首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

人类遗传与优生论文英文文献

发布时间:

人类遗传与优生论文英文文献

.当今社会已发展到知识、信息时代,现代科技的新成就靠人的数量增多已不能解决问题,必须造就众多高素质的人才。为了国家繁荣富强,民族兴旺发达,为了家庭的幸福,社会的进步,人人都需要了解和掌握一些有关生命的科学知识。正是鉴于这一目标,本刊邀请了辽宁省计划生育委员会副主任、中国优生科学协会常务理事、辽宁省优生优育协会副会长王经伦同志撰写了优生、优育等方面的保健知识,献给广大读者,希望人们从中受到启迪和得到裨益。?优生是一个复杂的过程,每个新生命诞生都有可能受到遗传因素、免疫因素、微生物感染、环境质量、职业因素、营养与食品、围产期疾患、医源性因素、不良嗜好等因素的影响 。?出生缺陷的主要原因,20%—25%是因基因突变及染色体畸变即遗传引起,约10%—20%来自物理、化学、生物因素等环境致畸源,60%—65%原因不明,可能绝大多数来自遗传和环境因素联合作用的结果。因此,优生工作应该从提高优良遗传素质、防止和消除环境致畸因素抓起,从出生前的父母保健到生后抚育、教育的系统工程抓起。?遗传因素?遗传与变异“亲子相似”现象,包括结构、机能、外貌形态以及疾病等方面的相似性,叫做遗传。有的子女很像父母,“种瓜得瓜,种豆得豆”,几乎完全照父母模式表现出来,即为遗传性。亲子虽相似,又有不相似之处,如某些性状、血型不同等,这种“亲子相异” 现象称为变异。遗传和变异是生物不可缺少的一种生命现象,遗传保证了各种不同生物的稳定,使其传宗接代,世代相继。变异使生物进化,人从一千多年前的古猿到现代人,就是变异的结果。?人体约由100万亿个细胞构成,分为体细胞和性细胞两大类,性细胞是构成遗传的物质基础。遗传信息是通过父母精子与卵子中的“载体”——染色体和基因来实现的。染色体是由脱氧核糖核酸(DNA)——双股螺旋长链经过高度缠绕的折叠构成。其因是DNA长链中的某一段,每对染色体上大约有2000多个基因,每个基因都有固定的位置。基因决定遗传性状。?受精卵是连接新代和子代的桥梁。染色体和基因通过精卵细胞遗传给下一代,复制自己。如果染色体和基因变异扰乱了正常的重量活动,即表现出病理现象。?遗传病 遗传病是指人类遗传物质染色体或基因发生异常变化,导致胎儿机体结构和功能异常的疾病,是由亲代生殖细胞或发育成个体的受精卵中遗传物质改变引起,不包括体细胞内发生基因突变和染色体畸变而引起的疾病。人体所有组织和器官都可以发生遗传病。遗传病有其自身的特点和规律,一是先天性,多为终身性,但先天性疾病并不全是遗传病;二 是家族性,是以家族垂直的方式,一定比例传给同一家庭的成员,既可以世代相传;也可以隔代相传,既能明显表现出来,也可以呈隐性遗传。家族性疾病多为遗传病,但家族并不直接意味遗传性。?单基因遗传病:由基因突变引起的遗传病。1986年已发现4403种,我国3000多种,人群中约10%的人受累。其遗传方式分为常染色体显性、隐性遗传,X连锁显性、隐性遗传和Y连锁遗传。?多基因遗传病:几对基因共同作用所致,往往受遗传和环境双重因素影响。虽然只有几十种,但每种都常见,受累人数约20%。?染色体病:染色体的数目或结构异常引起的疾病,分常染色体和性染色体病两种。1986年医学发现667种染色体病,受累人数1%。

1.24

知识分子

The Intellectual

“基因”(Gene)一词的发明和翻译堪称完美 | 图源:pixabay.com

导 读

基因所代表的物质在生命中至关重要,它的发现是科学史一个伟大的里程碑。“基因” 这个词的发明和翻译也堪称完美。

旅德免疫学学者、《知识分子》专栏作者商周,在本文介绍了基因(Gene)一词的由来。

撰文 | 商周

责编 | 陈晓雪

对科学名词的翻译的方式有两种,一种是意译 (根据含义来翻译) ,另一种是音译 (根据读音来翻译) 。能在意译和音译上都达标则效果更佳,但这样的名词极少,一个难得的例子是 “基因” (Gene) 。

把 “Gene” 翻译成基因,在含义和读音方面都达到了要求,相比其它广为人知的生物学名词 (比如细胞(Cell)、器官(Organ)、组织(Tissue)) 的翻译,明显要更胜一筹。

那么,“基因” (Gene) 这个词是如何来的呢?

孟德尔的 “天性”(Anlage)和 “因子”(Elemente)

词汇不是凭空出现的,只有当人们需要描述一个新鲜事物的时候,创造一个新的名词才成为必要。“基因” 这个名词的起源,也就是人类首次意识到基因这个物质存在的时候。第一个意识到基因这种物质存在的人,正是发现了遗传学法则的孟德尔,但他并没有为它去创造一个新的名词。

1854年到1863年,孟德尔利用22种不同的豌豆品种进行杂交实验,发现豌豆不同的性状 (比如种子颜色、形状,豆荚颜色、形状等) 是由不同遗传物质控制的,这些遗传物质来自父母双方,而且来自父母双方的遗传物质在产生生殖细胞时会发生分离。现在我们知道,这些遗传物质就是基因。但在只有普通光学显微镜的十九世纪,人们对生命的认知还停留在细胞水平,虽然知道了细胞核的存在,但并不知道染色体,更不知道DNA。

面对控制豌豆性状的神秘遗传物质,孟德尔在他的《植物杂交实验》论文里采用了两个不同的词来描述 [1] 。

在论文结果部分的 “杂交种的生殖细胞” 单元,开头一段有如下描述:

图1 孟德尔《植物杂交实验》论文截图 | 图源:biopersitylibrary

“ ……就经验而言,我们发现每一种情况下都证实,只有在卵细胞和受精花粉具有相同的 天性 (Anlage)时才能形成不变的后代,正如纯种植株的正常受精一样…….”

德语 “Anlage” 一词有七种含义 (包括创造、投资、设施、装置、结构、天性、材料) ,在孟德尔上面的文字里,翻译成 “天性” 可能相对贴切一些。在这里,孟德尔用 “天性” (Anlage) 这个词来描述豌豆花粉细胞和卵细胞里含有的遗传物质,因为这一段之前论文已经描述了单个和多个性状杂交的情况,这里的遗传物质并不是指单个基因,而是多个基因或者是整个生殖细胞里的所有遗传物质。

有趣的是, “天性” (Anlage) 这个词孟德尔在整篇文章里只使用了这一次。等到文章的结语部分讨论控制性状的遗传物质的时候,他用了另外一个名词 “Elemente”,而且用了10次之多。Elemente有三种不同的含义:基本成分、特质、因子。从孟德尔论文的语境来看,这里的 “Elemente” 翻译成 “因子” 更合适一些。

图2 孟德尔《植物杂交实验》论文截图 | 图源:biopersitylibrary.

