三角形全等的判定公理及推论有: (1)“边角边”简称“SAS” (2)“角边角”简称“ASA” (3)“边边边”简称“SSS” (4)“角角边”简称“AAS” (5 )“斜边直角边”简称“HL”(直角三角形)注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
判断定义:1、SSS(Side-Side-Side)(边、边、边):各三角形的三条边的长度都对应相等的话,该两个三角形就是全等三角形。2、SAS(Side-Angle-Side)(边、角、边):各三角形的其中两条边的长度都对应相等,且这两条边的夹角(即这两条边组成的角)都对应相等的话,该两个三角形就是全等三角形。3、ASA(Angle-Side-Angle)(角、边、角):各三角形的其中两个角都对应相等,且这两个角的夹边(即公共边,)都对应相等的话,该两个三角形就是全等三角形。4、AAS(Angle-Angle-Side)(角、角、边):各三角形的其中两个角都对应相等,且其中一个角的对边(三角形内除组成这个角的两边以外的那条边)或邻边(即组成这个角的一条边)对应相等的话,该两个三角形就是全等三角形。5、HL定理(hypotenuse -leg) (斜边、直角边):直角三角形中一条斜边和一条直角边都对应相等,该两个三角形就是全等三角形。
以下三条之一。1、三条边对应相等(SSS);2、有一个角相等且夹这角的两边也对应相等(SaS);3、有一条边相等且夹这边的两个角对应相等(aSa)。
全等三角形是几何中全等之一。根据全等转换,两个全等三角形经过平移、旋转、翻折后,仍旧全等。正常来说,验证两个全等三角形一般用边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、和直角三角形的斜边,直角边(HL)来判定。
1、等三角形的对应角相等。
2、全等三角形的对应边相等。
3.、能够完全重合的顶点叫对应顶点。
4、全等三角形的对应边上的高对应相等。
5、全等三角形的对应角的角平分线相等。
6、全等三角形的对应边上的中线相等。
我们已经具备了有关线的初步知识,转而探索具有更美妙更复杂性质的形。对于三角形,一方面要研究一个图形中不同元素(边、角)间的性质,另一方面要关注两个图形间的关系。两个图形关系的有关全等的内容,则是平面几何中的一个重点,是证明线段相等、角相等以及面积相等的有力工具。 那么如何学好三角形全等的证明呢?这就要勤思考,小步走,进行由易到难的训练,实现由模仿证明到独立推理、由实(题目已有现成图形)到虚(要自己画图形或需要添加辅助线)的升华。具体可分为三步走: 第一步,学会解决只证一次全等的简单问题,重在模仿。这期间要注意模仿课本例题的证明,使自己的证明格式标准,语言准确,过程简练。如证明两个三角形全等,一定要写出在哪两个三角形,这既方便批阅者,更为以后在复杂图形中有意识去寻找需要的全等三角形打下基础;同时要注意顶点的对应,以防对应关系出错;证全等所需的三个条件,要用大括号括起来;每一步要填注理由,训练思维的严密性。通过一段时间的训练,对证明方向明确、内容变化少的题目,要能熟练地独立证明,切实迈出坚实的第一步。 第二步,能在一个题目中两次用全等证明过渡性结论和最终结论,学会分析。在学习直角三角形全等、等腰三角形时逐步加深难度,学会一个题目中两次证全等,特别要学会用分析法有条不紊地寻找证题途径,分析法目的性强,条理清楚,结合综合法,能有效解决较复杂的题目。同时,这时的题目一般都不只一种解法,要力求一题多解,比较优劣,总结规律。 第三步,学会命题的证明,初步掌握添加辅助线的常用方法。命题的证明可全面锤炼数学语言(包括图形语言)的运用能力,辅助线则在已知和未知间架起一座沟通的桥梁,这都有一定的难度,切勿放松努力,前功尽弃。同时要熟悉一些基本图形的性质,如“角平分线+垂直=全等三角形”。证明全等不外乎要边等、角等的条件,因此在平时学习中就要积累在哪些情况下存在或可推出边等(或线段等)、角等。烂熟于心,应用起来自然会得心应手。
