性。

信度指的是测量结果的稳定性程度,以及可靠性。效度指一个测量或量表能测出其所要测的某种特征的程度。

信度(Reliability)即可靠性,是指采用同一方法对同一对象进行调查时,问卷调查结果的稳定性和一致性,即测量工具(问卷或量表)能否稳定地测量所测的事物或变量。

信度指标多以相关系数表示,具体评价方法大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。

效度(Validity)即有效性,它是指测量工具或手段能够准确测出所需测量的事物的程度。效度分为三种类型:内容效度、准则效度和结构效度。效度分析有多种方法,其测量结果反映效度的不同方面。

扩展资料:

信度与效度二者的关系:

1.信度低,效度不可能高。因为如果测量的数据不准确,也并不能有效地说明所研究的对象

2.信度高,效度未必高。例如,如果我们准确地测量出某人的经济收入,也未必能够说明他的消费水平。

3.效度低,信度很可能高。例如,即是一项研究未能说明社会流动的原因,但它很有可能很精确很可靠地调查各个时期各种类型的人的流动数量。

4.效度高,信度也必然高。

参考资料:百度百科-信度

益派调查网可以免费发布调查问卷,可以免费使用样本。调查问卷包含的题型多种多样,开放题、矩阵题什么的都能做,基本满足论文中设计的数据调查及分析。

信度和效度的关系和区别在于一个是稳定性与效率性得不同,因为信度你可以把它理解为可靠度、一致性、稳定性,效度分析,简单来说就是问卷设计的有效性、准确程度,当我们在为研究主题设计问卷时,都会希望问题实际测量到的是我们希望测量的。两者的关系是信度低,效度不可能高,信度高,效度也不一定高,但相反如果效度低,信度很有可能高,效度高,信度也必然高。

两者的区别在于估计对象不同,分析方法也不一样,还有就是建立的前提不同,比如,效度必须在信度的基础上才能建立,而如果没有了效度,信度再高结果是没有意义的,这也才有了前面的两者关系。

其信度就是指同一个人在几次参加同一份试卷的考试假设此人并未有改变分数不会有大的差异,而效度是指这份试卷能勾多大程度测量你的智力水平。

信度是指其可信度,既是在多大程度上是正确的,效度是指能够多有效地表示所需表达的含义,以一份量表测量智力,记忆力之类的标准化试卷为例。

毕业论文问卷信度怎么做

毕业论文问卷调查推荐使用问卷星软件来做,问卷星专业性强,操作简单,系统强大,值得信赖。问卷星,是强大易用的在线问卷调查平台,丰富的题型和多样的功能帮助各行从业者,高效完成其问卷调查的工作。问卷星是一个小而美的年轻团队,坚持精简高效的原则,研发人员具有扎实的计算机学科背景,包括通过国家资质认证的系统分析员以及具备跨国软件公司工作经验的资深程序员。想要了解更多关于问卷调查的相关问题,推荐咨询问卷星 问卷星拥有620万优质样本库成员,16年专业调研技术团队,可为企业提供商业调研服务,赋能企业市场决策;同时,问卷调查系统支持30多种题型,可以设置跳转、关联和引用逻辑;支持微信、邮件和短信等方式收集数据,数据回收后可以进行分类统计、交叉分析,并且可以导出到Word、Excel、SPSS等。

