LZ是文科生吧
在国内外有很多关于特征值与特征向量的研究成果,并且有很多专家学者涉足此领域研问题,吴江、孟世才、许耿在《浅谈线性代数>中“特征值与特征向量”的引入》中从线性空间V中线性变换在不同基下的矩阵具有相似关系出发,引入矩阵的特征值与特征向量的定义;郭华、刘小明在《特征值与特征向量在矩阵运算中的作用》中从方阵的特征值与特征向量的性质出发,结合具体的例子阐述了特征值与特征向量在简化矩阵运算中所起的作用;矩阵的特征与特征向量在结构动力分析中有重要作用,矩阵迭代法是求矩阵的第一阶特征值与特征向量的一种数值方法但是选取不同的初始向量使结果可能收敛于不同阶的特征值与特征向量,而不一定收敛与第一阶。陈建兵在《矩阵迭代法求矩阵特征值与特征向量初始向量选取的讨论》中讨论了初始向量的选取问题特征值理论是线性代数中的一个重要的内容;当方阵阶数很高时实际计算比较繁琐。赵娜、吕剑峰在《特征值问题的MATLAB实践》中从实际案例入手,利用MATLAB软件讨论了求解特征值问题的全过程。汪庆丽在《用矩阵的初等变换求矩阵的特征值与特征向量》中研究了一种只对矩阵作适当的初等行变换就能求到矩阵的特征值与特征向量的方法,论证其方法的合理性,并阐述此方法的具体求解步骤;岳嵘在《由特征值特征向量去顶矩阵的方法证明及应用》中探究了已知n阶对称矩阵A的k个互不相等的特征值及k-1个特征向量计算出矩阵A的计算方法;张红玉在《矩阵特征值的理论及应用》中讨论了通过n阶方阵A的特征值得出一系列相关矩阵的特征值再由特征值与正定矩阵的关系得出正定矩阵的结论;刘学鹏、杨军在《矩阵的特征值、特征向量和应用》一文中讨论了矩阵的特征值和特征向量的一些特殊情况,以及在矩阵对角化方面的应用;冯俊艳、马丽在《讨论矩阵的特征值与行列式的关系》中讨论了利用矩阵的特征值解决行列式的问题等等。 在前人研究的基础上,本文给出了特征值与特征向量的概念及其性质,特征值与特征向量性质是最基本的内容,特征值与特征向量的归纳使得这一工具的使用更加便利,解决问题的作用更强有力,其应用也就更广泛在此基础上,对矩阵的特征值与特征向量的计算进行详尽的阐述和说明由于特征值与特征向量的应用是多方面的,本文重点介绍了对特征值与特征向量的应用归纳阐述了特征值和特征向量在矩阵运算中的作用,以及部分在实际生活中的应用。在例题解析中运用一些特征值与特征向量的性质和方法,可以使问题更简单,运算上更方便,是简化有关复杂问题的一种有效途径本文就是通过大量的例子加以说明运用特征值与特征向量的性质可以使问题更加清楚,从而使高等代数中的大量习题迎刃而解,把特征值与特征向量在解决实际问题中的优越性表现出来。矩阵的特征值可以确定所发现的特征多项式的根。多项式的根的显式代数公式仅当存在比率为4以下。根据阿贝尔鲁菲尼定理5个或5个以上的多项式的根源是没有一般情况下,明确和准确的代数公式。事实证明,任何程度的多项式是一些同伴阶矩阵的特征多项式。因此,5个或更多的顺序的矩阵的特征值和特征向量不能获得通过明确的代数公式,因此,必须计算的近似数值方法在理论上,可以精确计算的特征多项式的系数,因为它们是矩阵元素的总和,有算法,可以找到任何所需的精度。然而,任意程度的多项式的所有根这种方法在实践中是不可行的,因为系数将被污染的不可避免的舍入误差,多项式的根可以是一个极为敏感的功能例如由威尔金森的多项式系数。
数学领域中的一些著名悖论及其产生背景