关于边边角不能使三角形全等的论文那你具体什么题目,格式内容,如何要求,怎么评级的
现已知BC=EF,AF=DC,AB=DE,请证明∠EFD=∠BCA(在同一平面内) 证明: 因为AF= DC ( 已知) 所以AF+ FC=DC+ FC 所以 DF= AC 在 △DEF和△ABC 因为 AC=DF (已证) 因为 AB=DE (已知) 有因为 DC=EF (已知) 所以△ABC≌△DEF (SSS) 因为∠EFD=∠BCA ( 全等三角形的对应角相等) 这是比较基础的一道几何证明题。。以上证明是用“边边边”来证明的,这是全等三角形证明的最简单的方法。
三角形全等的判定公理及推论有: (1)“边角边”简称“SAS” (2)“角边角”简称“ASA” (3)“边边边”简称“SSS” (4)“角角边”简称“AAS” (5 )“斜边直角边”简称“HL”(直角三角形)注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。
【摘要】:在数学学习的过程中,我们发现有些题目存在着很多种解法,就会使我们多这些解法产生想一探究竟的想法。在尝试多种解法来解答问题时,需要从多个角度进行思考。这样,做题的思路得到了拓展,从这个过程中总结出了规律跟解题经验。以后,在解答其它类型的数学问题时,可以作为借鉴。在进行解答同种类型的问题时,有了上次总结的经验和规律,从而达到快速解题的效果。【关键词】:高中数学、“一题多解”、探索过程与见解。 数学学习最重要的是练习,在解题过程中能够了解自己在某一个知识点上的不足,能起到查缺补漏的效果,并从中总结解题经验。从解题经验可以知道,“题海战术”的效果并不是十分显著,重复地进行解题,学习效率也不高,达不到理想的效果。而在数学解题过程中,需要选择具有代表性的题目,从中总结知识点,从多个角度进行思考,寻找多种解题方法。 一、高中数学解题过程会面对的困难 1、知识点不扎实 数学习题的练习能起到巩固知识点和查缺补漏的作用,能更好地将知识点熟练应用于解题当中。通过数学习题的练习我们知道,基础知识的熟练掌握和了解是十分关键的。在数学学习过程中,知识点逐渐丰富,不断积累数学知识,将以前遗忘的知识点重新温习一遍。知识点不够扎实势必会在解决问题的过程中难以高效地得到解决,学习数学就是将数学知识点逐渐吃透,慢慢将基础知识变薄。 2、不够灵活运用数学相关知识点 数学各类知识点之间有着很重要的联系,在几何运算及代数运算中,需要用到高中数学中的诸多知识点。如学习复数时,往往需要用到三角函数基础知识。在解题运用过程中,熟练掌握数学相关知识点是非常有必要的,更重要的是熟练掌握解题运算方法。由于高中数学知识之间的衔接比较差,再加上知识点分离大,往往只能单独学习部分知识,解题过程中存在不能熟练运用知识点解题的情况,从而导致数学学习成绩不理想。 二、“一题多解”的基本含义 一题多解就是以原有的题目为中心,向其周围的各个核心方面展开深入研究。通过了解各种解题方式可以对题目逐层分析与解决,让我们知道数学基础知识点的重要性,使得我们学得更努力,这样能减轻学习负担,帮助我们进一步学习数学知识点,培养我们多种思维的方式。 三、“一题多解”的心得 1、以三角函数题型为例 例题:已知tana=3/4,求sina、cosa的值。 分析:因为题中有tana、sina、cosa,考虑三者之间的关系,最容易想到的是用三角函数关系式。 方法(1):根据三角函数关系式: tana=sina/cosa=3/4 ①,sin²α+cos²α=1 ② 联立①②得:cos²α=16/25,得出:cosa=-4/5或者cosa=4/5,从而:sina=3/5或者sina=-3/5 方法(2):当a为锐角时,由于tana=3/4,在直角ABC中,如图设AB与AC的夹角为a,设AC=4x,BC=3x,则AB=5x。所以sina=3/5 cosa=4/5,当a为钝角时,得出sina= -3/5,cosa= -4/5。 