首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

硬脂酸与棕榈酸研究进展论文

发布时间:

硬脂酸与棕榈酸研究进展论文

首先,硬脂酸与棕榈酸甘油酯之间可以发生反应,因为它们具有可以发生反应的酯类基团。硬脂酸的羟基与棕榈酸甘油酯中的醇羟基可以发生羧基质移反应,从而产生硬脂酰棕榈酸甘油酯。该反应可以分子结构表示如下:![反应](https://img-blog.csdnimg.cn/20200616220209962.png#pic_center)

硬脂酸与棕榈酸甘油酯可以通过加成反应形成硬脂酸棕榈酯。具体的反应式为:硬脂酸 + 棕榈酸甘油酯 → 硬脂酸棕榈酯 + 甘油在反应中,甘油是一个副产物,而硬脂酸棕榈酯被用作食品添加剂、润滑剂、乳化剂、洗涤剂等方面。此外,硬脂酸棕榈酯还可以作为生产个人护理产品、医药等领域的原料。

硬脂酸镁和硬脂酸与棕榈酸相对含量需要经过无水硫酸钠干燥,是因为在化学分析过程中,样品中含有的水分可能会干扰分析结果,而无水硫酸钠是一种吸湿剂,可以吸附空气中的水分,使样品中的水分得到吸附并迅速去除,保证分析过程的精确性和准确性。同时,无水硫酸钠还可以帮助分离硬脂酸镁和硬脂酸与棕榈酸,使它们更容易被区分和定量。因此,经过无水硫酸钠干燥可以有效提高分析的可靠性和准确性。

酸奶的研究进展与发展趋势论文

本文核心数据:酸奶竞争梯队、生牛乳价格走势

行业主要上市公司:蒙牛乳业(02319)、伊利股份(600887)、光明乳业(600597)、三元食品(600429)、新乳业(002946)等

1、#酸奶涨价#事件的来龙去脉

近日,#酸奶涨价#的话题在民众当中引起了热烈讨论。前瞻整理了目前市面上较为主流的酸奶,可以看出除了乳业巨头像是伊利、蒙牛、光明等企业可以在中低端市场占据一定份额外,众多企业开始把眼光放在高端定位上。以卡士酸奶为例,“餐后一小时”的均价为14.5元/瓶;在五六线小城市当中,这是正常人一顿的餐费。

而在消费者可接受价格方面,根据新浪财经创新的投票显示,共有109271人参与了投票;其中,共有78%的投票者认为可接受1-5元内的酸奶。因此,供给和需求的不对称造成了“酸奶越来越贵”的感觉。

2、#酸奶涨价#的背后——原材料、辅助费用、价值成本共同推动

(1)原材料价格上涨

酸奶主要由生牛乳、乳酸菌、添加物组成。其中,生牛乳是原材料中最主要的成本。根据农业农村部对全国500个县集贸市场定点的监测数据显示,2020年,河北、山西、内蒙古、辽宁、黑龙江、山东、河南、陕西、宁夏、新疆等10个主产省生鲜乳平均价格为3.79元/公斤,较2019年上涨3.84%。

其中,2020年10月份主产省生鲜乳平均价格为3.95元/公斤,2020年11月份为4.03元/公斤,2020年12月份为4.15元/公斤。总的看,2020年前半年,10个主产省生鲜乳月平均价格呈下降趋势,2020年6月份开始价格回稳,2020年第四季度呈现大幅上涨。

(2)辅助费用

除了酸奶所需的原材料像是生牛乳的价格上涨之外,营销推广费用、包装费用、运输费用等辅助费用也随着人力成本的上涨而上涨。此外,在渠道端也有很大的差异像是进入便利店和超市的进货价就有所不同;还有像是进入线上和线下的渠道也因为促销活动力度不同而进价也有所不同;再者是一线城市和四五线城市之间的消费能力也有所不同。因此,价格因为多种渠道和场景也呈现不同。

以线上线下为例子,虽然新兴品牌多数都全力在线上市场拼搏,即便是购买人权不再受地域的限制,但是运输成本却有所上升。因此,在物价上升、劳动成本越来越高的大背景下,酸奶的定价也随之水涨船高。

(3)“情感共鸣”的价值成本

近年来,酸奶可以促进肠道消化等用途已经随着商家的宣传深入人心。而近年来,健身热潮高涨;因此,“低糖低脂低卡”的酸奶产品成为了商家的噱头。以简爱的酸奶为例子,其品牌宣传语为“生牛乳、糖、乳酸菌,其他没了”直击消费者的购买点。

此外,“还原小时候味道”的老酸奶也精准狙击了消费者“怀旧”的心理。以小西牛的青海老酸奶为例子,其品牌的宣传语为“青海老酸奶,不仅仅是味道”让怀念小时候老酸奶的消费群体燃气了购买欲望。

因此,当商家能够击中消费者特别是年轻群体的心理时,在满足他们对口味、营养需求的基础上,“品牌溢价”得以被接受。

整体来看,原材料、辅助费用、价值成本三方合力推动了酸奶涨价的趋势,也造成了消费者对酸奶涨价的疑问。

一、参考文献的类型以单字母方式标识,具体如下:J—期刊文章 D—学位论文 C—论文集 M—专著 N——报纸文章 R——报告 不属于上述的文献类型,采用字母“Z”标识。二、参考文献的格式及举例1.期刊类参考文献格式 [序号]作者.篇名[J].刊名,出版年份,卷号(期号):起止页码.2.学位论文参考文献格式 [序号]作者.篇名[D].出版地:保存者,出版年份:起始页码.3.论文集参考文献格式 [序号]作者.篇名[C].出版地:出版者,出版年份:起始页码.4.专著类参考文献格式 [序号]作者.书名[M].出版地:出版社,出版年份:起止页码.5.报纸类参考文献格式 [序号]作者.篇名[N].报纸名,出版日期(版次)6.研究报告参考文献格式 [序号]作者.篇名[R].出版地:出版者,出版年份:起始页码.7.条例参考文献格式 [序号]颁布单位.条例名称.发布日期8.译著参考文献格式 [序号]原著作者. 书名[M].译者,译.出版地:出版社,出版年份:起止页码.例子(研究报告参考格式):参考资料:前瞻产业研究院,《2016-2021年中国酸奶行业市场前瞻与投资战略规划分析报告》,出版地:深圳,2016年3月(出版年月),参考页183-269。