信度的检验方法 :重测信度法、复本信度法、折半信度法、α信度系数法。效度的检验方法 :内容效度、构想效度、效标效度。1、重测信度法这一方法是用同样的问卷对同一组被调查者间隔一定时间重复施测,计算两次施测结果的相关系数。显然,重测信度属于稳定系数。重测信度法特别适用于事实式问卷,如性别、出生年月等在两次施测中不应有任何差异,大多数被调查者的兴趣、爱好、习惯等在短时间内也不会有十分明显的变化。2、复本信度法复本信度法是让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。复本信度属于等值系数。复本信度法要求两个复本除表述方式不同外,在内容、格式、难度和对应题项的提问方向等方面要完全一致,而在实际调查中,很难使调查问卷达到这种要求,因此采用这种方法者较少。3、折半信度法折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。这种方法一般不适用于事实式问卷(如年龄与性别无法相比),常用于态度、意见式问卷的信度分析。4、α信度系数法Cronbach α信度系数是目前最常用的信度系数,其公式为:α=(k/(k-1))*(1-(∑Si^2)/ST^2)其中,K为量表中题项的总数, Si^2为第i题得分的题内方差, ST^2为全部题项总得分的方差。从公式中可以看出,α系数评价的是量表中各题项得分间的一致性,属于内在一致性系数。这种方法适用于态度、意见式问卷(量表)的信度分析。总量表的信度系数最好在0.8以上,0.7-0.8之间可以接受;分量表的信度系数最好在0.7以上,0.6-0.7还可以接受。Cronbach 's alpha系数如果在0.6以下就要考虑重新编问卷。5、内容效度内容效度经常与表面效度(face validity)混淆。表面效度是由外行对测验作表面上的检查确定的,它不反映测验实际测量的东西,只是指测验表面上看来好像是测量所要测的东西;内容效度是由够资格的判断者(专家)详尽地、系统地对测验作评价而建立的。6、构想效度对测验本身的分析,测验间的相互比较:相容效度(与已成熟的相同测验间的比较)、区分效度(与近似或应区分测验间的比较)、因素分析法,效标效度的研究证明,实验法和观察法证实。7、效标效度效标,即衡量测验有效性的参照标准,指的是可以直接而且独立测量的我们感兴趣的行为。我们感兴趣的行为,就是要预测的行为,这是一个总的观念,故必须以可操作的测量来确定才有实际意义。

信度的检验方法 :重测信度法、复本信度法、折半信度法、α信度系数法。

效度的检验方法 :内容效度、构想效度、效标效度。

1、重测信度法

这一方法是用同样的问卷对同一组被调查者间隔一定时间重复施测,计算两次施测结果的相关系数。显然,重测信度属于稳定系数。

重测信度法特别适用于事实式问卷,如性别、出生年月等在两次施测中不应有任何差异,大多数被调查者的兴趣、爱好、习惯等在短时间内也不会有十分明显的变化。

2、复本信度法

复本信度法是让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。复本信度属于等值系数。

复本信度法要求两个复本除表述方式不同外,在内容、格式、难度和对应题项的提问方向等方面要完全一致,而在实际调查中,很难使调查问卷达到这种要求,因此采用这种方法者较少。

3、折半信度法

折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。这种方法一般不适用于事实式问卷(如年龄与性别无法相比),常用于态度、意见式问卷的信度分析。

4、α信度系数法

Cronbach α信度系数是目前最常用的信度系数,其公式为:α=(k/(k-1))*(1-(∑Si^2)/ST^2)

其中,K为量表中题项的总数, Si^2为第i题得分的题内方差, ST^2为全部题项总得分的方差。从公式中可以看出,α系数评价的是量表中各题项得分间的一致性,属于内在一致性系数。这种方法适用于态度、意见式问卷(量表)的信度分析。

总量表的信度系数最好在0.8以上,0.7-0.8之间可以接受;分量表的信度系数最好在0.7以上,0.6-0.7还可以接受。Cronbach 's alpha系数如果在0.6以下就要考虑重新编问卷。

5、内容效度

内容效度经常与表面效度(face validity)混淆。表面效度是由外行对测验作表面上的检查确定的,它不反映测验实际测量的东西,只是指测验表面上看来好像是测量所要测的东西;内容效度是由够资格的判断者(专家)详尽地、系统地对测验作评价而建立的。

6、构想效度

对测验本身的分析,测验间的相互比较:相容效度(与已成熟的相同测验间的比较)、区分效度(与近似或应区分测验间的比较)、因素分析法,效标效度的研究证明,实验法和观察法证实。