在解答该问题时,方法1跟方法2的解题思路完全不同,所运用到的数学知识点也不同,却都能得到计算结果。这就说明在数学问题解答的过程中,充分利用与该问题有联系的知识点,可以开拓思路,从多个角度进行问题的解答,实现“一题多解”。 四、总结 一题多解能够拓宽且发散我们的思维,通过一题多解的方式,再加上高中数学教师的引导,能使得学习数学变得轻松。通过对一题多解学习方式的积极应用让我们了解到更多的知识点,更熟练的应用解题技巧及解题思路,以加快解题速度。 从另一个角度看,一题多解的方式能够打破高中惯有的思维,创新思维方式。参考文献:{1}王胜超.“一题多解”与“一题多变”在高中数学教学中的应用.数学大世界(中旬版).{2}朱扬得.“一题多解”与“一题多变”在高中数学教学中的应用.中学生数理化(学研版)
对初中数学锐角三角函数教学的几点思考论文
锐角三角函数作为初中数学中重点教学内容,掌握好该知识点不但有助于学生取得良好成绩,同时更重要的是能够为其今后更高层次几何学习奠定坚实基础,为此这就要求广大教师必须做好该方面教学。然而结合笔者实践来看,由于受到诸多因素所影响,当前锐角三角函数教学效果普遍不佳,如此一来不但严重地影响教学质量,同时更会对后续三角函数教学任务有效开展造成极大的阻碍,对此教师必须认清该知识点的重难点,紧抓学生常见认识误区和思维障碍,采取有效策略进行教学。
一、锐角三角函数与学生常见认识误区和思维障碍分析
锐角三角函数是中学阶段几何学基础知识,是在学生学习了相似三角形和勾股定理之后进一步学习,通过对其开展研究能够使得学生可以后续其他知识学习奠定基础,该知识点呈现正弦函数概念上遵循“从特殊到一般,从实践探索到证明”的方式,让学生体会实验、观察、归纳、猜想、证明的求知过程,有利于学生角度与数值之间对应关系的建立,深化函数思想;在解决实际问题时,强调数学模型的构建,凸现数学建模的思想;重视分析图形特点,强化数形结合思想。对于锐角三角函数知识,学生常见的认知误区和思维障碍主要有以下几方面:(1)不能准确理解锐角三角函数的概念;(2)容易混淆正弦函数、余弦函数和正切函数;(3)过分依赖计算器,对于常用的30°、45°、60°等函数值不能熟记;(4)解直角三角形,特别在解圆中的直角三角形时,易把直角边当做斜边;(5)在解决实际问题中,学生很难通过身体建模来解决问题;(6)容易把坡度与正弦函数混淆。
二、初中数学锐角三角函数教学策略思考与探讨
1.揭示三角函数相关概念产生的思维过程
在传统的教学模式下,许多教师对于三角函数的教学都是采用平铺直叙、照本宣科的方式进行教授,通过让学生反复朗读、书写的方式对概念进行记忆,而很少运用实践操作或探究活动等形式让学生理解相关概念。这种教学方式虽然也能让学生牢牢地记住三角函数的概念,但是这种方式是呆板的,非常影响学生创新思维的发展,因此,教师在教学过程中应该采用通过向学生揭示三角函数概念产生的思维过程的方式加深学生对概念内涵的理解与掌握。
2.重视对直角三角形的讲解
学生掌握好直角三角形的边角关系对于锐角三角函数的学习和掌握有很大促进作用,因而这就要求广大教师必须重视并做好对其教学。直角三角形除直角外的5个元素之间关系:
(1)三边之间的关系:a2+b2=c2(勾股定理);
(2)两锐角之间的关系:∠A+∠B=90°。
利用这些关系,首先要理解好对边与角的关系,这5个元素中,如果知道2个(其中至少有一个是边),就可以求出其余3个。即“在直角三角形中,角定边的比值也确定了,反之,边的比值确定了,角的大小也确定”,并通过在解题过程中不断强调,对学生进行强化理解。数形结合思想对于锐角三角函数的学习与运用也非常的重要,在理解概念、推理论证、计算化简的过程中,通过画图分析,可以让学生在具体、直观中理解直角三角形边与角之间的关系。
3.结合实际生活,促进学生对三角函数相关知识的`理解与掌握