现在人们都注意养生了,所以酸奶的这个行业的发展趋势是很好的,有发展趋势的

l苏氨酸的研究进展论文

这个够详细的 就怕看晕你 要有耐心啊 参考资料: 氨基酸的生理功能 氨基酸通过肽键连接起来成为肽与蛋白质。氨基酸、肽与蛋白质均是有机生命体组织细胞的基本组成成分,对生命活动发挥着举足轻重的作用。 某些氨基酸除可形成蛋白质外,还参与一些特殊的代谢反应,表现出某些重要特性。 (1) 赖氨酸 赖氨酸为碱性必需氨基酸。由于谷物食品中的赖氨酸含量甚低,且在加工过程中易被破坏而缺乏,故称为第一限制性氨基酸。 赖氨酸可以调节人体代谢平衡。赖氨酸为合成肉碱提供结构组分,而肉碱会促使细胞中脂肪酸的合成。往食物中添加少量的赖氨酸,可以刺激胃蛋白酶与胃酸的分泌,提高胃液分泌功效,起到增进食欲、促进幼儿生长与发育的作用。赖氨酸还能提高钙的吸收及其在体内的积累,加速骨骼生长。如缺乏赖氨酸,会造成胃液分沁不足而出现厌食、营养性贫血,致使中枢神经受阻、发育不良。 赖氨酸在医药上还可作为利尿剂的辅助药物,治疗因血中氯化物减少而引起的铅中毒现象,还可与酸性药物(如水杨酸等)生成盐来减轻不良反应,与蛋氨酸合用则可抑制重症高血压病。 单纯性疱疹病毒是引起唇疱疹、热病性疱疹与生殖器疱疹的原因,而其近属带状疱疹病毒是水痘、带状疱疹和传染性单核细胞增生症的致病者。印第安波波利斯Lilly研究室在1979年发表的研究表明,补充赖氨酸能加速疱疹感染的康复并抑制其复发。 长期服用赖氨酸可拮抗另一个氨基酸――精氨酸,而精氨酸能促进疱疹病毒的生长。 (2) 蛋氨酸 蛋氨酸是含硫必需氨基酸,与生物体内各种含硫化合物的代谢密切相关。当缺乏蛋氨酸时,会引起食欲减退、生长减缓或不增加体重、肾脏肿大和肝脏铁堆积等现象,最后导致肝坏死或纤维化。 蛋氨酸还可利用其所带的甲基,对有毒物或药物进行甲基化而起到解毒的作用。因此,蛋氨酸可用于防治慢性或急性肝炎、肝硬化等肝脏疾病,也可用于缓解砷、三氯甲烷、四氯化碳、苯、吡啶和喹啉等有害物质的毒性反应。 (3) 色氨酸 色氨酸可转化生成人体大脑中的一种重要神经传递物质――5–羟色胺,而5–羟色胺有中和肾上腺素与去甲肾上腺素的作用,并可改善睡眠的持续时间。当动物大脑中的5–羟色胺含量降低时,表现出异常的行为,出现神经错乱的幻觉以及失眠等。此外,5–羟色胺有很强的血管收缩作用,可存在于许多组织,包括血小板和肠粘膜细胞中,受伤后的机体会通过释放5–羟色胺来止血。医药上常将色氨酸用作抗闷剂、抗痉挛剂、胃分泌调节剂、胃粘膜保护剂和强抗昏迷剂等。 (4) 缬氨酸、亮氨酸、异亮氨酸和苏氨酸 缬氨酸、亮氨酸与异亮氨酸均属支链氨基酸,同时都是必需氨基酸。当缬氨酸不足时,大鼠中枢神经系统功能会发生紊乱,共济失调而出现四肢震颤。通过解剖切片脑组织,发现有红核细胞变性现象,晚期肝硬化病人因肝功能损害,易形成高胰岛素血症,致使血中支链氨基酸减少,支链氨基酸和芳香族氨基酸的比值由正常人的3.0~3.5降至1.0~1.5,故常用缬氨酸等支链氨基酸的注射液治疗肝功能衰竭等疾病。此外,它也可作为加快创伤愈合的治疗剂。 亮氨酸可用于诊断和治疗小儿的突发性高血糖症,也可用作头晕治疗剂及营养滋补剂。异亮氨酸能治疗神经障碍、食欲减退和贫血,在肌肉蛋白质代谢中也极为重要。 苏氨酸是必需氨基酸之一,参与脂肪代谢,缺乏苏氨酸时出现肝脂肪病变。 (5) 天冬氨酸、天冬酰胺 天冬氨酸通过脱氨生成草酰乙酸而促进三羧酸循环,故是三羧酸循环中的重要成分。天冬氨酸也与鸟氨酸循环密切相关,担负着使血液中的氨转变为尿素排泄出去的部分工作。同时,天冬氨酸还是合成乳清酸等核酸前体物质的原料。 通常将天冬氨酸制成钙、镁、钾或铁等的盐类后使用。因为这些金属在与天冬氨酸结合后,能通过主动运输途径透过细胞膜进入细胞内发挥作用。天冬氨酸钾盐与镁盐的混合物,主要用于消除疲劳,临床上用来治疗心脏病、肝病、糖尿病等疾病。天冬氨酸钾盐可用于治疗低钾症,铁盐可治疗贫血。 不同癌细胞的增殖需要消耗大量某种特定的氨基酸。寻找这种氨基酸的类似物――代谢拮抗剂,被认为是治疗癌症的一种有效手段。天冬酰胺酶能阻止需要天冬酰胺的癌细胞(白血病)的增殖。天冬酰胺的类似物S–氨甲酰基–半胱氨酸经动物试验对抗白血病有明显的效果。目前已试制的氨基酸类抗癌物有10多种,如N–乙酰–L–苯丙氨酸、N–乙酰–L–缬氨酸等,其中有的对癌细胞的抑制率可高达95%以上。 (6) 胱氨酸、半胱氨酸 胱氨酸及半胱氨酸是含硫的非必需氨基酸,可降低人体对蛋氨酸的需要量。胱氨酸是形成皮肤不可缺少的物质,能加速烧伤伤口的康复及放射性损伤的化学保护,刺激红、白细胞的增加。 半胱氨酸所带的巯基(-SH)具有许多生理作用,可缓解有毒物或有毒药物(酚、苯、萘、氰离子)的中毒程度,对放射线也有防治效果。半胱氨酸的衍生物N–乙酰–L–半胱氨酸,由于巯基的作用,具有降低粘度的效果,可作为粘液溶解剂,用于防治支气管炎等咳痰的排出困难。此外,半胱氨酸能促进毛发的生长,可用于治疗秃发症。其他衍生物,如L–半胱氨酸甲酯盐酸盐可用于治疗支气管炎、鼻粘膜渗出性发炎等。 (7) 甘氨酸 甘氨酸是最简单的氨基酸,它可由丝氨酸失去一个碳而生成。甘氨酸参与嘌呤类、卟啉类、肌酸和乙醛酸的合成,乙醛酸因其氧化产生草酸而促使遗传病草酸尿的发生。此外,甘氨酸可与种类繁多的物质结合,使之由胆汁或尿中排出。此外,甘氨酸可提供非必需氨基酸的氮源,改进氨基酸注射液在体内的耐受性。将甘氨酸与谷氨酸、丙氨酸一起使用,对防治前列腺肥大并发症、排尿障碍、频尿、残尿等症状颇有效果。 (8) 组氨酸 组氨酸对成人为非必需氨酸,但对幼儿却为必需氨基酸。在慢性尿毒症患者的膳食中添加少量的组氨酸,氨基酸结合进入血红蛋白的速度增加,肾原性贫血减轻,所以组氨酸也是尿毒症患者的必需氨基酸。 组氨酸的咪唑基能与Fe2+或其他金属离子形成配位化合物,促进铁的吸收,因而可用于防治贫血。组氨酸能降低胃液酸度,缓和胃肠手术的疼痛,减轻妊娠期呕吐及胃部灼热感,抑制由植物神经紧张而引起的消化道溃烂,对过敏性疾病,如哮喘等也有功效。