很多应用啊。。。比如工程上的,控制上的。你可以多看看书,上面都有应用的例子。比如应用数值线性代数,控制论中的矩阵计算等等。。
告诉你拟就会写吗。不如我给你写得了
矩阵在许多领域都应用广泛。有些时候用到矩阵是因为其表达方式紧凑,例如在博弈论和经济学中,会用收益矩阵来表示两个博弈对象在各种决策方式下的收益。文本挖掘和索引典汇编的时候,比如在TF-IDF方法中,也会用到文件项矩阵来追踪特定词汇在多个文件中的出现频率。早期的密码技术如希尔密码也用到矩阵。然而,矩阵的线性性质使这类密码相对容易破解。计算机图像处理也会用到矩阵来表示处理对象,并且用放射旋转矩阵来计算对象的变换,实现三维对象在特定二维屏幕上的投影。多项式环上的矩阵在控制论中有重要作用。化学中也有矩阵的应用,特别在使用量子理论讨论分子键和光谱的时候。具体例子有解罗特汉方程时用重叠矩阵和福柯矩阵来得到哈特里-福克方法中的分子轨道。
矩阵的应用是很多的。尤其是在程序处理方面。在世界上存在的,都是离散的,那些理想的才是连续的~而矩阵可以很好地诠释世界上的各种东西~例如我们经常处理的图片,我们平时的数据等等。
找点文献给你自己看看吧,需要就发邮件给我[1]高朝邦,祝宗山.关于矩阵的秩的等价描述[J].成都大学学报(自然科学版),2006,25(1)从行列式、矩阵的等价、线性方程组、线性空间、线性映射等角度来刻画矩阵的秩,进而用这些命题来证明与矩阵的秩有关的一些命题.[2]费绍金.用矩阵的秩判断空间中平面与平面、直线与直线及直线与平面间的位置关系[J].牡丹江教育学院学报,2007,(6)利用线性方程组解的理论讨论空间中平面与平面、直线与直线及直线与平面间的位置关系,给出用矩阵的秩判定以上关系的方法及结论.[3]严坤妹.一类矩阵的秩[J].福建商业高等专科学校学报,2005,(4)矩阵的秩是矩阵的一个重要不变量,根据两个重要的矩阵的秩的不等式以及分块矩阵的初等变换的性质,本文研究了一类矩阵的秩的特征.[4]戴红霞.关于矩阵的秩的例题教学[J].南京审计学院学报,2005,2(2)本文通过三个典型例题的具体讲解,加深学生对抽象概念"矩阵的秩"的理解和掌握.[5]余航.试论分块矩阵的秩[J].桂林师范高等专科学校学报,2001,15(3)任一矩阵都可求得它的秩,而在矩阵运算中,矩阵的分块是一个很重要的技巧.本文从不同角度,从特殊到一般地探求了分块矩阵的秩.[6]徐兰.利用分块矩阵探讨矩阵的秩的有关定理[J].昌吉学院学报,2003,(4)矩阵是线性代数的主要研究对象之一,利用分块矩阵,研究高阶矩阵的秩及矩阵在运算后秩的变化,得到有关的定理.[7]邹晓光.互素多项式矩阵的秩的一个简单结论及其应用[J].金华职业技术学院学报,2006,6(1)本文给出了互素多项式在矩阵的秩讨论中的一个简单结果:定理:设f(x),g(x)∈P[x],A是n阶方阵,若(f(x),g(x))=1,则n+r[f(A)g(A)]=r(f(A))+r(g(A)).以及结果的一些简单应用,对文献[1]中的一些结论进一步讨论.[8]张丽梅,乔立山,李莹.可逆坡矩阵与坡矩阵的秩[J].山东大学学报(理学版),2007,42(9)坡是两个元素的乘积小于等于每个因子的加法幂等半环.讨论了可逆坡矩阵的若干性质,证明了可逆坡矩阵必是满秩的.讨论了坡矩阵的行秩、列秩与Schein秩.给出了坡矩阵的Schein秩的一个重要性质.