在教学中,教师应尽量选用贴近学生生活的素材来加深学生对三角函数的理解与掌握。结合生活实际不仅可以让学生体会锐角三角函数和解三角形的理论来源于实际,是实际的需要,还可以让学生看到它们在解决实际问题中所起的作用,感受由实际问题抽象出数学问题,通过解决数学问题得到答案,再将数学问题的答案回归到实际问题的这种“实践-理论-再实践”的认识过程。这过程符合人的认知规律,又利于调动学生学习数学的积极性,丰富有趣的实际问题也能激发学生的学习兴趣。直角三角形的学习为学生学习锐角三角函数做好了充分的准备。教师在讲解直角三角形的过程中,就可以利用确定台阶的倾斜程度问题引出正切函数,也可以例举学生熟悉的跷跷板问题等等。
4.对锐角范围内同角或等角的三角函数值相等的内涵和外延进行明晰
明晰锐角范围内同角或等角的三角函数值相等对于学生理解和灵活运用三角函数解决问题显得尤为重要。但是在实际教学过程中,部分教师对此重视不够,在求解某个锐角的相应三角函数值时,该锐角往往置于直角三角形中,学生易形成惯性思维,当需求三角函数值的锐角置于一般三角形时,部分学生缺乏对锐角范围内同角或等角的三角函数值相等的理解。
例如图1所示,点E(0,4),O(0,0),C(6,0)在⊙A上,BE是⊙A中的一条弦,则tan∠OBE=。
许多学生遇到这类题时,很容易出错或者无从下手,教师经过与学生交流、了解做错的原因,就会发现其实很多学生在解答过程中已经意识到要先连接EC(如图2所示),然后由同弧所对的圆周角相等推知∠OBE=∠OCE,但到这一步,学生就陷入了困惑,因为△EOC是直角三角形,而△OBE不是直角三角形。由此可见,学生对于这类题型无法解答或出错的根本原因就在于对同角或等角的三角函数值相等内涵的实质的理解不够透彻。
5.引导学生形成规范的解题过程
引导学生形成规范解题过程有利于他们理清思路,从而达到有效提升其能力与成绩之目的。数学学科一个突出的特点就是逻辑性比较强,对逻辑思维的要求也较高。因此,在解决锐角三角函数问题时,学生通过规范解题过程,按照步骤来进行解题就更加能够便利地找到相应的解题思路,从而掌握相应的数学知识。同时,对于解题思路的梳理很重要,首先要明确具体的问题是什么;其次,针对问题寻找解题突破点,并作出解答的计划;最后,按照计划一步步进行解题,并整理回顾。总之,解题过程规范了,步骤明确了,解题思路也就清晰了。
有一天,三角形、圆形和长方形大吵了一架,吵架的原因是应为圆形在看电视的时候有一个广告上面说:快来参加!快来参加!快来参加!快来参加我们的谁最有用,是三角形、圆形还是长方形快来踊跃参加吧!我们的热线电话是:123456~123456789快来踊跃参加吧!就是这样他们大吵了一架.后来他们边吵边走,来到了一个叫“很悲伤”的小学,这里没有一个玩具,小朋友们都很悲伤.于是,圆形当滑滑梯的身子,三角形当滑滑梯的滑板,长方形当滑滑梯的楼梯,组成一个大的滑滑梯.小朋们乐坏了,他们爬上去,又溜下来,整个幼儿园一片欢腾,小朋友们得到了快乐.幼儿园的名字也改成了“快乐”幼儿园.然后三角形、圆形和长方形他们又来到了一个叫做一个“破烂”的村庄,在这个村庄中什么都没有,什么都是破烂不堪的.那里的房子下雨会漏水,锅子都破了个大洞,床都是用干草和树枝堆起来的.他们那里的人看起来很悲伤,脸上好像从来都没有过笑容.这让三角形、圆形和长方形他们心里感到很难受,觉得那里的人们很可怜,想去帮帮他们.于是他们动起来了.圆形变成了新的铁锅、桌子、凳子等日常用品.正方形和三角形变成了一栋栋的新房子.这使那里的村民非常感动,他们的脸上逐渐的布满了笑容,幸福和开心的笑容.就在这个时候,三角形、圆形和长方形他们和好了,他们不再吵架了.因为他们看见村民们的笑容很幸福,很开心.所以他们也感到开心,所以什么都不计较了.都知道自己也有不对的地方.从此以后,他们是再也不吵架的好朋友,好伙伴了.我觉得三角形、圆形和长方形都是有用的,比如没有了圆圈我们也不能把三角和正方形带替吧,所以 我觉得三角形、圆形和正方形都是有用的。
从一年级开始,我的数学成绩那叫一个字:好。无论哪次考试,从未低过90分,有很多人简直成了我的“粉丝”。可就是你们:三角形和梯形,害得我……哎!