此外,组氨酸可扩张血管,降低血压,临床上用于心绞痛、心功能不全等疾病的治疗。类风湿性关节炎患者血中组氨酸含量显著减少,使用组氨酸后发现其握力、走路与血沉等指标均有好转。 在组氨酸脱羧酶的作用下,组氨酸脱羧形成组胺。组胺具有很强的血管舒张作用,并与多种变态反应及发炎有关。此外,组胺会刺激胃蛋白酶与胃酸。 (9) 谷氨酸 谷氨酸、天冬氨酸具有兴奋性递质作用,它们是哺乳动物中枢神经系统中含量最高的氨基酸,其兴奋作用仅限于中枢。当谷氨酸含量达9%时,只要增加10–15mol的谷氨酸就可对皮层神经元产生兴奋性影响。因此,谷氨酸对改进和维持脑功能必不可少。 谷氨酸经谷氨酸脱羧酶的脱羧作用而形成γ–氨基丁酸,后者是存在于脑组织中的一种具有抑制中枢神经兴奋作用的物质,当γ–氨基丁酸含量降低时,会影响细胞代谢与细胞功能。 谷氨酸的多种衍生物,如二甲基氨乙醇乙酰谷氨酸,临床上用于治疗因大脑血管障碍而引起的运动障碍、记忆障碍和脑炎等。γ–氨基丁酸对记忆障碍、言语障碍、麻痹和高血压等有效,γ–氨基β–羟基丁酸对局部麻痹、记忆障碍、言语障碍、本能性肾性高血压、羊癫疯和精神发育迟缓等有效。 谷氨酸与天冬氨酸一样,也与三羧酸循环有密切的关系,可用于治疗肝昏迷等症。谷氨酸的酰胺衍生物――谷氨酰胺,对胃溃疡有明显的效果,其原因是谷氨酰胺的氨基转移到葡萄糖上,生成消化器粘膜上皮组织粘蛋白的组成成分葡萄糖胺。 (10) 丝氨酸、丙氨酸与脯氨酸 丝氨酸是合成嘌呤、胸腺嘧淀与胆碱的前体,丙氨酸对体内蛋白质合成过程起重要作用,它在体内代谢时通过脱氨生成酮酸,按照葡萄糖代谢途径生成糖。脯氨酸分子中吡咯环在结构上与血红蛋白密切相关。羟脯氨酸是胶原的组成成分之一。体内脯氨酸、羟脯氨酸浓度不平衡会造成牙齿、骨骼中的软骨及韧带组织的韧性减弱。脯氨酸衍生物和利尿剂配合,具有抗高血压作用。 牛 磺 酸 牛磺酸是牛黄的组成成分。 牛磺酸普遍存在于动物乳汁、脑与心脏中,在肌肉中含量最高,以游离形式存在,不参与蛋白质代谢。植物中仅存在藻类,高等植物中尚未发现。体内牛磺酸是由半胱氨酸代谢而来的。 牛磺酸的缺乏会影响到生长、视力、心脏与脑的正常生长。 被细菌感染的病人,由于细菌的大量繁殖消耗了体内的牛磺酸,也会形成牛磺酸缺乏,发生眼底视网膜电流图的变化,而补充牛磺酸后会使眼底的病变好转由于人类只能有限地合成牛磺酸,因此膳食中的牛磺酸就显得非常重要。 奶制品中牛磺酸的含量很低。禽类中,黑色禽肉的牛磺酸含量要比白色肉的高。海产品与禽、畜类比较,以海产品中的牛磺酸含量最高,如牡蛎、蛤蜊与淡菜中牛磺酸可高达400mg/100g以上,同时加热烹调对其牛磺酸的含量没有什么影响。日常的各种食物,包括谷物、水果和蔬菜等,都不含牛磺酸。 精 氨 酸 (一) 精氨酸是鸟氨酸循环中的一个组成成分,具有极其重要的生理功能。多吃精氨酸,可以增加肝脏中精氨酸酶的活性,有助于将血液中的氨转变为尿素而排泄出去。所以,精氨酸对高氨血症、肝脏机能障碍等疾病颇有效果。 精氨酸是一种双基氨基酸,对成人来说虽然不是必需氨基酸,但在有些情况如机体发育不成熟或在严重应激条件下,如果缺乏精氨酸,机体便不能维持正氮平衡与正常的生理功能。病人若缺乏精氨酸会导致血氨过高,甚至昏迷。婴儿若先天性缺乏尿素循环的某些酶,精氨酸对其也是必需的,否则不能维持其正常的生长与发育。 精氨酸的重要代谢功能是促进伤口的愈合作用,它可促进胶原组织的合成,故能修复伤口。在伤口分泌液中可观察到精氨酸酶活性的升高,这也表明伤口附近的精氨酸需要量大增。精氨酸能促进伤口周围的微循环而促使伤口早日痊愈。 精氨酸的免疫调节功能,可防止胸腺的退化(尤其是受伤后的退化),补充精氨酸能增加胸腺的重量,促进胸腺中淋巴细胞的生长。 补充精氨酸还能减少患肿瘤动物的体积,降低肿瘤的转移率,提高动物的活存时间与存活率。 在免疫系统中,除淋巴细胞外,吞噬细胞的活力也与精氨酸有关。加入精氨酸后,可活化其酶系统,使之更能杀死肿瘤细胞或细菌等靶细胞。 郑建仙博士,华南理工大学教授 氨基酸与人类健康 氨基酸是构成生物体蛋白质并同生命活动有关的最基本的物质,是在生物体内构成蛋白质分子的基本单位,与生物的生命活动有着密切的关系。它在抗体内具有特殊的生理功能,是生物体内不可缺少的营养成分之一。 一、构成人体的基本物质,是生命的物质基础 1.构成人体的最基本物质之一 构成人体的最基本的物质,有蛋白质、脂类、碳水化合物、无机盐、维生素、水和食物纤维等。 作为构成蛋白质分子的基本单位的氨基酸,无疑是构成人体内最基本物质之一。 构成人体的氨基酸有20多种,它们是:色氨酸、蛋氨酸、苏氨酸、缬氨酸、赖氨酸、组氨酸、亮氨酸、异亮氨酸、丙氨酸、苯丙氨酸、胱氨酸、半胱氨酸、精氨酸、甘氨酸、丝氨酸、酪氨酸、3.5.二碘酪氨酸、谷氨酸、天门冬氨酸、脯氨酸、羟脯氨酸、精氨酸、瓜氨酸、乌氨酸等。这些氨基酸存在于自然界中,在植物体内都能合成,而人体不能全部合成。其中8种是人体不能合成的,必需由食物中提供,叫做“必需氨基酸”。这8种必需氨基酸是:色氨酸、苏氨酸、蛋氨酸、缬氨酸、赖氨酸、亮氨酸、异亮氨酸和苯丙氨酸。其他则是“非必需氨基酸”。组氨酸能在人体内合成,但其合成速度不能满足身体需要,有人也把它列为“必需氨基酸”。胱氨酸、酪氨酸、精氨酸、丝氨酸和甘氨酸长期缺乏可能引起生理功能障碍,而列为“半必需氨基酸”,因为它们在体内虽能合成,但其合成原料是必需氨基酸,而且胱氨酸可取代80%~90%的蛋氨酸,酪氨酸可替代70%~75%的苯丙氨酸,起到必需氨基酸的作用,上述把氨基酸分为“必需氨基酸”、“半必需氨基酸”和“非必需氨基酸”3类,是按其营养功能来划分的;如按其在体内代谢途径可分为“成酮氨基酸”和“成糖氨基酸”;按其化学性质又可分为中性氨基酸、酸性氨基酸和碱性氨基酸,大多数氨基酸属于中性。 2.生命代谢的物质基础 生命的产生、存在和消亡,无一不与蛋白质有关,正如恩格斯所说:“蛋白质是生命的物质基础,生命是蛋白质存在的一种形式。”