数学领域中的一些著名悖论及其产生背景
1.(a-xe)v1=av1+xev1=av1+xv1=(a+x)v1所以v1是矩阵a-xe特征值为a+x的特征向量。2.存在可逆矩阵p,使得p逆ap=对角阵△=(a1,a2,....an),那么,(p逆ap)(p逆ap)=(a1,a2,....an)(a1,a2,....an)p逆a^2p=(a1,a2,....an)(a1,a2,....an)=(a1^2,....,an^2)所以a^2=p(a1^2,....,an^2)p逆,特征值为a1^2,....,an^2。
我觉得应该是相似对角化吧,具体的步骤是:1,求出一个矩阵的全部互异的特征值a1,a2……2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值你看行不?这就是我知道的,呵呵
不可以的.矩阵的对角化不是只用初等变换把它变成对角线形式就叫对角化了,而是对角线必须为特征值.如果把它变成对角线形式就叫对角化,那可以在任一行乘个数,结果就变了,而对角形式保持不变如矩阵0 -11 0 用初等变换交换2行就成对角式了,但对角化必须是特征值正负i.当然,用初等变换当然可以实现对角化,但是只能是你知道对角化矩阵后在用初等变换往上靠
1,求出一个矩阵的全部互异的特征值a1,a2……
2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化
3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系
4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值
扩展资料:
判断方阵是否可相似对角化的条件:
(1)充要条件:An可相似对角化的充要条件是:An有n个线性无关的特征向量;
(2)充要条件的另一种形式:An可相似对角化的充要条件是:An的k重特征值满足n-r(λE-A)=k
(3)充分条件:如果An的n个特征值两两不同,那么An一定可以相似对角化;
(4)充分条件:如果An是实对称矩阵,那么An一定可以相似对角化。
【注】分析方阵是否可以相似对角化,关键是看线性无关的特征向量的个数,而求特征向量之前,必须先求出特征值。
掌握实对称矩阵的特征值和特征向量的性质
(1)不同特征值的特征向量一定正交
(2)k重特征值一定满足满足n-r(λE-A)=k
【注】由性质(2)可知,实对称矩阵一定可以相似对角化;且有(1)可知,实对称矩阵一定可以正交相似对角化。
会求把对称矩阵正交相似化的正交矩阵
【注】熟练掌握施密特正交化的公式;特别注意的是:只需要对同一个特征值求出的基础解系进行正交化,不同特征值对应的特征向量一定正交(当然除非你计算出错了会发现不正交)。
3、实对称矩阵的特殊考点:
实对称矩阵一定可以相似对角化,利用这个性质可以得到很多结论,比如:
(1)实对称矩阵的秩等于非零特征值的个数
这个结论只对实对称矩阵成立,不要错误地使用。
(2)两个实对称矩阵,如果特征值相同,一定相似,同样地,对于一般矩阵,这个结论也是不成立的。
实对称矩阵在二次型中的应用
使用正交变换把二次型化为标准型使用的方法本质上就是实对称矩阵的正交相似对角化。
这种老掉牙的课题写了干什么?前人已经研究的透彻不能再透彻了。既然写文章,搞研究就要真的做了点实质性的东西出来,否则只是浪费时间。