而这里的 “因子” (Elemente) 的具体含义,可以通过论文的这一段文字判断出来。

“对于那些后代存在变化的杂交种,我们也许可以假设,在卵细胞和花粉细胞的差异 因子 之间发生了某种协调,以至于作为杂交种基础的细胞的形成成为可能;但尽管如此,不同 因子 之间的平衡只是暂时的,并没有持续到杂交植物的整个生命中。由于植物的习性在整个植被期没有变化,我们必须进一步假设,只有当生殖细胞发育时,差异 因子 才有可能从强制结合中解放出来。在这些细胞的形成过程中,所有现有的 因子 都参与了一个完全自由和平等的分配,只有这样它们才会相互分离。这样一来,所产生的卵细胞和花粉的类型在数量上就和 因子 所可能形成的组合一样多。”

从这一段文字来看,孟德尔不仅谈到了来自父母的差异 “因子” (Elemente) 的分离,也谈到了不同 “因子” 的组合。所以,这里的 “因子” 指的就是单个的基因。而上面的 “天性” (Anlage) 指的则是细胞内整个的遗传物质。正是因为这一微妙的差异,孟德尔选择了两个不同的单词进行描述。

尽管孟德尔用了这两个词对遗传物质在整体层面和单个基因层面进行描述,但因为其经典论文《植物杂交实验》长期被忽视,这两个词就更不可能走进人们的视野。直到1900年,荷兰植物学家胡戈-德弗里斯 (Hugo de Vries) 、德国植物学家卡尔-科伦斯 (Carl Correns) 以及瑞士植物学家埃里克·切尔马克 (Erich Tschermark) 分别在《德国植物协会通报》 ( Ber. der Deutschen Bot. Gesellsch. ) 上发表关于植物杂交的研究论文,各自独立地部分重现了孟德尔的发现 [2-4] 。在这三个 “孟德尔的发现者” (注:学界对三人在这一主题上的贡献有争议,这里不仔细讨论) 里,有两人也对 因子 (Elemente) 这种神秘的物质进行了描述。

科伦斯的 “天性”(Analge)

科伦斯1864年出生在德国慕尼黑, 28岁那年在德国图宾根大学获得植物学讲师职位,并在那里花了六年的时间进行植物杂交实验,重现了孟德尔的部分结果。在 “孟德尔的发现者” 的三人中,科伦斯对孟德尔的发现最为了解。他1900年发表在《德国植物协会通报》上的论文,标题就是《关于品种杂交后代行为的孟德尔法则》 [3] 。

在这篇论文里,科伦斯详细地讨论到控制性状的遗传物质。有趣的是,科伦斯用的词是 “天性” (Anlage) , 而不是 “因子” (Elemente) ,而且整篇论文里一共提了22次。比如,在下面这段文字里:

图3 科伦斯《关于品种杂交后代行为的孟德尔法则》论文截图 | 图源:biopersitylibrary

“为了解释这些事实,我们必须假设(就像孟德尔那样),在生殖核融合之后,一个性状,即隐性性状(在我们的例子中为绿色)的 天性 被另一个性状,即显性性状所抑制,因此所有的胚胎都是黄色。然而,虽然隐性性状的 天性 ‘潜伏’ 着,但在生殖核的最终形成之前,两种性状的 天性 完全分离,所以一半的生殖核接受隐性 天性 ,即绿色;另一半接受显性 天性 ,即黄色……”

从文中的语境来看,科伦斯用 “天性” 描述的其实是控制性状的单个基因,而不是所有遗传物质的总和。所以,他虽然用的是 “天性” 这个词,但和孟德尔用的 “因子” 这个词一样,代表的都是基因。科伦斯之所以选择 “天性” ,而没有使用 “因子” ,一个可能的原因是受他的导师慕尼黑大学植物学家卡尔·威廉·冯·内格里 (Carl Wilhelm von Nägeli) 的影响。就在科伦斯进入慕尼黑大学的前一年 (1884年) ,内格里发表了他的巨著《生命进化的机械生理学理论》 ( Mechanisch-physiologische Theorie der Abstammungslehre ) ,里面谈到遗传物质的时候,使用的就是 “天性” (Anlage) 这一名词。但信奉融合遗传的内格里用 “天性” (Anlage) 一词描述的不是基因,而是整体上的遗传物质。

无论是孟德尔,还是科伦斯,两人都清楚地意识到基因这种物质的存在,但并没有为它去创造一个新的名词,而是试着用已经存在的名词对其进行描述。

真正尝试为基因去创造新名词的,首先是德·弗里斯。

德·弗里斯的 “泛生子”(Pangene)

德·弗里斯1848年出生在荷兰,30岁生日那天他获得了荷兰阿姆斯特丹大学的植物生理学教授职位,并在同年当选为荷兰科学和艺术学院的会员。1899年,德·弗里斯写出了他的代表作之一《细胞内泛生论》 ( Intracellular Panenesis ) 一书。虽然是荷兰人,德·弗里斯的这本书是以当时科学界更为普及的德语出版的 ,出版社是位于德国耶拿的GUSTAV FISCHER [5] 。

“ ‘泛生论’(Pangenesis)一词包括两个希腊单词:Pan和Genesis,前者的意思是全部(泛),后者的意思是出生和起源(生)。这是达尔文1868年提出的一个有关遗传的理论,它的核心是融合遗传(Blending inheritance)。按照泛生论,生物体各部分的细胞都带有特定的自身繁殖的 ‘微芽’(后人也把微芽称微泛生子(Pangene)),这些 ‘微芽’ 可由各系统集中于生殖细胞,父母生殖细胞的 ‘微芽’ 会相互融合从而形成新的子代 ‘微芽’。和泛生论不同,由孟德尔开创的现代遗传学的核心是颗粒遗传(Particulate inheritance),即控制性状的基因是独立的单位,来自父母的两个等位基因并不会发生融合,在下一代形成生殖细胞时还会相互分离。”

德·弗里斯在1898年提出的 “细胞内泛生论” 则有些特别,一方面它依然是泛生论,另一方面它抛弃了融合遗传,提出了颗粒遗传的概念。正是因为提出了颗粒遗传这个概念,德·弗里斯以达尔文创造的 “泛生论” (Pangenesis) 一词为基础,提出了 “泛生子” (Pangene) 一词,并对这一概念进行了描述:

图4 德·弗里斯的《细胞内泛生论》对“泛生子”(Pangene)做了详细注解 | 图源:biopersitylibrary

“……每个生殖细胞都必须潜在地包含构成相关物种性状的所有因素。因此,可见的遗传现象,都是隐藏在生命物质中的最小不可见粒子的特性的表现。事实上,为了能够解释所有的现象,人们必须为每个遗传属性假设特殊的粒子。我将这些单位称为 泛生子 (Pangene)。这些 泛生子 小得无法看见,但它们的化学分子的顺序完全不同,这些 泛生子 能够随着细胞分裂而增殖,并且可以分布到生物体所有或几乎所有的细胞中。它们要么是潜伏的,要么是活动的,但可以在这两种状态下繁殖……”

从上文可以看到,德·弗里斯所提到的 “泛生子” 其实就是基因。德·弗里斯提出的细胞内泛生论最有价值之处,就是提出了颗粒型遗传这一概念,否定了之前的融合性遗传。德·弗里斯能做到这一点,是因为在这之前进行了六七年的植物杂交实验,并且重现了孟德尔关于分离法则的发现。这让他意识到来自父母双方遗传物质并不会融合,而是依然会在产生生殖细胞时分离。

虽然 “泛生子” (Pangene) 是为基因创造的一个新名词,但这个词的前缀 (Pan) 用来描述基因并不合适,可以说有画蛇添足之嫌。1909年,丹麦植物学家维尔海姆·路德维希·约翰森 (Wilhelm Ludvig Johannsen ) 在 “Pangene” 一词的基础上,进一步提炼出了 “基因” (Gene) 一词。

约翰森的 “基因”(Gene)

维尔海姆·路德维希·约翰森 (Wilhelm Ludvig Johannsen) 1857年出生于丹麦的哥本哈根,1905年获得哥本哈根大学的植物学教授职位。1909年,他出版了自己的代表作《精确遗传学理论的要素》一书。和德·弗里斯的《细胞内泛生论》一样,约翰森《精确遗传学理论的要素》一书也是由德国耶拿的GUSTAV FISCHER出版社用德语发行 [6] 。

图5 约翰森的《精确遗传学理论的要素》一书的截图 | 图源:biopersitylibrary

这本书由约翰森的一系列讲义组成,在其中的第八讲,他创造了 “基因” 一词。同时,约翰森还创造了 “基因型” (Genotyp) 、表型 (Phaenotyp) 、“纯合子” (Homozygote) 、“杂合子” (Hetrezygote) 等今天常用的一系列遗传学术名词。

关于为什么要创造 “基因” 一词,约翰森在书中是这么说的:

“性细胞含有 ‘某种东西’,它决定着通过受精而产生的生物体的性状。这种 ‘东西’通常被称为 ‘天性’(Anlage),但这种说法相当含糊。达尔文提出的 ‘泛生子’(Pangene)一词,经常被用来代替 ‘天性’(Anlage)。然而, ‘泛生子’(Pangene)这个词的选择也并不令人满意,因为它是一个双重结构,包含了 ‘Pan’ 和 ‘Gene’两个词干。这里只需要考虑后者的意义,因此,从达尔文这个众所周知的词中分离出我们唯一感兴趣的最后一个音节 ‘Gene’,以便用它来取代糟糕的、模棱两可的 ‘天性’(Anlage)一词……”

在上面这段文字里,约翰森对基因是什么的描述比之前的任何一位学者都更清晰,即细胞里的 “某些东西”,能决定生物的性状。他也指出,之前用来描述基因的词 “天性” (Anlage) 以及 “泛生子” (Pangene) 都有不足,前者太模糊,后者前面带了多余的修饰词。所以,约翰森把 “Gene” 从 “Pangene” 中剥离了出来。

接下来,约翰森还进一步说明了使用 “基因” (Gene) 这个词的优势:

“…… ‘基因’ 这个短词有很多优点,因为它可以很容易地与其他名称组合。如果我们想到由某个 ‘基因’ 决定的属性(比如财富),我们就可以很容易地说 ‘财富的 基因 ’,而不需要使用 ‘决定财富的 基因 ’ 这样更繁琐的短语。”

不知为什么,约翰森在提到前人描述基因所用的词汇时,关于 “泛生子”一词的发明,只提到了达尔文,而没有谈到德·弗里斯。还有,约翰森也没有提到孟德尔首次用的 “因子” (Elemente) 这个词。不过,约翰森没有忘记把发现基因这一里程碑式的发现归功于孟德尔:

“…… ‘基因’ 的性质,目前还没有足够充分的依据。然而,这对遗传研究的有效性没有任何影响;只要确定存在这样的 ‘基因’ 就足够了。它的发现是格雷戈尔·孟德尔开展的植物杂交实验研究的最重要成就之一……”

在1909年 “基因” 这个词被创造出来的时候,正如上文约翰森提到的,人们对基因的自然属性还并不了解,只是知道它的存在,知道它是生物性状的决定者。但这已经足够了,因为这开辟了一个全新而且重要的研究领域。后来,人们知道了基因是染色体上的一部分;再后来,人们知道了基因是编码一段多肽的DNA片段……

从 “Gene” 到 “基因”

把 “Gene” 翻译成中文 “基因”,不仅同时做到了意译和音译,而且提高这个单词在含义上的准确性。就像上面提到的,“Gene” 这个词来源于希腊语,本来的意思是 “出生” 和 “起源”,这和 “决定生物性状的遗传物质” 的本意不太一致。但当把它翻译成 “基因” (基本因子) 后,就和本意靠近了很多,因为 “基本因子” 同时涵盖了孟德尔的 “因子” (Elemente) 、科伦斯的 “天性” (Anlage) 、约翰森的 “基因” (Gene) 。从某种角度上来说,将 “Gene” 翻译成 “基因” 是对原词的一个提升和超越。

那么,是谁做了这样一个完美的翻译呢?

根据加拿大曼尼托巴大学医学院谢永久教授的考证 [7] ,目前能查到的中文资料里,最早翻译“Gene”为“基因”一词的是潘光旦先生,他在1930年发表的《文化的生物学观》一文中写道 [8] :

“关于遗传这一点,我们不预备多说。遗传的几条原则,什么韦思曼的精质绵续与精质比较独立说、孟特尔的三律、跟了韦氏的理论而发生的新达尔文主义或后天习得性不遗传说、杜勿黎的突变说、约杭生与摩尔更的 ‘基因’ 遗传说——是大多数生物学家已认为有效,而且在生物学教本中已经数见不鲜的。”

潘光旦在1930年 (可能更早) 首次将 “Gene” 翻译成 “基因” 并非偶然,1922年23岁的他留学美国,并于1926年在哥伦比亚大学获得生物学学位,那里的教授里就有著名的遗传学大师摩尔根。虽然潘光旦后来成为了一名出色的 社会 学家,但他早期从事过一些优生学的研究,比如在1923年就发表了《优生学在中国》 ( Eugenics and China ) 的英文论文,并在随后将优生学引入到中文世界。或许正是因为他的自然和 社会 科学的双重背景,成就了 “基因” 的完美翻译。

参考文献:

1. Mendel, G., 1866 Versuch e über Pflanzen-Hybriden. Verh. naturf. Ver. Brünn 4: 3–47.

2. De Vries, H. Das Spaltungsgesetz der Bastarde. Ber. der Deutschen Bot. Gesellsch. 18 (3): 83, 1900.

3. Correns C. G. Mendel’s Regel über das Verhalten der Nachkommenschaft der Rassenbastarde. Ber. der Deutschen Bot. Gesellsch., 18 (4): 158-168, 1900.