那是五年级上学期的一个单元测试,考的是三角形的和梯形面积,我根本没把你们放在眼面,因为从五年级开始,我的数学考分常常是“一根烤肠加两个鸡蛋”,所以考试前我胸有成竹:我肯定能考100分。考试开始了,我神采飞扬,笔走龙蛇,仅用了30分钟就把所有题目搞定。老师考试前再三强调,试卷做好后要检查。检查?那是对没有自信的人说的,我做的试卷还用检查吗?我想都没想,直接把试卷交了上去,然后骄傲地倚在座位上,得意地欣赏着还在奋笔疾书的同胞们,享受着一些男生的忌妒;另一些男生的愤怒;当然,还有一些女生的崇拜;粉丝们无声的尖叫和全班大部分同学的瞠目结舌……
我的得意只持续了不到两天时间,老师公布成绩了,80多分90多分的同学纷纷亮相,我对他们的成绩不屑一顾,因为无数次他们都是我的手下败将。终于,老师读到我的名字了,全班同学立即喧闹起来:“不用说了,肯定是100分”;“就是不考100分,99分应该没问题的!”面对同学们对我的仰视,我快飘起来了,仿佛在云端漫步。“78分”“什么?这……这……”我像是遭到了五雷轰顶,半天没回过神来。全班同学再一次瞠目结舌,都不敢相信自己的耳朵,甚至有的人还为我吼起来:“不可能,是不是改错了啊?”老师发话了:“掌必成,看你粗心的,三角形和梯形的面积公式运用全部没有除以二。”咔嚓!我再遭五雷轰顶,从云端重重地摔在地上,心都摔碎了。我的“忌妒们”飞眉窃喜;“愤怒们”幸灾乐祸;“崇拜们”厄腕叹息;“粉丝们”伤心欲绝。我的心哇凉哇凉的,三角形和梯形啊,我恨死你们了!
但是我就是我,恩怨分明,敢爱敢恨。虽然你们三角形和梯形害得我糗大了,但是我还是要感谢你们,是你们让我明白了考场如战场,没有常胜将军,稍一粗心就会马失前蹄。我会永远地记你们,记住那场考试,记住那个78分……
从一年级开始,我的数学成绩那叫一个字:好。无论哪次考试,从未低过90分,有很多人简直成了我的“粉丝”。可就是你们:三角形和梯形,害得我……哎!