如果人体内缺少蛋白质,轻者体质下降,发育迟缓,抵抗力减弱,贫血乏力,重者形成水肿,甚至危及生命。一旦失去了蛋白质,生命也就不复存在,故有人称蛋白质为“生命的载体”。可以说,它是生命的第一要素。 蛋白质的基本单位是氨基酸。如果人体缺乏任何一种必需氨基酸,就可导致生理功能异常,影响抗体代谢的正常进行,最后导致疾病。同样,如果人体内缺乏某些非必需氨基酸,会产生抗体代谢障碍。精氨酸和瓜氨酸对形成尿素十分重要;胱氨酸摄入不足就会引起胰岛素减少,血糖升高。又如创伤后胱氨酸和精氨酸的需要量大增,如缺乏,即使热能充足仍不能顺利合成蛋白质。总之,氨基酸在人体内通过代谢可以发挥下列一些作用:①合成组织蛋白质;②变成酸、激素、抗体、肌酸等含氨物质;③转变为碳水化合物和脂肪;④氧化成二氧化碳和水及尿素,产生能量。因此,氨基酸在人体中的存在,不仅提供了合成蛋白质的重要原料,而且对于促进生长,进行正常代谢、维持生命提供了物质基础。如果人体缺乏或减少其中某一种,人体的正常生命代谢就会受到障碍,甚至导致各种疾病的发生或生命活动终止。由此可见,氨基酸在人体生命活动中显得多么需要。 二、在食物营养中的地位和作用 人类为了生存必需摄取食物,以维持抗体正常的生理、生化、免疫机能,以及生长发育、新陈代谢等生命活动,食物在体内经过消化、吸收、代谢,促进抗体生长发育、益智健体、抗衰防病、延年益寿的综合过程称为营养。食物中的有效成分称为营养素。 作为构成人体的最基本的物质的蛋白质、脂类、碳水化合物、无机盐(即矿物质,含常量元素和微量元素)、维生素、水和食物纤维,也是人体所需要的营养素。它们在机体内具有各自独特的营养功能,但在代谢过程中又密切联系,共同参加、推动和调节生命活动。机体通过食物与外界联系,保持内在环境的相对恒定,并完成内外环境的统一与平衡。 氨基酸在这些营养素中起什么作用呢? 1.蛋白质在机体内的消化和吸收是通过氨基酸来完成的 作为机体内第一营养要素的蛋白质,它在食物营养中的作用是显而易见的,但它在人体内并不能直接被利用,而是通过变成氨基酸小分子后被利用的。即它在人体的胃肠道内并不直接被人体所吸收,而是在胃肠道中经过多种消化酶的作用,将高分子蛋白质分解为低分子的多肽或氨基酸后,在小肠内被吸收,沿着肝门静脉进入肝脏。一部分氨基酸在肝脏内进行分解或合成蛋白质;另一部分氨基酸继续随血液分布到各个组织器官,任其选用,合成各种特异性的组织蛋白质。在正常情况下,氨基酸进入血液中与其输出速度几乎相等,所以正常人血液中氨基酸含量相当恒定。如以氨基氮计,每百毫升血浆中含量为4~6毫克,每百毫升血球中含量为6.5~9.6毫克。饱餐蛋白质后,大量氨基酸被吸收,血中氨基酸水平暂时升高,经过6~7小时后,含量又恢复正常。说明体内氨基酸代谢处于动态平衡,以血液氨基酸为其平衡枢纽,肝脏是血液氨基酸的重要调节器。因此,食物蛋白质经消化分解为氨基酸后被人体所吸收,抗体利用这些氨基酸再合成自身的蛋白质。人体对蛋白质的需要实际上是对氨基酸的需要。 2.起氮平衡作用 当每日膳食中蛋白质的质和量适宜时,摄入的氮量由粪、尿和皮肤排出的氮量相等,称之为氮的总平衡。实际上是蛋白质和氨基酸之间不断合成与分解之间的平衡。正常人每日食进的蛋白质应保持在一定范围内,突然增减食入量时,机体尚能调节蛋白质的代谢量维持氮平衡。食入过量蛋白质,超出机体调节能力,平衡机制就会被破坏。完全不吃蛋白质,体内组织蛋白依然分解,持续出现负氮平衡,如不及时采取措施纠正,终将导致抗体死亡。 3.转变为糖或脂肪 氨基酸分解代谢所产生的a-酮酸,随着不同特性,循糖或脂的代谢途径进行代谢。a-酮酸可再合成新的氨基酸,或转变为糖或脂肪,或进入三羧循环氧化分解成CO2和H2O,并放出能量。 4.参与构成酶、激素、部分维生素 酶的化学本质是蛋白质(氨基酸分子构成),如淀粉酶、胃蛋白酶、胆碱脂酶、碳酸酐酶、转氨酶等。含氮激素的成分是蛋白质或其衍生物,如生长激素、促甲状腺激素、肾上腺素、胰岛素、促肠液激素等。有的维生素是由氨基酸转变或与蛋白质结合存在。酶、激素、维生素在调节生理机能、催化代谢过程中起着十分重要的作用。 5.人体必需氨基酸的需要量 成人必需氨基酸的需要量约为蛋白质需要量的20%,——37%。 三、在医疗中的应用 氨基酸在医药上主要用来制备复方氨基酸输液,也用作治疗药物和用于合成多肽药物。目前用作药物的氨基酸有一百几十种,其中包括构成蛋白质的氨基酸有20种和构成非蛋白质的氨基酸有100多种。 由多种氨基酸组成的复方制剂在现代静脉营养输液以及“要素饮食”疗法中占有非常重要的地位,对维持危重病人的营养,抢救患者生命起积极作用,成为现代医疗中不可少的医药品种之一。 谷氨酸、精氨酸、天门冬氨酸、胱氨酸、L-多巴等氨基酸单独作用治疗一些疾病,主要用于治疗肝病疾病、消化道疾病、脑病、心血管病、呼吸道疾病以及用于提高肌肉活力、儿科营养和解毒等。此外氨基酸衍生物在癌症治疗上出现了希望。 四、与衰老的关系 老年人如果体内缺乏蛋白质分解较多而合成减慢。因此一般来说,老年人比青壮年需要蛋白质数量多,而且对蛋氨酸、赖氨酸的需求量也高于青壮年。60岁以上老人每天应摄入70克左右的蛋白质, 而且要求蛋白质所含必需氨基酸种类齐全且配比适当的,这样优质蛋白,延年益寿。 余传隆(中国医药科技出版) 氨基酸与老年健康 美国“发现”号航天飞机把世界上年龄最大的宇航员(77岁)格伦送入太空。这天对老年人来说,称为最伟大的一天,最引人瞩目。暮年再征太空的格伦,他要帮助医学进行科学实验。老人蛋白质分解、人体氨基酸的生物学试验就是一项重要的研究。氨基酸与老人健康,不仅在地球上要研究,在太空的也要研究。因为氨基酸与老年人的寿命、衰老相关太重要了。为什么重要,下面的分述便可知道。 1.老年的生理变化与氨基酸 一般认为人们进入60岁以上是进入了老年。老年的生理与营养状态随着老年的进程而改变。