4. Tschermak, E. Über Künstliche Kreuzung bei Pisum sativum. Berichte der Deutsche Botanischen Gesellschaft 18: 232-239, 1900.

5. de Vries, Hugo. 1889Intracellular Pangenesis. Gustav Fischer, Jena.

6. Johannsen, W., 1909 Elemente der exakten Erblichkeitslehre. Gustav Fischer, Jena.

7.

8. 《潘光旦文集》第二卷,潘乃穆,潘乃和 编, 北京-北京大学出版社, 1994 年 10 月,ISBN 7-301-02571-8, 318-319 页.

制版编辑 | 卢卡斯

优生属于人类遗传手段中正常(原始)遗传的一种。它与劣生相对,是一种致力于人类完美的一种常规遗传方式,也相对简单。相信未来会有更大的发展在人类遗传方面:如克隆单性遗传……

人类遗传与优生期末论文题目求解

人类很多疾病是由于遗传基因导致的,实际上,几乎每个人身上都携带致病基因,只是大部分都是隐性,在婚配前,作检查,了解家族病史,可以避免夫妻双方携带相同致病基因并遗传给后代的概率,如果通过了解夫妻双方家族病史判断双方都有可能携带相同致病基因,那么可以在生育过程中进行人为干预,比如选择后代性别或通过体外受精,再人为修改基因等手段,降低后代患病的几率,提高民族人口素质。这也是为什么禁止近亲结婚的主要原因,因为同一家族携带相同致病基因的概率相当高,后代患病的概率也比非近亲结婚产生的后代高数倍,通过这些优生优育手段,可以大幅度降低后代患病的可能。而从优生优育理论的本质上来看,就是建立在现代遗传学的基础之上的。

人类的遗传素质与优生 摘要】 本文分析并讨论了人类遗传素质和优生之间的关系,旨在推动优生运动的深入开展,提高人口素质. 【英文摘要】 Through discussing and and-lyesing the relation between human genetic quality and eugenics, The author points out the impr-ovent of human genetics depends opon envioment affection after being born, and also upou the guide of eugenics.The articl aims to aduance eugenics and increase human quality. 以上是摘要,如果觉得对口,与我索取免费下载网址

优生属于人类遗传手段中正常(原始)遗传的一种。它与劣生相对,是一种致力于人类完美的一种常规遗传方式,也相对简单。

主要是指一对等位基因的突变导致的疾病,分别由显性基因和隐性基因突变所致。这类疾病涉及多个基因起作用,其病情严重程度、复发风险均可有明显的不同,且表现出家族聚集现象。

扩展资料

某些遗传病可通过控制饮食达到阻止疾病发生的目的,从而收到治疗效果。如苯丙酮尿症的发病机理是苯丙氨酸羟化酶缺陷,使苯丙氨酸和苯丙酮酸在体内堆积而致病,可出现患儿智力低下或成为白痴。

可是如果诊断准确,在早期最好在出生后7-10天开始着手防治,在出生后3个月内,给患儿低苯丙氨酸饮食,如大米、大白菜、菠菜、马铃薯、羊肉等,则可促使婴儿正常生长发育。等到孩子长大上学时,再适当放宽对饮食的限制。

优生属于人类遗传手段中正常(原始)遗传的一种。它与劣生相对,是一种致力于人类完美的一种常规遗传方式,也相对简单。相信未来会有更大的发展在人类遗传方面:如克隆单性遗传……

遗传与优生论文参考文献

1、什么是遗传与优生?遗传:生物通过各种生殖方式繁衍种族,这就保证了生命世代间的延续,这种世代间的延续称为遗传。优生:优生乃是“遗传健康”。通俗地说,优生就是让优秀的小孩出生或让优秀者存活并健康成长。优生与遗传关系密切,优生主要目标是尽可能地防止先天性畸形和遗传病儿出生,以减少遗传病的发病率。2、怎样做到优生优育?优生,应包括优恋、优婚、优孕、优产、优育和优教。优恋:就是找优秀的人谈恋爱,即选择德、智、体、美都优秀的人为恋爱对象。其中身体健康,智力正常是非常重要的。优婚:就是指与优秀的、志同道合的、身体强壮的人结婚。优孕:就是选择最佳的时期妊娠,做好孕期保健,避免接触毒物,创造一切有利的条件,来促进胚胎和胎儿的正常发育成长。优产:就是使胎儿正常娩出,不受到任何损害和影响。优育:是指正确的喂养方法和提供合理的营养,以促进小孩的正常生长发育。优教:就是指小孩受到良好的教育和精心的培养。优生优育的重要性: 健康的孩子,既给美满幸福的家庭带来欢乐,又有利于国家民族的兴旺繁荣。优生学就是专门研究人类遗传,改进人种的一门科学。 优生的目的是提高人口质量,它包括两个方面:一是积极的优生学;二是消极的优生学。 积极的优生学是促进体力和智力上优秀的个体优生。即用分子生物学和细胞分子学的研究,修饰、改造遗传的物质,控制个体发育,使后代更加完善,真正做到操纵和变革人类自身的目的。 消极优生学是防止或减少有严重遗传性和先天性疾病的个体的出生,就是说减少不良个体的出生。后者是人类最基本的,有现实价值的预防性优生学。不减少白痴、畸形儿的出生,就谈不上人口质量的提高。 一个先天性痴呆孩子的出生,将会造成双亲的极大痛苦,成为家庭的累赘和社会的负担。他的存活对社会没有任何意义。因此,预防和尽早发现胎儿异常,阻断遗传病和先天性缺陷的延续,是家庭幸福的重要前提。 目前,我国提倡一对夫妇只生一个孩子。生一个健康而又聪明的孩子是家庭和社会的共同愿望。欲使这个愿望得以实现,就必须具备一定的优生、优育和优教方面的科学知识。优生知识是获得一个健康孩子的前提,优育和优教是使孩子健康成长的保证。如果您的孩子先天具备了良好的条件,而出生后却通过不科学的抚育,也能影响孩子的聪明和健康成长。例如,夏季出生的小儿长了痱子或尿布疹很严重,那么孩子的情绪就不好;此外护理不好,不及时给孩子清洁鼻腔,通气不畅,孩子不能好好吃奶;指甲长了不剪,会使孩子将脸抓破,只要孩子哪一点发生了问题,他(她)就会烦躁不安,以致影响睡眠。 每天每次喂奶要让孩子吃饱,保持尿布干燥及臀部的清洁卫生,经常给孩子洗澡,保持身体清洁,给孩子作婴儿体操,日光浴和户外活动等,这样能保证他充足的睡眠……。总之,对孩子要给予充满母爱的抚育,因此对孩子一天生活日程的安排非常重要。其中就包括了从出生第一天起的优育和优教的密切结合。因为婴儿出生后,离开了母体,一切都是他学习的过程,随着月龄的增长,婴儿所能接触到的一切,都需要逐渐适应。这个适应过程也就是教育的过程,而不是等待婴儿自然发育。喂养婴儿是促进生长发育的良好时机。 例举:母乳喂养是最适合婴儿的一种喂养方法,无论是从母乳所含的营养质量还是从各种养份的比例来看,母乳都优于牛乳。由于母乳中含有抗传染病的免疫体,婴儿通过母乳获得,就能增强抗病能力,尤其母乳,中含有分泌型的免疫球蛋白,不仅能预防小儿呼吸道疾病,而且还能抵抗消化道的疾病。所以作为母亲只要有奶就应尽喂奶的责任,至少要喂3~4个月。为什么要强调母乳喂养,更重要的问题是为了使婴儿能获得“早教”(即o~3岁的早期教育)。建立了良好的亲子关系。每当哺喂母乳时,母亲要心情舒畅地把孩子抱在怀里,让婴儿含着奶头及乳晕的大部分,一边听着音乐,一边带着微笑而和蔼可亲地给婴儿喂奶,孩子就有舒适感,也以微笑的脸看着妈妈。通过母乳喂养,使母子心心相印,这是培养感情最好的方法。婴儿在这样的环境中,他的明亮的眼睛里闪耀着母亲的任何一举一动、一言一语,所以说父母是孩子的第一任教师(尤其母亲)。可以从婴儿的微笑中,人们可以感到生命的活力和喜悦,孩子有好的情绪是健康的标志之一。从O~3岁所进行的一切都要结合生活日程进行,通过这些可从小培养良好的卫生习惯、文明的行为、优良的品德、高度的同情心。小儿的智力需要成人去引导开发而不是等待,所以说优育意义重大——事关人的一生。