7、效标效度

效标,即衡量测验有效性的参照标准,指的是可以直接而且独立测量的我们感兴趣的行为。我们感兴趣的行为,就是要预测的行为,这是一个总的观念,故必须以可操作的测量来确定才有实际意义。

因此有必要把效标细分为两个层次,其一是理论水平的“观念效标”,其二是操作定义水平的“效标测量”。

扩展资料:

效度和信度的关系可以用测量值的构成公式O=T S R来理解。

如果测量是完全有效的,即0=T,S=0,R=0,此时测量必然是完全可信的,若量表的信度不足,它也不可能完全有效,因为有O=T R。

如果量表是完全可信的,可以达到完全有效,也可能达不到,因为有可能存在导致误差,虽然缺乏信度必然缺乏效度,但信度的大小并不能体现效度的大小。

信度是效度的必要条件,但不是充分条件。从理论的角度来看,量应具有足够的效度和信度;从实践的观点来看,一个好的量表还应该具有实用性。实用性指量表的经济性、便利性和可解释性。

一般来说,信度是效度的必要条件,也就是说,效度都必须建立在信度的基础上;但是没有效度的测量,即使它的信度再高,这样的测量也是没有意义的。

参考资料:

百度百科-信度分析

百度百科-信度

百度百科-效度

问卷星spss信度效度分析步骤如下:

1、首先登录问卷星首页,会出现你创建的问卷,点击“分析&下载”,选择“查看下载答卷”选项。

2、点击“下载答卷数据”按钮,因为我们需要通过SPSS进行分析所以选择“按选项分数下载”。这样可以看到问卷数据被导出来成了Excel格式文件了。另外可根据自身需求筛选问题条件进行下载。

3、打开SPSS 26.0数据分析软件,点击“文件”-“导入数据”,选择“Excel”。

4、将之前从问卷星下载的问卷数据excel导入到SPSS中。

5、点击“分析”-“刻度”-“可靠性分析”。

6、信度分析仅是针对量表问题,本次问卷为标准的5度量表,1表示非常不同意,5表示非常同意意,共含有22个题项,首先检验这一份量表整体的信度。将所有的量表题选中至右侧项。模型默认选择“Alpha”。

7、点击右上角的“统计”选项,可勾选“删除项后的标度”,点击继续。

8、点击确定后就得到本次问卷整体信度分析结果如下。本次22个量表题得出问卷总体的Cronbach α系数值为0.82,大于0.8,说明样本数据总体信度质量高。

如果α系数比较低,可以查看删除项后的克隆巴赫Alpha值,该值为删除该分析项题目后,剩下分析项的α系数,若此值明显高于Cronbach α系数值,则可考虑将该分析项删除。这样就可以提高Cronbach α系数值。

9、问卷调查一般会有多个维度变量,因此接下来针对每个维度变量进行分析,比如本次问卷有感知风险这个变量,那么选中它对应的3个题项进行信度分析,得出该维度的Cronbach α系数值。另外的维度变量信度分析同理。

毕业论文问卷信效度不过关

一般我们做的所谓信度都是alpha系数,这个指标其实是对你问卷所用的题目的内部一致性,即内部相关的一种检测,相关越高,代表信度越好,那就要想办法提高项目间的相关。一般就两种法子:第一,增加题目,自己根据理论依据和自己的合理论证给问卷添加符合其概念的题目,好题目(同质的题目)加的越多,信度越好。第二,删题目,把和其他项目明显不一样的题目删掉,也能增加alpha系数值,至于删哪个,你可以根据spss求alpha系数的操作来进行,在spss里面选分析——可靠性分析——然后在对话框里面找到有一项是 如果删除该项目后所得的alpha系数,这个操作会告诉你每个题目删除后alpha系数的变化,这样你就知道该删哪个了,另外也可以根据理论依据,把不符合理论的题目删掉。总而言之,就是增加同质的题目,删掉不同质的题目信度是效度的必要条件,也就是说,要想效度高,首先要信度好,那么提高信度的方法也可以用来提高效度可以说,增删题目是最常见也最有效的方法,本来增加样本容量也是个好办法,不过既然你说没时间,那就没法子了。另外的话,就是去除异常数据,把乱答的找出来,比如全部填同一个答案的,规律作答的,还可以按均值上下3个标准差去除极端值

