首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

矩阵初等变换的应用论文开题报告

发布时间:

矩阵初等变换的应用论文开题报告

1.用矩阵的初等变换求逆矩阵,解矩阵方程

2.用矩阵的初等变换求矩阵的秩、向量组的秩、极大线性无关组

3.用矩阵的初等变换解线性方程组

4.用矩阵的初等变换求过渡矩阵

5.用矩阵的初等变换化二次型为标准型

6.用矩阵的初等变换求标准正交基

线性变换及其所对应的对称,在现代物理学中有着重要的角色。例如,在量子场论中,基本粒子是由狭义相对论的洛伦兹群所表示,具体来说,即它们在旋量群下的表现。内含泡利矩阵及更通用的狄拉克矩阵的具体表示,在费米子的物理描述中,是一项不可或缺的构成部分,而费米子的表现可以用旋量来表述。

描述最轻的三种夸克时,需要用到一种内含特殊酉群SU(3)的群论表示;物理学家在计算时会用一种更简便的矩阵表示,叫盖尔曼矩阵,这种矩阵也被用作SU(3)规范群,而强核力的现代描述──量子色动力学的基础正是SU(3)。还有卡比博-小林-益川矩阵(CKM矩阵):在弱相互作用中重要的基本夸克态,与指定粒子间不同质量的夸克态不一样,但两者却是成线性关系,而CKM矩阵所表达的就是这一点。

1.用矩阵的初等变换求逆矩阵,解矩阵方程2.用矩阵的初等变换求矩阵的秩、向量组的秩、极大线性无关组3.用矩阵的初等变换解线性方程组4.用矩阵的初等变换求过渡矩阵5.用矩阵的初等变换化二次型为标准型6.用矩阵的初等变换求标准正交基

初等变换:1)交换矩阵的两行(列);2)用一个不为零的数乘矩阵的某一行(列);3)用一个数乘矩阵某一行(列)加到另一行(列)上。利用矩阵初等变换,可以求行列式的值,求解线性方程组,求矩阵的秩,确定向量组向量间的线性关系等。例:

换法变换:交换矩阵两行(列) 倍法变换:将矩阵的某一行(列)的所有元素同乘以数k 消法变换:把矩阵的某一行(列)的所有元素乘以一个数k并加到另一行(列)的对应元素上

毕业论文矩阵初等变换的应用

换法变换:交换矩阵两行(列) 倍法变换:将矩阵的某一行(列)的所有元素同乘以数k 消法变换:把矩阵的某一行(列)的所有元素乘以一个数k并加到另一行(列)的对应元素上

应用主要有:求秩、求行列式、解线性方程组、求特征值、特征向量等

1.用矩阵的初等变换求逆矩阵,解矩阵方程

2.用矩阵的初等变换求矩阵的秩、向量组的秩、极大线性无关组

3.用矩阵的初等变换解线性方程组

4.用矩阵的初等变换求过渡矩阵

5.用矩阵的初等变换化二次型为标准型

6.用矩阵的初等变换求标准正交基

线性变换及其所对应的对称,在现代物理学中有着重要的角色。例如,在量子场论中,基本粒子是由狭义相对论的洛伦兹群所表示,具体来说,即它们在旋量群下的表现。内含泡利矩阵及更通用的狄拉克矩阵的具体表示,在费米子的物理描述中,是一项不可或缺的构成部分,而费米子的表现可以用旋量来表述。

描述最轻的三种夸克时,需要用到一种内含特殊酉群SU(3)的群论表示;物理学家在计算时会用一种更简便的矩阵表示,叫盖尔曼矩阵,这种矩阵也被用作SU(3)规范群,而强核力的现代描述──量子色动力学的基础正是SU(3)。还有卡比博-小林-益川矩阵(CKM矩阵):在弱相互作用中重要的基本夸克态,与指定粒子间不同质量的夸克态不一样,但两者却是成线性关系,而CKM矩阵所表达的就是这一点。

初等行变换的用途:1.求矩阵的秩,化行阶梯矩阵,非零行数即矩阵的秩同时用列变换也没问题,但行变换就足够用了!2.化为行阶梯形求向量组的秩和极大无关组(a,b)化为行阶梯形,判断方程组的解的存在性3.化行最简形把一个向量表示为一个向量组的线性组合方程组有解时,求出方程组的全部解求出向量组的极大无关组,且将其余向量由极大无关组线性表示4.求方阵的逆(a,e)-->(e,a^-1)5.解矩阵方程ax=b,(a,b)-->(e,a^-1b)初等列变换很少用,只有几个特殊情况:1.线性方程组理论证明时:交换系数矩阵的部分列便于证明2.求矩阵的等价标准形:行列变换可同时用3.解矩阵方程xa=b:对[a;b]只用列变换4.用初等变换求合同对角形:对[a;e]用相同的行列变换