优生属于人类遗传手段中正常(原始)遗传的一种。它与劣生相对,是一种致力于人类完美的一种常规遗传方式,也相对简单。相信未来会有更大的发展在人类遗传方面:如克隆单性遗传……

优生属于人类遗传手段中正常(原始)遗传的一种。它与劣生相对,是一种致力于人类完美的一种常规遗传方式,也相对简单。

主要是指一对等位基因的突变导致的疾病,分别由显性基因和隐性基因突变所致。这类疾病涉及多个基因起作用,其病情严重程度、复发风险均可有明显的不同,且表现出家族聚集现象。

扩展资料

某些遗传病可通过控制饮食达到阻止疾病发生的目的,从而收到治疗效果。如苯丙酮尿症的发病机理是苯丙氨酸羟化酶缺陷,使苯丙氨酸和苯丙酮酸在体内堆积而致病,可出现患儿智力低下或成为白痴。

可是如果诊断准确,在早期最好在出生后7-10天开始着手防治,在出生后3个月内,给患儿低苯丙氨酸饮食,如大米、大白菜、菠菜、马铃薯、羊肉等,则可促使婴儿正常生长发育。等到孩子长大上学时,再适当放宽对饮食的限制。

中国优生与遗传杂志投稿

目前没有停刊哇 2019年各期的还在正常收录  详细可咨询五山期刊联盟

《中国优生与遗传杂志》是核心期刊 医学类统计源核心期刊。是国家新闻出版总署全文收录的。可以知网查询的 可以参考 中州期刊联盟

人类遗传病论文参考文献

医学遗传学论文

遗传学是研究生物体遗传和变异的科学,遗传学是生物学的重要分支和核心学科,并且是生命科学最具活力的领域之一。以下是我整理的医学遗传学论文,欢迎阅读。

1 医学遗传学课程特点

医学遗传学是医学与遗传学相结合的一门边缘学科,是遗传学知识在医学领域中的应用。它以生物、生化、病理、生理等学科的理论为基础,研究人类疾病的发生发展与遗传因素的关系,提供诊治、预防遗传病的科学依据及手段,从而改善人类健康素质。具有内容繁杂、实践性强、多学科交叉等特点。医学遗传学课程设置的内容存在递进关系、相辅相成,因此设置综合考试来考查学生对所学知识的综合运用能力是非常有必要的。

2 改革医学遗传学考试方式的必要性

传统教育理念与现代教育理念的一个重要区别是采取应试教育,还是素质教育。传统考试重识记轻能力, 往往局限于教材, 多以记忆性、上课重点为主。存在问题一是考试方式单一。二是“一考定终生”的弊端,不能客观反映每一位学生真实的学习的质量、效果和能力,带有某种投机性和偶然性,导致部分学生平时松,考前“临时抱佛脚”取得合格的分数,掩盖了教学中存在的问题,不利于教学质量的改进和提高。有些学生考试作弊,损害了考试的公平性,还对学习风气造成不良影响。另外学生考前心理负担过重,尤其是考前1 周, 学生不眠不休, 影响身心健康, 不利于创新型人才的培养。

医学遗传学已从单纯的理论型学科向理论与实践相结合的综合性学科发展,为培养复合型人才,必须探索一种更加系统、科学的考试方式,用于强化考试在教学过程中所起的评定、诊断作用,强化考试的检测功能和反馈功能,强化考试对师生的激励作用,从而培养学生的综合能力,激发学生的学习热情,避免重结果轻能力的倾向。

3 医学遗传学课程考试制度改革的主要思路

3.1 改革考试形式 在考核方法的选择上,采用灵活多样的考试方式,构成“形成性评价与终结性评价相结合”的考核与评价体系,即理论与实践相结合,技能与态度相结合,笔试、口试与操作相结合,开卷与闭卷相结合。因此将整个考试结构设置为:笔试(60%)、口试(15%)、操作(20%)、写作(5%)4个部分。

笔试包括章节性考试和期终考试的笔试成绩。教师可根据需要在某个章节学习结束后进行一次笔试测验,组成一个形成性考核的笔试成绩,这个成绩再与期终考试成绩结合起来,作为本部分成绩。