蛋白质在老年人体的变化归纳起来有二:一是合成,合成组织蛋白质及各种活性物质;二是分解,组织蛋白质的分解、产生能量、产生废物。对于生长发育期的婴儿及青少年合成大于分解,因而身体逐渐成长;对于一般成年人是合成等于分解,因而体重相对稳定。对于老年来说,人体衰老的过程中蛋白质代谢以分解为主,合成代谢逐渐缓慢,身体内的蛋白质逐渐被消耗,往往呈负氮平衡。如血红蛋白质合成减少,因此贫血为常患的老年性疾病;由于酶的作用及小肠功能衰退,蛋白质吸收过程中分解不充分,体内肽类增多,游离氨基酸减少。因老年人肾功能低下而影响氨基酸再吸收,因肝功能下降,对肽的利用也减少。近年研究报告,老年人与中青年人给予相同营养条件,但老年人其血浆氨基酸(缬、亮、酪、赖、蛋、丝、丙氨酸)含量减低,特别支链氨基酸(缬、亮、异亮氨酸)显示不足。有人认为,高浓度支链氨基酸有提供合成的作用,当补给支链氨基酸时,能通过产生三磷酸腺苷(ATP)供能源,降低蛋白质分解作用,并通过促进胰岛素分泌量加强蛋白质的合成。现国外已将支链氨基酸用于临床维持氮平衡,促进蛋白质合成。国内已有用于肝病、肾病及儿童的特殊氨基酸。 由于氨基酸的吸收或利用。因老年化而影响到免疫功能,免疫活性的变化也影响其他器官的功能,如感染、癌症、免疫复合病、自身免疫病、淀粉状蛋白变性的发病率在老年均增高,易致衰老病死。 2.氨基酸与长寿 为了促进老年人的健康,如抗衰老、提高身体抵抗力、促进免疫机制的功能,需要食品富含微量元素或糖类。但免疫的物质基础是蛋白质,人体免疫物质没有一样不是由蛋白质组成。如免疫球蛋白、抗体、抗原、补体等,即使白细胞、淋巴细胞与吞噬细胞等细胞内蛋白质的含量也在90%以上。因此人体若不缺乏蛋白质或氨基酸,上述的微量元素与多糖会起作用。如果缺乏,则无论用多少都不起作用。随着营养学与生物化学的进展,新的研究表明补给某种非必需氨基酸虽然人体能够合成,但在严重应激的状态(包括精神紧张、焦虑、思想负担)或某些疾病的情况下容易发生缺乏。如果缺乏,则对人体会发生有害的影响,这些氨基酸称之为条件性必需氨基酸。如牛磺酸、精氨酸和谷氨酰胺。 在正常条件下缺乏必需氨基酸可以减低体液的免疫反应。例如色氨酸缺乏的大鼠,其IgG及IgM受体抑制,而当重新加入色氨酸能维持正常的抗体生成;苯丙氨酸和酪氨酸均缺乏,可以抑制大鼠的免疫细胞对肿瘤细胞作出反应;蛋氨酸与胱氨酸的缺乏,还可引起抗体的合成障碍。已证明,氨基酸的平衡也有这种不利作用。因此必需氨基酸在免疫中起着重要的作用,要延长老年人寿命,必须提高免疫力,重视必需氨基酸的供给。当前与寿命相关的正是热门研究的必需氨基酸有: 牛磺酸:人体牛磺酸的来源一是自身合成,二是从膳食中摄取。牛磺酸的生物合成由蛋氨酸经硫化作用转化成胱氨酸,并由胱氨酸合成,其中经过一系列的酶促反应,许多高等动物包括人已失去了合成足够牛磺酸以维持体内牛磺酸整体水平的能力,需从膳食中摄取牛磺酸以满足机体的需要。有报道,牛磺酸在中枢神经系统衰老中的作用;老年期神经系统退行性变化是全身各系统最复杂而深奥的过程之一,中枢神经系统衰老在形态上或生化水平上都有明显的改变,单胺类和氨基酸类神经递质的合成、释放、重吸收及运输机制方面出现增年性变化。脂褐质是衰老过程中具有特征性物质,大脑脂褐质增加是神经衰老变化标志之一,当神经元胞浆蓄积较大量的脂褐质时,细胞核、细胞质受压变形,影响神经元的正常代谢功能。衰老时,组织中脂褐质含量明显增高,而牛磺酸可使下降、且使超氧化物歧化酶(SOD)活性增加,并且能抑制脂质过氧化产物丙二醛(MDA)对低密度脂质蛋白(LDL)的修饰。同时牛磺酸与葡萄糖的反应产物表现出较强抗氧化作用,能够阻止蛋黄卵磷脂氧化成脂质过氧化物,因而有显著抗衰老的作用。 精氨酸:精氨酸虽然不是必需氨基酸,但在严重应激情况下(如发生疾病或受伤)、或当缺乏了精氨酸便不能维持氮平衡与正常生理功能,因此它又是条件性必需氨基酸。最新提出的理论,精氨酸是一氧化氮(NO)与瓜氨酸反应的酶系统代谢途径中的必要物质。NO或内皮细胞衍生的松弛因子的主要生化作用是刺激机体提高吞噬细胞中环鸟苷酸的水平,并能刺激白介素的产生来调节巨噬细胞的吞噬细菌作用。与精氨酸有关的NO酶系统,也在血管的内皮细胞、脑组织与肝脏的枯否(kupffer)细胞中发现,它能导致这些器官与组织的激素分泌、从而起到免疫功能的作用。为了提高老年人的免疫也可用氨基酸注射液。 谷氨酰胺:在正常情况下,它是一非必需氨基酸,但在剧烈运动、受伤、感染等应激情况下,谷氨酰胺的需要量大大超过了机体合成谷氨酰胺的能力,使体内的谷氨酰胺含量降低,而这一降低,便会使蛋白质合成减少、小肠粘膜萎缩及免疫功能低下,因此它又称条件性必需氨基酸。 最近发现肠道是人体中最大的免疫器官,也是人体的第三种屏障。前两种屏障是血脑屏障和胎盘屏障。如果肠内没有营养供应,肠道就会营养不良,使肠道的免疫功能减弱与发生细菌相互移位。动物试验证明若动物用无谷氨酰胺的全静脉输液或要素膳补充营养,则动物小肠的绒毛发生萎缩,肠壁变薄,肠免疫功能降低。在静脉输液中提供2%的谷氨酰酶(约氨基酸总量的25%)对恢复肠绒毛萎缩与免疫功能有显著作用。谷氨酰胺在维持肠粘膜功能中的作用对提高免疫能力有一定作用,特别老年人是不可缺少的。 3、老年人如何科学补充氨基酸 老年人对氨基酸的需要量随年龄增长,机体蛋白质总量下降,一位健康老人蛋白质总量为青壮年的60%~70%。这可能与骨骼肌的减少有关,但不能由此认为老年人蛋白质需要减少。老年人体内以分解代谢为主,胃液及胃蛋白酶分泌减少、胃液酸度下降、对蛋白质消化吸收下降,此外热能摄入低、饮食氮存留下降,所以老人蛋白质需要不比成年人的少。一般在正常膳食时,蛋白质摄入0.7~1.0g/kg体重可维持氮平衡,1.0~1.2g/kg体重可达平衡。据此定出每日蛋白质供给量大致为60~75g,其中1/3为动物性蛋白质。如按蛋白质供热比考虑,以12%~14%为宜。在氨基酸代谢方面研究,提示苏氨酸、色氨酸、蛋氨酸等的需要与青年不同,故必需氨基酸的适宜模