那是五年级上学期的一个单元测试,考的是三角形的和梯形面积,我根本没把你们放在眼面,因为从五年级开始,我的数学考分常常是“一根烤肠加两个鸡蛋”,所以考试前我胸有成竹:我肯定能考100分。考试开始了,我神采飞扬,笔走龙蛇,仅用了30分钟就把所有题目搞定。老师考试前再三强调,试卷做好后要检查。检查?那是对没有自信的人说的,我做的试卷还用检查吗?我想都没想,直接把试卷交了上去,然后骄傲地倚在座位上,得意地欣赏着还在奋笔疾书的同胞们,享受着一些男生的忌妒;另一些男生的愤怒;当然,还有一些女生的崇拜;粉丝们无声的尖叫和全班大部分同学的瞠目结舌……
我的得意只持续了不到两天时间,老师公布成绩了,80多分90多分的同学纷纷亮相,我对他们的成绩不屑一顾,因为无数次他们都是我的手下败将。终于,老师读到我的名字了,全班同学立即喧闹起来:“不用说了,肯定是100分”;“就是不考100分,99分应该没问题的!”面对同学们对我的仰视,我快飘起来了,仿佛在云端漫步。“78分”“什么?这……这……”我像是遭到了五雷轰顶,半天没回过神来。全班同学再一次瞠目结舌,都不敢相信自己的耳朵,甚至有的人还为我吼起来:“不可能,是不是改错了啊?”老师发话了:“掌必成,看你粗心的,三角形和梯形的面积公式运用全部没有除以二。”咔嚓!我再遭五雷轰顶,从云端重重地摔在地上,心都摔碎了。我的“忌妒们”飞眉窃喜;“愤怒们”幸灾乐祸;“崇拜们”厄腕叹息;“粉丝们”伤心欲绝。我的心哇凉哇凉的,三角形和梯形啊,我恨死你们了!
但是我就是我,恩怨分明,敢爱敢恨。虽然你们三角形和梯形害得我糗大了,但是我还是要感谢你们,是你们让我明白了考场如战场,没有常胜将军,稍一粗心就会马失前蹄。我会永远地记你们,记住那场考试,记住那个78分……
我喜欢许多图形,当我最喜欢三角形。
每当看到那三角形似的小雨伞,在我眼前浮现出一件事。天气真是变化莫测。
那一天下午,突然下起了大雨。我正在写作业,想起了妈妈今天没有带雨伞,该怎么回来呢?想到这里,我赶紧带好雨伞,锁上门,往车站跑去。
车站非常空旷,没有什么人,我站在那里冷飕飕的,真想跑回家去,但我又想:妈妈工作那么辛苦,我应该帮她减轻负担。终于等到了公交车,我兴奋极了,踮起脚尖,看看车上有没有妈妈的身影。
看呀看呀,没有看见,我急得像热锅上的蚂蚁。天渐渐暗了下来,风呼呼地刮着,雨簌簌地下着,街上的行人也越来越少,风都快把我弱小的身躯吹倒了。
又有一辆公交车来了,车上的乘客挤来挤去,看不清真面孔。突然,有一张熟悉的面孔映入我的眼帘。
啊,是妈妈!我终于等到了妈妈。我门母女俩撑着雨伞,在雨中露出了两张笑脸。
我虽然非常冷,但这雨伞给我们带来了母女之间的亲情,使我感到更加温暖,更加快乐。真是小小雨伞见真情!我喜欢三角形,它使我们母女之间的感情更加深厚了。
有一天,圆和三角形见面了,他们觉得对方长得很特别,决定一起玩游戏。
圆和三角形可是个死对头,他们各说各的优点, 争吵不休 ,谁也 不甘示弱 。圆说:“我比你跑得快。”
可三角形说:“我能站得 稳稳当当 。”他们说完后决定比赛跑步和站立。
跑步开始了,只见圆一眨眼功夫就不见影子了,而三角形怎么也跑不了,还把他的三个角磕得 伤痕累累 。不一会,圆跑完一圈回来后,看见三角形还在起跑线上挣扎,圆哈哈大笑起来,三角形不甘心的说:“你别太得意,等站立比赛时再让你瞧瞧我的厉害。”
圆又说:“比就比,谁怕谁呀!”说完站立比赛开始了,只见三角形站得稳稳当当,而圆还像是在跑步一样,不停的转动着。三角形 骄傲 的说:“圆,你认输吧,你是不可能站稳的。”
圆说:“我虽然站不稳,可你也跑不快。”他们争吵的 面红耳赤 ,谁也不服气。
圆和三角形终于冷静下来,决定合作。圆说:“三角形,你跳到我的圆圈里。”
三角形说:“好的。”他们组成了一个新的图形,圆带着三角形跑来跑去,三角形高兴地说:“我终于能跑步了。”
于是三角形对圆说哦:“你跳到我的三条边里面。”圆说:“好的。”
他们又组成一个新的图形,三角形一动不动,圆感觉站得很稳,只听见圆说:“太好了,我也能站稳了。”圆和三角形明白了一个道理:想实现愿望,有时光靠自己的力量是不够的,还需要别人的帮助。