分块矩阵,求解!授人予鱼不如授人予渔,在《线性代数》的学习中,方法尤为重要。下面就让我们一起解决《线性代数》中令人头痛的——矩阵分块法吧!如果您对——矩阵分块法的学习比较吃力,建议您先学习——矩阵乘法,传送门开启,嘛咪嘛咪哄!工具原料线性代数课本纸,笔(任何)方法/步骤分步阅读1/12前言:想要学会《线性代数》中的——矩阵分块法,我们这次的学习将按照下面的步骤进行:(1) 了解什么是矩阵分块法;(2) 矩阵分块的例子;(3) 分块矩阵的运算规则;(4) 利用矩阵相乘求解复杂运算;(5) 分块矩阵之间的运算规则;2/12让我们首先了解矩阵分块的定义,如下图:3/12矩阵分块示例,如下图:4/12分块矩阵的运算规则一,如下图:5/12分块矩阵的运算规则二,如下图:6/12分块矩阵的运算规则三,如下图:7/12分块矩阵的运算规则四,如下图:8/12分块矩阵的运算规则五,如下图:9/12分块矩阵运算示例一,如下图:10/12分块矩阵运算示例二,如下图:11/12分块矩阵运算总结,如下图:12/12关于分块矩阵已经讲解完了,祝贺您今天又学习了新知识。注意事项今天讲解了矩阵分块,更多精彩内容,敬请关注!如果您觉得这篇经验有所帮助,别忘了投上您宝贵的一票哦!内容仅供参考并受版权保护
时下最时髦的就是:创新点与别人不一样的地方
分块矩阵的加法运算和乘法运算。将矩阵进行分块操作有很多的好处,特别是在高性能并行计算领域内,矩阵的分块化操作更是有很多益处。1. 分块矩阵加法运算给定矩阵A,B分别如下,矩阵A+B=C,矩阵C如下,分块矩阵的加法运算非常显然,这里就不再多费笔墨了。2. 分块矩阵的乘法运算给定矩阵A,B分别如下,(注意:这里矩阵A,B中的每一个元素都是子矩阵)矩阵A*B=C,矩阵C如下,分块矩阵的乘法运算也比较直观,但是相比于其加法运算而言,乘法运算显然会难一点。3. 分块矩阵运算小结分块矩阵做的是一个非常显然的事情是对矩阵乘法粒度的变大化。更加细一点而言,一般的矩阵乘法每一次对矩阵中的一个数进行累积和运算。而分块矩阵面向的操作对象是一个个的子矩阵,显然两者在计算的粒度上有很多的不同。至于子矩阵的粒度的大小,取决于一个线程能够用到的内存的大小和其计算能力,每一个线程能用到的内存越大,能用到的计算能力越大相应地,每一个子线程的运算处理能力就越大,子矩阵的粒度也就可以大一些。反之,则子矩阵粒度小些。最后希望能在本文中有所收获。一、分块矩阵的运算及其应用分块矩阵的基本运算:分块矩阵的运算规则与普通矩阵的运算规则相类似,包括:加法运算、数乘运算、乘法运算、转置运算,其中要特别注意的是乘法运
本文把数字矩阵的初等变换推广到分块矩阵中,并且运用分块初等变换求矩阵的逆、矩阵的行列式、矩阵的秩是高等代数中常见的问题。而对于高阶矩阵而言,这些问题的求解过于困难,因此用分块矩阵的初等变换来解决有关分块矩阵的问题比较方便,本文总结如何使用初等变换求矩阵的逆、矩阵的行列式、矩阵的秩。关键词:分块矩阵 初等变换 分块初等变换目 录引言 11矩阵初等变换及矩阵分块的相关概念 11.1 矩阵的初等变换 11.2 初等变换 1.3 分块矩阵 1.4 分块初等变换 1.5分块初等矩阵 2 应用分块初等变换求解行列式 3 应用分块初等变换求矩阵的逆 4 应用分块初等变换求矩阵的秩 6结束语 参考文献 致 谢 引言利用分块矩阵处理阶数较高的矩阵,是一种常用的方法,在证明相关问题时能带来很多方便,在矩阵的应用中, 矩阵的初等变换起着关键作用. 关于矩阵初等变换的应用, 本文归纳了初等变换在求分块矩阵的秩, 矩阵的逆, 矩阵的行列式中的方法。