苏氨酸(Threonine)是w.C.Ro在在1935年发现于纤维蛋白水解物之中,并证明它是最后被发现的必需氨基酸,其化学名称是。α—氨基—β—羟基丁酸.分子式为)NH2—CH(C00H)—CHOH—CH3,有四种立体异构,具有生物学活性的只有L—型。

透明质酸制备与应用研究进展论文

近日,玻尿酸 科技 企业国纤美正式宣布与“中国玻尿酸之父”、国家糖工程技术研究中心主任凌沛学院士达成战略合作,双方将在玻尿酸科研成果转化、玻尿酸技术在功能食品领域的应用等方面进行深入合作。在此次签约会上,双方强强联手研发的口服玻尿酸产品——悦彦秀壹号糖果正式面世。

打破国际垄断,39年如一日专注玻尿酸研究

人体中的透明质酸含量约为15g,在人体的生理活动中发挥着重要作用。组织和器官中的透明质酸减少,可导致关节炎、动脉硬化、脉搏紊乱和脑萎缩等。人体中透明质酸的减少会产生早老症。

上个世纪90年代以前,国内透明质酸主要从鸡冠中提取,原材料数量有限且成本高。同时,透明质酸与动物组织中的蛋白质和其它多糖以复合体形式存在,分离纯化工艺复杂、收率低,产能十分有限。那段时期,国内的玻尿酸主要依靠进口,一度被西方所垄断。

早在1983年,凌沛学即投入到玻尿酸的研发中。为了实现玻尿酸的国产化,以凌沛学为代表的科研团队经过数百次实验,终于在90年代中期在国际上率先发明了利用生物技术发酵法生产玻尿酸,实现中国玻尿酸量产并推向了全球,被中国生化制药工业协会授予“中国透明质酸之父”。

他所创建的透明质酸理论技术体系和产品质量达到国际先进水平,将玻尿酸技术应用到医疗领域,治疗几千万眼科、骨科、皮肤科患者,为中国医疗事业的发展做出了重要贡献。中国成为玻尿酸领域的强国,凌沛学的贡献功不可没。

凌沛学院士专注研究玻尿酸39年,数十年如一日坚持不懈科研工作,拥有300多项国内外专利,先后获得2项国家 科技 进步二等奖、1项三等奖,何梁何利基金科学与技术创新奖,山东省科学技术最高奖,中国青年 科技 奖。凌院士还入选全国杰出专业技术人才、国家有凃出贡献中青年专家等诸多荣誉,获得国家级奖项4项,省部级奖20余项,发表学术论文100余篇。

2021年,凌沛学当选国际欧亚科学院院士,是玻尿酸领域唯一的院士。

百亿级食品级玻尿酸新赛道开启

2021年1月7日,国家卫生 健康 委员会发文,批准透明质酸钠(透明质酸,俗称玻尿酸)为“新食品原料”,可应用于普通食品添加。

清华大学药学院教授、药理学研究所主任王钊联合首都医科大学基础医学院、北京协和医院临床营养科等作者在《食品科学》期刊发表论文《经口给予透明质酸的生理功能及其作用机制研究进展》。

论文指出:“经体内、体外实验以及患者双盲实验初步证明,口服透明质酸在维持皮肤 健康 、修复关节损伤、调节肠道免疫、缓解干眼等方面扮演着重要的角色,对人体皮肤、眼部、关节,有一定保护功效,且口服透明质酸可以提高紫外线照射后皮肤中水分含量,最终实现改善皮肤状态、减缓皮肤衰老的功效。”

关于口服玻尿酸,中国工程院陈坚院士公开表示,研究表明口服高分子量透明质酸经过胃肠化学消化以及部分酶解后,部分透明质酸钠被人体吸收,有助于维持人体的透明质酸含量。另外,每日口服补充120 mg、200 mg的透明质酸钠可以在保护胃肠道 健康 、护眼、缓解骨关节炎、改善皮肤功效等方面发挥作用。

安信证券研究报告提出:玻尿酸未来有望作为食品原料搭配胶原蛋白、虾青素等成分,结合消费者喜好推出不同组合或剂型,应用于下游乳及乳制品、饮料、巧克力制品、糖果及其他功能性食品。

自2021年玻尿酸入食获批以来,玻尿酸食品成为新的风口和赛道。安信证券预判,中长期国内食品级玻尿酸终端产品市场空间有望达154亿元,其中,国纤美成为玻尿酸食品领域“最早吃螃蟹”的 科技 企业之一。