怎样的等腰三角形满足条件:画一条直线将之分成两个等腰三角形?首先,这条直线必须经过顶点,不然得到的两个图形中一个是三角形,另一个是四边形,那么经过等腰三角形的顶点,又可以将等腰三角形分成两个等腰三角形,分两种情况进行:⑴过顶角顶点的直线:如图一:已知AB=AC,①AD=BD,AD=CD,这时ΔABD≌ΔACD(SSS),∴∠ADB=∠ADC,又∠ADC+∠ADB=180°,∴∠ADB=90°,又AD+BD,∴ΔABD是等腰直角三角形,∴∠B=∠C=45°,∴∠BAC=90°,即ΔABC是等腰直角三角形.②AD=BD,AD=AC,∵∠ADC=∠C>∠B,与∠B=∠C矛盾.③AD=BD,AC=CD,∵∠CDA=∠CAD=∠DAB+∠DBA=2∠B=2∠C,∴在ΔACD中,5∠C=180°,得∠C=36°,∴∠BAC=108°.以上由于其它情况的对称关系,已经考虑了所有的可能性.⑵过底角顶点的直线:如图二,AB=AC,首先,AB>AD,ΔABD中只考虑AD=BD,其次∠DBCCD,不必考虑BD=CD.分以下两种情况:①AD=BD,BD=BC,∠BDC是ΔABD的外角,∴∠BDC=∠DAB+∠DBA=2∠A,∴∠C=∠BDC=2∠A,∴∠ABC=2∠A,在ΔABC中:5∠A=180°,∠A=36°.②AD=BD,BC=CD,这时∠BDC=2∠A,∴∠DBC=∠BDC=2∠A,∠C=180°-4∠A,在ΔBC中,∠B=∠C=180°-4∠A,根据三角形内角和为180°得方程:360°-8∠A+∠A=180°,7∠A=180°,∠A=(180/7)°,通过以上的分析总结出:一条直线分为两个等腰三角形的等腰三角形存在四种情况,它们的顶角分别为:90°、108°、36°、(180/7)°.从探究过程得到教训:科学的探索是无止境的,只要用心观察,认真推理,我们可能得到尚未让人知道的自然规律.原创数学小论文,请选为满意答案.。
1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形. 2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底.三角形只有3条高.重点:三角形高的画法. 3、三角形的特性:1、物理特性:稳定性.如:自行车的三角架,电线杆上的三角架. 4、边的特性:任意两边之和大于第三边. 5、为了表达方便,用字母A、B、C分别表示三角形的三个顶点,三角形可表示成三角形ABC. 6、三角形的分类: 按照角大小来分:锐角三角形,直角三角形,钝角三角形. 按照边长短来分:三边不等的△,等腰△(等边三角形或正三角形是特殊的等腰△). 等边△的三边相等,每个角是60度.(顶角、底角、腰、底的概念) 7、三个角都是锐角的三角形叫做锐角三角形. 8、有一个角是直角的三角形叫做直角三角形. 9、有一个角是钝角的三角形叫做钝角三角形. 10、每个三角形都至少有两个锐角;每个三角形都至多有1个直角;每个三角形都至多有1个钝角. 11、两条边相等的三角形叫做等腰三角形. 12、三条边都相等的三角形叫等边三角形,也叫正三角形. 13、等边三角形是特殊的等腰三角形 14、三角形的内角和等于180度.四边形的内角和是360°有关度数的计算以及格式. 15、图形的拼组:两个完全一样的三角形一定能拼成一个平行四边形. 16、用2个相同的三角形可以拼成一个平行四边形. 17、用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形. 18、用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形.一个大的等腰的直角的三角形. 19、密铺:可以进行密铺的图形有长方形、正方形、三角形以及正六边形等.。
数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。