口试包括课堂提问、课堂表现、课堂纪律和课堂病例讨论的成绩。课堂提问反映学生自主学习的情况,能够检验课前预习、课堂学习、课后复习3 个方面的学习效果,易实施,操作性强,突出学习的过程,培养学生良好的.学习习惯,避免不良风气。课堂表现、课堂纪律反映学生的学习态度。课堂病例讨论, 主要讨论典型病例, 目的是让学生了解病例讨论的过程、步骤及如何运用所学知识分析问题、解决问题,以自由编组,随机抽题,口头回答的方式进行考核,有助于培养和提高学生的合作能力、参与能力、自主学习能力、自我管理能力和创新能力。

操作包括实训操作和实验报告的成绩。在整个实验课学习过程中,提供给每个学生实训操作机会,教师作为督导,从认真态度、严谨作风、职业素质、团队意识等方面进行考核,再根据完成实验报告的质量,评定每次实验成绩,取平均值作为此部分的成绩。

写作主要是指撰写小综述、小论文、翻译文献的成绩。初步培养学生的科研论文写作能力,从学生的自主态度、参与程度、完成质量、论文答辩水平等方面评定成绩。

3.2 转变教育思想观念 高等教育的目的是传授知识和培养学生的能力,由注重考核书本知识向注重学生知识、能力、素质综合考核转变;由笔试闭卷考试为主向灵活多样的考试方法转变;由重视一次性终结考试向注重全程性考核转变;传统教学以“传授知识为主”向现代教学以“培养能力为主”的转变,建立与之相适应的内容广泛、形式多样的考试考核制度。

3.3 鼓励学生参与思想政治教育讲解 教师结合学科特点和内容有意识、有目的、自觉地渗透爱国主义教育、职业道德教育、辩证唯物主义教育等思想政治教育。让学生在接受理论知识和提高技能的同时,养成良好高尚的道德风范。同时鼓励学生查找与本学科相关思想政治教育资料,在课堂上向大家讲解所受人生观、价值观的启迪。

3.4 注重考试内容的选择,提高学生综合素质 在考核内容的选择上,以“知识点上遵循教学大纲,但应用上不拘泥于教学大纲”为原则,在试题设计上,由注重知识向注重能力转变,增加应用题和能力题,考核应能充分反映学生掌握基本理论、基本技能的情况以及分析问题、解决问题和创新的能力,尽可能多一些综合性思考题、分析题、应用题,甚至没有标准答案的考试内容。考试内容应突出基础性、创新性和实践性。

3.5 调动教师积极性,促进教研活动 教师是考试模式改革的实施者,对考试改革的认识程度、对考试改革的积极性在考试改革过程中起着至关重要的作用。因此教师要不断更新教学内容、教学理念、教学方法、教学手段,付出更多的时间和精力开展教研活动,调动自身积极性。

总之,考试不仅是实施素质教育的内在要求, 也是推进素质教育实施的动力。构建多种形式的考试体系, 有利于对学生明确课程目标、巩固所学知识、检验学习效果、培养综合能力等方面具有积极作用, 有利于督促教师根据教学目标选择教学方法、调整教学内容, 强化学生的学习动机。

参 考 文 献

[1] 彭峰. 我国高校考试制度改革的若干思考.时代教育,2008,6:106107.

[2] 王海涛.改革高校考试模式,培养创新型人才.辽宁教育行政学院学报,2008,(11):162 163.