不可以。论文本身是对某领域的研究和成果的描述。具有一定的实际意义。在论文审核时候有一项标准即为论文的可行性。过低则没有实际的参考意义,需要修改。信度即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。信度分析就是论文的可实现性。

做量表研究的人,或多或少都曾因为量表效度不达标困扰过,尤其在很多研究领域并没有特别权威的经典量表可以引用。使用自制的量表来研究,容易信效度不达标,那么如果遇到效度非常糟糕的情况时应该怎么办呢?

在解决效度低的这个问题之前,我们不妨一起来回顾下,判断效度达标的指标都有哪些。以使用探索性因子分析检验结构效度为例:

( 1 ) KMO >0.6 、通过巴特莱球形检验

SPSSAU效度分析 中可自动输出KMO 和 Bartlett 的检验结果。

如果KMO值高于0.8,则说明效度高;如果此值介于0.7~0.8之间,则说明效度较好;如果此值介于0.6~0.7,则说明效度可接受,如果此值小于0.6,说明效度不佳(如果仅两个题;则KMO无论如何均为0.5)。

通过Bartlett 球形度检验意味着变量之间有一定的相关性,适合使用因子分析检验效度。

(2)分析项归类清晰

结构效度分为两种:一种是使用探索性因子分析的方法;另一种是使用验证性因子性分析。其中探索性因子分析适合非经典量表使用。

比如说预期有5个维度,但是分析后得到3个公因子,可能就是某些分析项预期与实际分析时出现了偏差,这时可以适当删减不合理的分析项,当分析项与维度的划分与专业意义上的内在逻辑结构基本一致,此时则说明数据具有较好的效度。

通常分析项的在某个因子下的因子载荷系数绝对值>0.4,即认为该分析项可以归属于这个因子下。

比如上表中的分析项d1,预期归属于因子5里,但实际在因子1里。此时就应该移出d1重新分析。

(3)其他效度分析判断指标: 共同度 、相关系数矩阵等

如果变量相关性过高,可能会存在共线性问题,区分效度较低等问题;如果相关性太低,则说明变量之间的内在联系比较弱,不适合进行因子分析。通常共同度值>0.4即可。

共同度值可在 效度分析 结果中获得,相关系数矩阵可通过SPSSAU【 通用方法 】--【 相关 】得到。

(1)怎么都划分不清维度

(2)实际分析项归类与预期维度不同

(3)有很多共同度很低的题项

(1)怎么都划分不清维度

建议每次 放入一个维度的题项 ,移出共同度低的问题。重复以上操作,将每个维度分析一遍,确保每个维度内部没有太糟糕的题。然后再放入全部的题目,整体分析。这样就可以看到维度之间划分得是否清晰。

(2)实际分析项归类与预期维度不同

分析项归类与预期维度不同,是一个非常常见的问题。

CFA检验流程轻参考:

建议每次放入一个维度的题项,移出共同度低的问题。重复所有维度操作一遍,确保每个维度内部没有太糟糕的题。然后再放入全部的题目,整体做一遍。这样就可以看到维度之间划分得是否清晰。