悦彦秀壹号糖果,口服玻尿酸的新黑马

国纤美在成立之初,就制定了聚焦“玻尿酸+”的中长期战略,国纤美通过与玻尿酸最顶级的科学家进行强强合作,构建了一体化的“玻尿酸+”产学研用平台。此次与凌沛学院士的战略合作,正式拉开了国纤美“玻尿酸+”战略的序幕。

国纤美旗下的悦彦秀壹号糖果,即采用了凌沛学院士的最新科研成果与最新专利技术——全分子量玻尿酸Gaussian HA,它通过酶工程切割、梯度光热处理及低温干燥等技术,将大、中、小玻尿酸分子进行均衡分布,通过协同机制,使全分子玻尿酸和这些有效成分快速被人体的皮肤、关节、眼部等各个部位吸收,从而达到抗衰修复、细胞保护的效果。

“均衡分布的全分子玻尿酸,可通过精准地缓释、控释与长效吸收的方式渗透到细胞膜中,实现持续长效的保健功效。”国纤美执行总裁薇薇表示,“除了全分子量玻尿酸之外,悦彦秀壹号糖果还特别添加了抗坏血酸、鱼肽胶原蛋白肽、抗性糊精、酵母抽提物、Y-氨基丁酸等有效成分,在有效成分的综合作用下,可达到良好的抗衰保健效果。”

在过去的十五年里,薇薇从摆地摊开始,带领团队管理过三千多家大 健康 门店,积累了丰富的线下渠道拓展经验与门店管理经验。2021年,薇薇进一步放大自身优势,极富远见地与“玻尿酸之父”凌沛学院士进行战略合作,精准布局“玻尿酸+”战略。

与凌沛学院士的战略合作,确保了产品的安全 健康 与强功效性,而强大的线下渠道拓展能力,有助于国纤美开辟新的线下大 健康 市场,而这正是被玻尿酸巨头所忽略的领域。

强大的研发基因与领先的渠道优势,构成了国纤美的核心竞争力。薇薇表示,国纤美将进一步打造“玻尿酸+”的产学研用平台,成为全球首屈一指的玻尿酸 科技 企业,用优质的玻尿酸产品为国人的 健康 造福。

未来,透明质酸将在医疗、功能性护肤品和食品等行业派上用场,基于其作用与功效会有更多功能定位的新产品问世,更深层次地推动透明质酸产业链的延伸与发展。下面就重点跟各位分析一下全球透明质酸翘楚--华熙生物。

在开始分析华熙生物前,我已经整理好了一份耐火透明质酸龙头股名单,先分享给大家,点击即可领取:宝藏资料!透明质酸行业龙头股一览表

一、公司角度

公司介绍:华熙生物是集研发、生产和销售于一体的透明质酸全产业链平台企业,建立了生物活性材料从原料到医疗终端产品、功能性护肤品、功能性食品的全产业链业务体系,不光是全球的医药、化妆品、食品等领域的制造企业,还是医疗机构及终端用户,都是所服务的对象。

公司情况说到这里就结束了,下面具体分析公司独特的投资价值。

亮点一:透明质酸龙头,多年称霸全球透明质酸原料供应市场

华熙生物很早就实现微生物发酵法生产透明质酸,属于最早的一批,在国内率先实现了透明质酸微生物发酵技术产业化的突破,使得透明质酸原料依赖进口的落后局面得以扭转,并且在发酵产率、产品纯度等方面做到了全球佼佼者的位置,当下,华熙生物已经作为世界最大的透明质酸原料供应。

亮点二:利用自身技术优势,进行全产业链布局

华熙生物利用原有的两大核心技术平台,深入推进其他四大自主研发平台的组建,从而构建了透明质酸生物合成和产业化体系,促使透明质酸得到了广泛应用,包括骨科、眼科、整形外科、皮肤科等在内的医药和医疗器械领域、化妆品和功能性食品等领域,并创新性地推广至保健食品、普通食品、彩妆等新应用领域,初步形成了全产业链业务体系。

亮点三:医美市场稳占一席之地

华熙生物旗下的玻尿酸品牌数量与医美行业的爱美客是同样多的,其中润百颜和润致两个品牌更是深受消费者喜爱,"润百颜"注射用修饰透明质酸钠凝胶是国内首款通过NMPA认证的国产交联透明质酸填充剂,改变了国外品牌对国内市场的把持和独占。华熙生物还上市了润致“御龄双子针”,是市场上定位祛静态纹的首款产品,把祛除静态纹的空白市场填补了,解决了国外单一产品无法满足消费者多元化的需求的问题。

由于篇幅不太够,更多关于华熙生物的深度报告和风险提示,我整理在这篇研报当中,点击就可以领取:【深度研报】华熙生物点评,建议收藏!

二、行业角度

透明质酸钠是一种新的生物材料,应用范围越来越广泛,已在眼科、骨科、整形外科、皮肤科等领域取得了非常广泛的应用,随着对透明质酸研究的越来越深入,大量的透明质酸的特性及功效被逐渐发现,下游的应用广泛,因此给企业带来巨大的需求量。

例如,国内老龄化的问题加剧,以及居民消费水平的不断提高,眼科、骨科等和老龄化相关以及医美、护肤品等和消费升级相关的下游市场规模将会持续增长,行业在未来的发展空间非常大。

总结来说,华熙生物这家公司是透明质酸行业的领头企业,未来将充分享受行业带来的良好发展前景,对安图生物未来的发展空间看好。但是文章会有一点延时,如果想更准确地知道华熙生物在未来行情怎么样,就把下面的这篇文章打开阅读一下,有专业的投顾会帮助你诊断股票,看下华熙生物是估高了还是估低了:【免费】测一测华熙生物现在是高估还是低估?