矩阵初等变换的应用毕业论文

最有可能问的是:1. 分块矩阵的初等变换 与 矩阵初等变换 的异同.2. 分块矩阵初等变换需注意什么. 3. 利用分块矩阵初等变换, 你得到了什么新的结论, 或对已有结论的证明有什么大的改进满意请采纳^_^

矩阵初等变换的应用 毕业论文擅长的,,,帮你.

初等行变换的用途:1.求矩阵的秩,化行阶梯矩阵,非零行数即矩阵的秩同时用列变换也没问题,但行变换就足够用了!2.化为行阶梯形求向量组的秩和极大无关组(a,b)化为行阶梯形,判断方程组的解的存在性3.化行最简形把一个向量表示为一个向量组的线性组合方程组有解时,求出方程组的全部解求出向量组的极大无关组,且将其余向量由极大无关组线性表示4.求方阵的逆(a,e)-->(e,a^-1)5.解矩阵方程ax=b,(a,b)-->(e,a^-1b)初等列变换很少用,只有几个特殊情况:1.线性方程组理论证明时:交换系数矩阵的部分列便于证明2.求矩阵的等价标准形:行列变换可同时用3.解矩阵方程xa=b:对[a;b]只用列变换4.用初等变换求合同对角形:对[a;e]用相同的行列变换

时下最时髦的就是:创新点与别人不一样的地方

矩阵相似应用论文开题报告

1 相关定义 定义1 设A∈,若对≠ x∈,都有AX > 0,则称A为正定矩阵,记为A∈. 记={A|≠ x∈,使AX > 0}. 定义2设A∈,如果对≠X∈,都有正对角矩阵D=> 0,使得AX > 0,则称A为广义正定矩阵,记为A∈,若D=与x无关,则记为A∈。记={A∈|≠X]正对角矩阵D,使DAX > 0}.定义3 设A∈,若=A,对≠ x∈ ,都有AX > 0,则称A为实对称正定矩阵,记为A ∈ S+. 记={A∈|≠x,=A,使AX > 0}.定义4 设A∈,如果对≠X,都有S=∈使得DAX > 0,则称A为广义正定矩阵,记为A∈,若S=与x无关,则记为A∈.记={A∈|≠X,S=,使DAX > 0}.定义5设A∈,如果对≠ X∈,都有S=.s+,使得AX > 0,则称A为广义正定矩阵,记为A∈.若S=与x无关,则记为A∈

结论如下:

特征值是相同的,行列式也是一样的,相似就合同,两个矩阵主对角线的和是一样的。如果矩阵相似,那么其代表的就是不同坐标系(基)的同一个线性变换。

也就是AP=PB,其中AP是由于在自然的笛卡尔坐标系下表示的,所以前面有一个E没有写出来。也就是应该是EAP=PB,也就是EA是在笛卡尔坐标系下的坐标,P是过渡矩阵。