如果仍然无法解决建议可增加样本量,或重新收集数据修改量表内容。

如果结果的维度划分比较清晰,且符合专业知识认知,建议以分析结果为准,根据假设和结果,修正量表。

同样的样本数据,不同的分析思路,有可能出现结果不相同,但只要符合效度的思维概念即可。

(3)有很多共同度很低的题项

有很多共同度低的分析项,意味着分析项之间的关联性较低,通常这时候分析项归类也不好。

此时建议可以从共同度最低的分析项开始移出,依次分析直至删除所有共同度小于0.4的项,需要来回多次进行对比,找出最佳结果。

当然,最根本的改善效度的方法,还是要做好预调研工作,保证数据收集质量。设计量表时每个维度的题目最好有出处可寻。这样做才能为后续分析工作提供便利。

毕业论文问卷信度和效度分析方法

可用专家法和因子分析,菜单Analyze->通常使用克朗巴哈信度系数法(Cronbachα)来测量此种问卷的信度;Reliabilityanalysis效度没有公认的一个指标。如果用SPSS;Scale->.7以上问卷的可信度较高。一般认为在0。克朗巴哈信度系数是目前最常用的信度系数

通常使用克朗巴哈 信度系数法(Cronbach α)来测量此种问卷的信度。 克朗巴哈 信度系数是目前最常用的信度系数。一般认为 在0.7以上问卷的可信度较高。如果用SPSS,菜单Analyze->Scale->Reliability analysis效度没有公认的一个指标,可用专家法和因子分析。

信度分析,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。信度指标多以相关系数表示,大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。

效度分析,它是指测量工具或手段能够准确测出所需测量的事物的程度。效度分为三种类型:内容效度、准则效度和结构效度。效度分析有多种方法,其测量结果反映效度的不同方面。

一、信度分析信度(Reliability)即可靠性,它是指采用同样的方法对同一对象重复测量时所得结果的一致性程度。信度分析的方法主要有以下四种:

1、重测信度法这一方法是用同样的问卷对同一组被调查者间隔一定时间重复施测,计算两次施测结果的相关系数。显然,重测信度属于稳定系数。2、复本信度法复本信度法是让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。复本信度属于等值系数。3、折半信度法折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。4、α信度系数法Cronbach α信度系数是目前最常用的信度系数,其公式中,K为量表中题项的总数, 为第i题得分的题内方差, 为全部题项总得分的方差。从公式中可以看出,α系数评价的是量表中各题项得分间的一致性,属于内在一致性系数。这种方法适用于态度、意见式问卷(量表)的信度分析。二、效度分析效度(Validity)即有效性,它是指测量工具或手段能够准确测出所需测量的事物的程度。效度分为三种类型:内容效度、准则效度和结构效度。效度分析有多种方法,其测量结果反映效度的不同方面。常用于调查问卷效度分析的方法主要有以下几种:

1、单项与总和相关效度分析

这种方法用于测量量表的内容效度。内容效度又称表面效度或逻辑效度,它是指所设计的题项能否代表所要测量的内容或主题。2、准则效度分析准则效度又称为效标效度或预测效度。准则效度分析是根据已经得到确定的某种理论,选择一种指标或测量工具作为准则(效标),分析问卷题项与准则的联系。3、结构效度分析结构效度是指测量结果体现出来的某种结构与测值之间的对应程度。结构效度分析所采用的方法是因子分析。因子分析的主要功能是从量表全部变量(题项)中提取一些公因子,各公因子分别与某一群特定变量高度关联,这些公因子即代表了量表的基本结构。

不同的指标有不同的要求,α系数大于0.7比较好。

信度和效度分析在问卷分析中大多都会用到的,即使是成熟的问卷,一般也是需要做的,在本科和研究生的论文中均适用。

信度和效度相当于是对于问卷质量的一个前置条件,如果问卷的信度和效度比较好,证明问卷的数据可靠性比较高,问卷数据内部一致性比较高,所以可以用来做后续的建模分析,相反,如果信度和效度不高,可能就需要重新设计问卷,发放问卷。

功能强大

具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。

以上内容参考:百度百科-spss

相关百科

热门百科

首页
发表服务