应答时间:2021-11-19,最新业务变化以文中链接内展示的数据为准,请点击查看

灭活乳酸菌的研究与前沿进展论文

益生菌也能预防流感王文建  深圳市儿童医院呼吸科  2018-01-20 流感盛行,奥司他韦一时成了神药,多处断货;临床发现有患者服用奥司他韦后出现自杀倾向,又是一片哗然;世界卫生组织也将奥司他韦降级为流感的“辅助用药”。对于流感,到底该用啥药呢?国际期刊《儿科学》曾经发布一项研究成果:益生菌可以预防普通感冒和流行性感冒,尤其是儿童。让我们看看益生菌对流感作用有哪些吧益生菌是指给予一定数量的、能够对宿主健康产生有益作用的活的微生物。和肠道菌群一样,益生菌不仅在胃肠道发挥免疫作用,还可以影响全身免疫系统,此作用是由益生菌的促进黏膜免疫系统发育成熟和对黏膜免疫系统的调节作用介导的。肠道黏膜免疫系统中激活的T细胞和B细胞,能够到达多个黏膜相关淋巴组织(包括肠道、呼吸道、生殖道等),发挥针对同一抗原的免疫反应,这构成了口服肠道益生菌能够对呼吸道黏膜免疫发挥作用的基础。益生菌能增强正常情况下细胞的吞噬能力,抑制过敏时的吞噬功能,增加抗原特异性的IgG和IgA抗体,抑制炎症时单核细胞的增殖,减少肺部病原菌负荷并阻止组织病原菌扩散至血液,增加肺泡液中的细胞因子和杀伤细胞的活性;因而益生菌具有预防呼吸道感染的作用。流行性感冒是冬春季节的高发病,也是最为常见的呼吸道感染病。最近有科学家研究证实乳酸杆菌(益生菌的一种)可以预防不同亚型的甲型流感病毒,避免病毒感染后造成的体重减轻以及降低肺部病毒的复制量。美国乔治亚州立大学的研究人员研究了热灭活乳酸菌——干酪乳杆菌caseiDK128对流感病毒的保护作用。他们用DK128对老鼠进行了预处理并使其感染了甲型流感病毒,结果显示小鼠产生了抗流感病毒的免疫反应:肺和呼吸道中肺泡巨噬细胞的增加,早期诱导病毒特异性抗体,降低促炎细胞因子和先天性免疫细胞的水平。随后进行了对照实验证实,接受低剂量的DK128处理的小鼠体重减轻了10-12%,但在H3N2或H1N1病毒致命感染中存活了下来。接受乳酸菌处理的小鼠,其肺部感染的流感病毒与比照组小鼠低18倍。结果表明用乳酸菌预处理能使小鼠对广泛的原发性和继发性甲型流感病毒感染均具有保护性免疫力的能力。研究者设想DK128或可以作为药物,通过鼻腔喷雾剂来预防特异性流感病毒感染。对于令人讨厌去的流感,这样的应用是不是很值得期盼呢

问题1:什么是灭活?用什么方法灭活?“灭活”就是采用物理或化学的方法将微生物的活细胞,或者活体(如病毒)杀死,使其不再具有生命力,如生长、发育与繁殖的过程。灭活的物理方法包括紫外照射灭活、高温加热灭活、反复冻融灭活等;化学方法包括甲醛、酒精灭活、酸或碱灭活等。最早的“灭活”用于疫苗的制备,主要是杀灭人或动物致病菌,使其不能再感染人和动物,或不再产生毒素,但仍然具备免疫原性,可刺激人和动物产生免疫反应。而将“灭活”的方法用于微生态制剂的开发,是微生态制剂产品技术的重大进步,也是重大转折点。问题2:为什么要灭活?为什么不直接使用活的乳酸菌?为了维持乳酸菌的活性,抵抗环境因素对其杀灭作用,工程技术人员常采用包被的加工工艺,并辅之以全程冷链。我们常在超市看到的酸奶都集中在冷冻区,就是为了提供一个低温环境,保持乳酸菌的活性,同时防止产品后发酵。由于乳酸菌,特别是人和动物肠道伴生的乳酸菌容易死亡、它们对低温(如冰箱的冷藏温度,4℃)、高温、胃酸、胆汁、干燥、射线,以及氧气等非常敏感,很容易失活。其活菌微生态制剂在保存与运输,货架期等都会不断有细胞死亡,从而导致产品有效成份不稳定,产品的使用效果不可靠等问题。甚至会导致消费者与生产厂家的法律诉讼,严重影响产品及企业的声誉。正是以上种种原因,研究人员认为失活是乳酸菌的特性,为什么我们不顺其自然,干脆人为灭活,也许还有意想不到的效果??这是最初我们开展灭活菌研发的思路历程。问题3:灭活乳酸菌微生态制剂能干什么?我们的研究发现,在乳酸菌适当的生长期、利用适当的方法灭活乳酸菌细胞,尽管细胞不再具有生物活性,如生长和繁殖,但仍保持细胞的完整性。如果进行革兰氏染色,还是正常的蓝色。同时还保留以下功能:(1)灭活的乳酸菌细胞还能粘附在人和动物肠道上皮细胞,形成生物膜,竞争排斥致病微生物,从而保护肠道。(2)灭活的乳酸菌细胞及其代谢产物可直接杀灭致病微生物;(3)灭活乳酸菌微生态制剂富含B族维生素,可以刺激肠道中固有的产酸微生物如乳酸菌的生长,从而调整肠道微生态平衡。(4)灭活乳酸菌细胞对肠粘膜非特异性免疫具有调节作用。(5)灭活乳酸菌细胞能够体外或体内吸附食物中的霉菌毒素,减少其进入人和动物肠道,从而提高食品安全。问题4:灭活乳酸菌与活菌比有什么优势?优势明显。首先,对抗逆性强,无需特别的保护,也无需冷链,运输、贮藏与使用简单;其次,可与抗生素同时使用,并且有协同效果;再次,不产生二度感染,更加稳定,对人和动物更加安全;也无噬菌体感染。问题5:灭活乳酸菌是的应用范围和用途是什么?可作为普通的微生态固体饮料,保护人的胃肠健康;可用于小孩、老年人及大病初愈病人肠道调节;或改善便秘。可以直接添加在食品中,如面包、面条、蛋糕等面制品,米制品如米饼、米粉、粥等;豆奶、豆腐、豆浆等豆制品,以及牛奶等乳制品中。可以减除以上制品中的可能存在的低剂量的霉菌毒素,使食品更安全。也可以作为喝茶的伴侣,添加到茶水或茶饮料中,去除茶叶中可能存在的微量霉菌毒素。问题6:灭活乳酸菌是否会全面取代活性乳酸菌??从理论研究和多年实践证明,灭活乳酸菌微生态制剂替代活菌制剂是可行的。目前包括日本、韩国等国家正大力开发和推广由灭活乳酸菌制成的饮料,并在普通食品中添加灭活乳酸菌,包括拉面。经过以上六个问题,相信大家对灭活乳酸菌有了更深的认识,我们相信,灭活乳酸菌有更加广阔的未来。如果大家还有什么问题,欢迎留言提问。

是的。灭活了。

我试试...Depend on the reason that intestinal mucosa hurt and how to combat the intestinal mucosa hurt, this article foucs on the principle and the considering adcanticement of how heat-killed lactic acid bacteria protect and fix the intesitinal mucosa. Through the intestinal cell's adhesion, the non-specific immune stimulation to intestinal mucosa and the polypeptide antibacterial substances in the metabolites, this article introduced to use the heat-killed lacticacid bacteria to make a new kind of microecological preparation can instead of any of the additive during the breed poultries. And this artice also talked about from using the microecological preparation, it can prevent and cure the animal's enterorrhea. It also can make people use less antibiotics, decress the residual in the invironment and the product of poultries,improve the safity of the product of the poultries. And this new microecological preparation have a great potential value.纯手翻的...累死我了,查了好多字典...收获坡深- -

相关百科

热门百科

首页
发表服务