介绍

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用。

分块矩阵论文开题报告

所以你写完了吗?能不能给我参考参考

怎么写开题报告呢?首先要把在准备工作当中搜集的资料整理出来,包括课题名称、课题内容、课题的理论依据、参加人员、组织安排和分工、大概需要的时间、经费的估算等等。第一是标题的拟定。课题在准备工作中已经确立了,所以开题报告的标题是不成问题的,把你研究的课题直接写上就行了。比如我曾指导过一组同学对伦教的文化诸如“伦教糕”、伦教木工机械、伦教文物等进行研究,拟定的标题就是“伦教文化研究”。第二就是内容的撰写。开题报告的主要内容包括以下几个部分:一、课题研究的背景。 所谓课题背景,主要指的是为什么要对这个课题进行研究,所以有的课题干脆把这一部分称为“问题的提出”,意思就是说为什么要提出这个问题,或者说提出这个课题。比如我曾指导的一个课题“伦教文化研究”,背景说明部分里就是说在改革开放的浪潮中,伦教作为珠江三角洲一角,在经济迅速发展的同时,她的文化发展怎么样,有哪些成就,对居民有什么影响,有哪些还要改进的。当然背景所叙述的内容还有很多,既可以是社会背景,也可以是自然背景。关键在于我们所确定的课题是什么。二、课题研究的内容。课题研究的内容,顾名思义,就是我们的课题要研究的是什么。比如我校黄姝老师的指导的课题“佛山新八景”,课题研究的内容就是:“以佛山新八景为重点,考察佛山历史文化沉淀的昨天、今天、明天,结合佛山经济发展的趋势,拟定开发具有新佛山、新八景、新气象的文化旅游的可行性报告及开发方案。”三、课题研究的目的和意义。课题研究的目的,应该叙述自己在这次研究中想要达到的境地或想要得到的结果。比如我校叶少珍老师指导的“重走长征路”研究课题,在其研究目标一栏中就是这样叙述的:1、通过再现长征历程,追忆红军战士的丰功伟绩,对长征概况、长征途中遇到了哪些艰难险阻、什么是长征精神,有更深刻的了解和感悟。2、通过小组同学间的分工合作、交流、展示、解说,培养合作参与精神和自我展示能力。3、通过本次活动,使同学的信息技术得到提高,进一步提高信息素养。四、课题研究的方法。在“课题研究的方法”这一部分,应该提出本课题组关于解决本课题问题的门路或者说程序等。一般来说,研究性学习的课题研究方法有:实地调查考察法(通过组织学生到所研究的处所实地调查,从而得出结论的方法)、问卷调查法(根据本课题的情况和自己要了解的内容设置一些问题,以问卷的形式向相关人员调查的方法)、人物采访法(直接向有关人员采访,以掌握第一手材料的方法)、文献法(通过查阅各类资料、图表等,分析、比较得出结论)等等。在课题研究中,应该根据自己课题的实际情况提出相关的课题研究方法,不一定面面俱到,只要实用就行。五、课题研究的步骤。课题研究的步骤,当然就是说本课题准备通过哪几步程序来达到研究的目的。所以在这一部分里应该着重思考的问题就是自己的课题大概准备分几步来完成。一般来说课题研究的基本步骤不外乎是以下几个方面:准备阶段、查阅资料阶段、实地考察阶段、问卷调查阶段、采访阶段、资料的分析整理阶段、对本课题的总结与反思阶段等。六、课题参与人员及组织分工。这属于对本课题研究的管理范畴,但也不可忽视。因为管理不到位,学生不能明确自己的职责,有时就会偷懒或者互相推诿,有时就会做重复劳动。因此课题参与人员的组织分工是不可少的。最好是把所有的参与研究的学生分成几个小组,每个小组通过民主选举的方式推选出小组长,由小组长负责本小组的任务分派和落实。然后根据本课题的情况,把相关的研究任务分割成几大部分,一个小组负责一个部分。最后由小组长组织人员汇总和整理。七、课题的经费估算。一个课题要开展,必然需要一些经费来启动,所以最后还应该大概地估算一下本课题所需要 的资金是多少,比如搜集资料需要多少钱,实地调查的外出经费,问卷调查的印刷和分发的费用,课题组所要占用的场地费,有些课题还需要购买一些相关的材料,结题报告等资料的印刷费等等。所谓“大军未动,粮草先行”,没有足够的资金作后盾,课题研究势必举步维艰,捉襟见肘,甚至于半途而废。因此,课题的经费也必须在开题之初就估算好,未雨绸缪,才能真正把本课题的研究做到最好。

1 相关定义 定义1 设A∈,若对≠ x∈,都有AX > 0,则称A为正定矩阵,记为A∈. 记={A|≠ x∈,使AX > 0}. 定义2设A∈,如果对≠X∈,都有正对角矩阵D=> 0,使得AX > 0,则称A为广义正定矩阵,记为A∈,若D=与x无关,则记为A∈。记={A∈|≠X]正对角矩阵D,使DAX > 0}.定义3 设A∈,若=A,对≠ x∈ ,都有AX > 0,则称A为实对称正定矩阵,记为A ∈ S+. 记={A∈|≠x,=A,使AX > 0}.定义4 设A∈,如果对≠X,都有S=∈使得DAX > 0,则称A为广义正定矩阵,记为A∈,若S=与x无关,则记为A∈.记={A∈|≠X,S=,使DAX > 0}.定义5设A∈,如果对≠ X∈,都有S=.s+,使得AX > 0,则称A为广义正定矩阵,记为A∈.若S=与x无关,则记为A∈

相关百科

热门百科

首页
发表服务