费马点 定义 在一个多边形中,到每个顶点距离之和最小的点叫做这个多边形的费马点。 在平面三角形中: (1).三内角皆小于120°的三角形,分别以 AB,BC,CA,为边,向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点. (2).若三角形有一内角大于或等于120度,则此钝角的顶点就是所求. (3)当△ABC为等边三角形时,此时外心与费马点重合 (1) 等边三角形中BP=PC=PA,BP、PC、PA分别为三角形三边上的高和中线、三角上的角分线。是内切圆和外切圆的中心。△BPC≌△CPA≌△PBA。 (2) 当BC=BA但CA≠AB时,BP为三角形CA上的高和中线、三角上的角分线。证明 (1)费马点对边的张角为120度。 △CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1, △CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B 同理可得∠CBP=∠CA1P 由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度 同理,∠APB=120度,∠APC=120度 (2)PA+PB+PC=AA1 将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB为等边三角形,所以∠BPD=60度 又∠BPA=120度,因此A、P、D三点在同一直线上, 又∠CPB=∠A1DB=120度,∠PDB=60度,∠PDA1=180度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。 (3)PA+PB+PC最短 在△ABC内任意取一点M(不与点P重合),连结AM、BM、CM,将△BMC以点B为旋转中心旋转60度与△BGA1重合,连结AM、GM、A1G(同上),则AA1
等腰三角形中费马点在底边的高上
学位论文答辩资格的条件 1.具有坚定的社会主义信念、爱国主义精神和社会责任感;具有良好的科研道德和为科学献身的精神;树立辩证唯物主义的世界观;具有唯实、求真、协力、创新的`品德。2.申请者必须修满本学科、本专业研究生培养计划中规定的全部学位课程学分,考试成绩及格或补考通过。 3.硕士研究生最低应达到下列条件之一: ⑴在SCI刊物上发表一篇论文; ⑵有一项发明专利被受理,同时在国内外本专业核心刊物上发表一篇论文; ⑶在国内核心期刊上发表两篇论文。 4.博士研究生按不同学科最低应达到下列条件: ⑴博士生在SCI刊物上发表两篇论文; ⑵博士生在SCI刊物上发表一篇论文,同时有一项发明专利被受理; ⑶博士生在SCI刊物上发表一篇论文,同时在国内核心期刊上发表两篇论文。 5.本条款的3、4两项中成果均要求研究生为第一作者(或发明人)或导师为第一作者研究生为第二作者(或发明人)。在国际组织主持召开的国际会议的大会上宣读论文、在新华社或人民日报内参上发表的文章可以替代一篇SCI论文。 6.如遇特殊情况,可由研究生导师予以说明,学位评定委员会讨论决定。 请继续阅读相关推荐: 毕业论文 应届生求职 毕业论文范文查看下载 查看的论文开题报告 查阅参考论文提纲
毕业答辩只要准备充分都能过。答辩过程中答辩者要让导师对论文比较满意,自身能够在答辩上让评审老师感到言之有物、契合论点。
凡是参加毕业论文答辩的学生,要具备一定的条件,这些条件是:
1、必须是已修完高等学校规定的全部课程的应届毕业生和符合有关规定,并经过校方批准同意的上一届学生。
2、学员所学课程必须是全部考试、考查及格,实行学分制的学校,学员必须获得学校准许毕业的学分。
答辩前最重要的,就是和评委老师换位思考、将心比心!像你这样的辣鸡,老师见得太多了,你滑了多少水老师一个眼神就能看破。看破不说破,是他们对自己学术底线最大的和解。
再说你四年本/三年硕/五年博都熬过来了,如果在最后关头卡住你,一方面你自己很痛苦,另一方面老师一想到明年还要再看你答辩一次,他们其实更痛苦。因此,老师内心都是慈悲为怀,抱着放生的心态来听答辩的,大家大可不必紧张。