遗传与变异 ---新形式下的基因突变 ( 2005动物科学院 X X X ) 摘要:染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 关键词:遗传;变异;基因突变 遗传从现象来看是亲子代之间的相似的现象,即俗语所说的“种瓜得瓜,种豆得豆”。它的实质是生物按照亲代的发育途径和方式,从环境中获取物质,产生和亲代相似的复本。 遗传是相对稳定的,生物不轻易改变从亲代继承的发育途径和方式。因此,亲代的外貌、行为习性,以及优良性状可以在子代重现,甚至酷似亲代。而亲代的缺陷和遗传病,同样可以传递给子代。 遗传是一切生物的基本属性,它使生物界保持相对稳定,使人类可以识别包括自己在内的生物界。 变异是指亲子代之间,同胞兄弟姊妹之间,以及同种个体之间的差异现象。俗语说“一母生九子,九子各异”。世界上没有两个绝对相同的个体,包括挛生同胞在内,这充分说明了遗传的稳定性是相对的,而变异是绝对的。 生物的遗传与变异是同一事物的两个方面,遗传可以发生变异,发生的变异可以遗传,正常健康的父亲,可以生育出智力与体质方面有遗传缺陷的子女,并把遗传缺陷(变异)传递给下一代。 遗传和变异的物质基础 生物的遗传和变异是否有物质基础的问题,在遗传学领域内争论了数十年之久。 在现代生物学领域中,一致公认生物的遗传物质在细胞水平上是染色体,在分子水平上是基因,它们的化学构成是脱氧核糖核酸(DNA),在极少数没有DNA的原核生物中,如烟草花叶病毒等,核糖核酸(RNA)是遗传物质。 真核生物的细胞具有结构完整的细胞核,在细胞质中还有多种细胞器,真核生物的遗传物质就是细胞核内的染色体。但是, 细胞质在某些方面也表现有一定的遗传功能。人类亲子代之间的物质联系是精子与卵子,而精子与卵子中具有遗传功能的物质是染色体,受精卵根据染色体中DNA蕴藏的遗传信息,发育成和亲代相似的子代。 一、遗传与变异的奥秘 俗话说“种瓜得瓜,种豆得豆”,这是生物遗传的根本特征。人类与其他生物一样,在世代的交替中,子女(子代)总是保持着父母(亲代)的某些基本特征,这种现象就是遗传。但子代又会与亲代有所差异,有的差异还很明显。子代与亲代的这植钜炀褪潜湟臁R糯�捅湟焓巧��淖罨�咎卣髦�唬�ü��镆淮��姆敝程逑殖隼础?遗传和可以遗传的变异都是由遗传物质决定的。这种遗传物质就是细胞染色体中的基因。人类染色体与绝大多数生物一样,是由DNA(脱氧核糖核酸)链构成的,基因就是在DNA链上的特定的一个片段。由于亲代染色体通过生殖过程传递到子代,这就产生了遗传。染色体在生物的生活或繁殖过程中也可能发生畸变,基因内部也可能发生突变,这都会导致变异。 如遗传学指出:患色盲的父亲,他的女儿一般不表现出色盲,但她已获得了其亲代的色盲基因,她的下一代中,儿子将因获得色盲基因而患色盲。 我们观察我们身边很多有生命的物种:动物、植物、微生物以及我们人类,虽然种类繁多,但在经历了很多年后,人还是人,鸡还是鸡,狗还是狗,蚂蚁、大象、桃树、柳树以及各种花草等等,千千万万种生物仍能保持各自的特征,这些特征包括形态结构的特征以及生理功能的特征。正因为生物界有这种遗传特性,自然界各种生物才能各自有序地生存、生活,并繁衍子孙后代。 大家可能会问,生物是一代一代遗传下来,每种生物的形态结构以及生理功能应该是一模一样的,但为什么父母所生子女,一人一个样,一人一种性格,各有各自的特征。又如把不同人的皮肤或肾脏等器官互相移植,还会发生排斥现象,彼此不能接受,这又如何解释呢?科学家研究的结果告诉我们,生物界除了遗传现象以外还有变异现象,也就是说个体间有差异。例如,一对夫妇所生的子女,各有各的模样,丑陋的父母生出漂亮的孩子,平庸的父母生出聪明的孩子,这类情况也并不罕见。全世界恐怕很难找出两个一模一样的人,既使是单卵双生子,外人看起来好像一模一样,但是与他们朝夕相处的父母却能分辨出他们之间的微细差异,这种现象就是变异。人类中多数变异现象是由于父母亲遗传基因的不同组合。每个孩子都从父亲那里得到遗传基因的一半,从母亲那里得到另一半,每个孩子所得到的遗传基因虽然数量相同,但内容有所不同,因此每个孩子都是一个新的组合体,与父母不一样,兄弟姐妹之间也不一样,而形成彼此间的差异。正因为有变异现象,人类才有众多的民族。人们可以很容易地从人群中认出张三、李四,如果没有变异,大家全都是一个样子,社会上的麻烦事就多了。除了外形有不同,变异还包括构成身体的基本物质--蛋白质也存在着变异,每个人都有他自己特异的蛋白质。所以,如果皮肤或器官从一个人移植到另一个人身上便会发生排斥现象,这就是因为他们之间的蛋白质不一样的缘故。 还有一类变异是遗传基因的突变,这类突变往往是由环境中的条件所诱发的,这种突变的基因还可以遗传给下一代。许多基因突变的结果会造成遗传病。 变异也可以完全由环境因素所造成,例如患小儿麻痹症后遗的跛足,感染大脑炎后形成的痴呆等这些性状都是由环境因素所造成的,是因为病毒感染使某些组织受损害,造成生理功能的异常,不是遗传物质的改变,所以不是遗传的问题,因此也不会遗传给下一代。 总之,遗传与变异是遗传现象中不可分离的两个方面,我们有从父母获得的遗传物质,保证我们人类的基本特征经久不变。在遗传过程中还不断地发生变异,每个人又在一定的环境下发育成长,才有了人类的多种多样。 二、遗传变异的科学理论 1.1遗传的分子基础 (一)遗传物质的存在形式 (1)染色体是遗传物质的载体,遗传信息以基因的形式蕴藏于DNA分子中; (2)每个人体体细胞含两个染色体组,每个染色体组的DNA构成一个基因组; (3)广义的基因组包括细胞核染色体基因组和线粒体基因组; (4)人类细胞核染色体基因组中90%左右为DNA重复序列,10%为单一序列; (5)多基因家族是真核基因组中重要的结构之一。 (二)基因的结构及其功能 1.2、真核生物基因的分子结构 (1)、基因的DNA序列由编码序列和非编码序列两部分构成,编码序列是不连续的,被非编码序列分隔开,形成镶嵌排列的断裂形式,因此称为断裂基因;编码序列称为外显子,非编码序列称为内含子; (2)、在每个外显子和内含子的接头区存在高度保守的一致序列,称为外显子-内含子接头,即在每个内含子的5’端开始的两个核苷核为GT,3’端末尾是AG,特称之为GT-AG法则; (3)、真核生物基因的大小相关悬殊,外显子和内含子的关系也不是固定不变的; (4)、DNA分子两条链中,5’→3’链称为编码链,其碱基排列序列中储存着遗传信息;3’→5’链称为反编码链,是RNA合成的模板; (5)、每个断裂基因中第一个外显子和最后一个外显子的外侧都有一段不被转录的非编码区,称为侧翼序列,其上有一系列调控序列,对基因的表达起调控作用。这些结构包括: ①启动子:位于基因转录起始处,是RNA聚合酶的结合部位,能启动基因转录。 ②增强子:位于基因转录起始点的上游或下游,能增强启动子转录,提高转录效率; ③终止子:位于3’端非编码区下游的一段序列,在转录中提供转录终止信号。 1.3、基因的复制 (1)、基因的复制是以DNA复制为基础的,每个DNA分子上有多个复制单位(复制子); (2)、每个复制子有一个复制起点,从起点开始双向复制,在起点两侧各形成一复制叉; (3)、DNA聚合酶只能使DNA链的3’端加脱氧核苷核,故复制只能沿5’→3’方向进行; (4)、与复制叉同向的新链复制是连续的,速度也较快,称为前导链;与复制叉反向的新链复制是不连续的(先要在RNA引物存在下合成一个个冈崎片段,然后在DNA连接酶作用下补上一段DNA),速度也较慢,称为后随链;故DNA的复制是半不连续复制; (5)、复制后的DNA分子都含有一条旧链和一条新链,故DNA的复制又是半保留复制。 1.4、基因的表达 基因表达是DNA分子中所蕴藏的遗传信息通过转录和翻译形成具有生物活性的蛋白质或通过转录形成RNA发挥功能作用的过程。 (1)、转录:是在RNA聚合酶催化下,以DNA为模板合成RNA的过程。 ①新合成好的RNA称为不均一核RNA(也叫核内异质RNA,hnRNA); ②hnRNA要经过“戴帽”和“加尾”以及剪接等加工过程才能形成成熟的mRNA。 (2)、翻译:是以mRNA为模板指导蛋白质合成的过程。 ①mRNA分子中每3个相邻的碱基为三联体,能决定一种氨基酸,称为密码子; ②翻译后的初始产物大多无功能,需经进一步加工才可成为有一定活性的蛋白质。 1.5、基因表达的调控(了解操纵子学说) 1.6、基因的突变 (1)、基因突变的概念:基因突变是DNA分子中的核苷核序列发生改变,导致遗传密码编码信息改变,造成基因表达产物蛋白质的氨基酸变化,从而引起表型的改变。 (2)、基因突变的方式 ①碱基替换 也叫点突变,包括转换和颠换两种方式。其后果可以造成同义突变、错义突变、无义突变或终止密码突变(延长突变)等生物学效应。 ②移码突变 是DNA分子中某一位点增加或减少一个或几个碱基对,造成该位点以后的遗传编码信息全部发生改变。 ③动态突变 微卫星DNA或短串联重复序列,尤其是三核苷酸的重复,在靠近基因或位于基因序列中时,其重复次数在一代一代的传递中会出现明显增加的现象,导致某些遗传病的发生。 (3)、基因突变的修复 ①切除修复 是一种多步骤的酶反应过程,首先将受损的DNA部位切除,然后再合成一个片段连接到切除的部位以修补损伤。 ②重组修复 又称复制后修复,是在DNA受损产生胸腺嘧啶二聚体(T-T)以后,当DNA复制到损伤部位时,再与T-T相对应的部位出现切口,完整的DNA链上产生一个断裂点。此时,在重组蛋白作用下,完整的亲链与有重组的子链发生重组,亲链的核苷酸片段补充了子链上的缺失。重组后亲链的切口在DNA聚合酶作用下,以对侧子链为模板,合成单链DNA片段来填补,随后在DNA连接酶作用下,以磷酸二酯键使新片段与旧链相连接,而完成修复过程。 2、遗传的细胞基础 染色质:在间期细胞核,染色质的功能状态不同,折叠程度也不同,分为常染色质和异染色质两种。1、常染色质 在细胞间期处于解螺旋状态,具有转录活性,呈松散状,染色较浅;2、异染色质 在细胞间期处于凝缩状态,很少进行转录或无转录活性,染色较深;3、性染色质 在间期细胞核中染色体的异染色质部分显示出来的一种特殊结构,有两种:(1)、X染色质 正常女性间期细胞核中有一个染色较深,大小约为10nm的椭圆形小体(了解Lyon假说)。(2)、Y染色质 正常男性间期细胞核用荧光染料染色后,核内可见一个圆形或椭圆形的强荧光小体,直径为3nm左右。 染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 (三)人类的正常核型:色体数目、形态结构特征的分析叫核型分析。1、非显带核型 根据丹佛体制,将正常人类体细胞的46条染色体分为23对7个组(A、B、C、D、E、F和G组)。在描述一个核型时,首先写出染色体总数(包括性染色体),然后是一个“,”号,最后是性染色体。正常男性核型描述为46,XY;女性为46,XX。2、显带核型 用各种特殊的染色方法使染色体沿长轴显现出一条条明暗交替或深浅相间的带,故又叫带型。根据ISCN规定,描述一特定带时,需要写明4项内容:①染色体号;②臂号;③区号;④带号。 遗传的基本规律:孟德尔提出的分离定律和自由组合定律以及摩尔根提出的连锁与交换定律构成了遗传的基本规律,通称为遗传学三大定律。分离律说的是遗传性状有显隐性之分,这样具有明显显隐性差异的一对性状称为相对性状。相对性状中的显性性状受显性基因控制,隐性性状由一对纯合隐性基因决定。杂合体往往表现显性基因的性状。基因在体细胞中成对存在,在形成配子时,彼此分离,进入不同的子细胞。减数分裂时同源染色体彼此分离,分别进入不同的生殖细胞是分离律的细胞学基础。自由组合律是说生物在形成配子时,不同对基因独立行动,可分可合,以均等的机会组合到同一个配子中去。减数分裂过程中非同源染色体随机组合于生殖细胞是自由组合律的细胞学基础。连锁与交换律是说位于同一条染色体上的基因是互相连锁的,它们常一起传递(连锁律),但有时也会发生分离和重组,是因为同源染色体上的各对等位基因进行了交换。减数分裂中,同源染色体联会和交换是交换律的细胞学基础。 单基因性状的遗传:遗传性状受一对基因控制的,称单基因性状的遗传。单基因性状又叫质量性状。1、决定某种遗传性状的等位基因,在传递时服从分离律;2、当决定两种遗传性状的基因位于不同对染色体上时,这两种单基因性状的传递符合自由组合律。3、如果决定两种遗传性状的基因位于同一对染色体上时,它们的传递将从属于连锁与交换律。 多基因性状的遗传:由多基因控制的性状往往与单基因性状不同,其变异往往是连续的量的变异,称为数量性状。每对基因对多基因性状形成的效应是微小的,称为微效基因。微效基因的效应往往是累加的。多基因遗传性状除受多基因遗传基础影响外,也受环境因素影响。(熟悉多基因遗传假说,了解多基因遗传的特点) 遗传的变异:(一)染色体异常与疾病;染色体异常类;形成机; 数目畸变 整倍性改变 单倍体 多倍体 双雄受精,双雄受精,核内复制 非整倍性改变 亚二倍体 染色体不分离,染色体丢失 超二倍体 结构畸变 缺失(del) 受多种因素影响,如物理因素、化学因素和生物因素等 重复(dup) 倒位(inv) 易位(t) 环状染色体 双着丝粒染色体 等臂染色体 1、一个个体内同时存在两种或两种以上核型的细胞系,这种个体称嵌合体。 2、染色体结构畸变的描述方式有简式和详式两种。 (二)人类的单基因遗传病1、常染色体显性遗传(AD)病 (1)、AD系谱特点:①致病基因位于常染色体上,遗传与性别无关;②患者双亲中至少有一方是患者,但多为杂合体;③患者与正常个体结婚,后代有1/2的发病风险;④系谱中可看到连续传递现象。 (2)、其它AD类型:①不完全显性或半显性,是指杂合体的表现型介于显性纯合体与隐性纯合体的表现型之间;②不规则显性,是指杂合体由于某种原因不一定表现出相应的症状,即使发病,但病情程度也有差异;③共显性,是指一对等位基因无显隐性之分,杂合状态下,两种基因的作用都能表现出来;④延迟显性,有显性致病基因的杂合体在生命早期不表现出相应症状,当到一定年龄后,其作用才表达出来。 2、常染色体隐性遗传(AR)病 (1)、AR系谱特点:①致病基因的遗传与性别无关,男女发病机会均等;②患者双亲往往表型正常,但都是致病基因的携带者,患者的同胞中约有1/4的可能将会患病,3/4表型正常,但表型正常者中2/3是可能携带者;③系谱中看不到连续传递现象,常为散发;④近亲婚配后代发病率比非近亲婚配后代发病率高。 (2)、常见AR病:苯丙酮尿症、白化病、先天性聋哑、高度近视和镰状细胞贫血等。 3、X连锁显性遗传(XD)病 (1)、XD系谱特点:①系谱中女性患者多于男性患者,且女患者病情较轻;②患者双亲中至少有一方是患者;③男性患者后代中,女儿都为患者,儿子都正常;女性患者后代中,子女各有1/2的患病风险;④系谱中可看到连续传递现象。 (2)、常见XD病:抗维生素D性佝偻病。 4、X连锁隐性遗传(XR)病 (1)、XR系谱特点:①人群中男性患者远多于女性患者;②双亲无病时,儿子可能发病,女儿则不会发病;③由于交叉遗传,患者的兄弟、舅父、姨表兄弟和外甥各有1/2的发病风险;④如果女性是患者,父亲一定是患者,母亲一定是携带者或患者。 (2)、常见XR病:甲型血友病、红绿色盲。 5、Y连锁遗传(YL)病 全男性遗传 (三)多基因遗传病 1、有关多基因遗传病的几个重要概念 (1)、易感性 在多基因遗传病中,由多基因遗传基础决定某种多基因病发病风险高低。 (2)、易患性 由遗传基础和环境因素共同作用,决定了一个个体是否易于患病。 (3)、发病阈值 当一个个体的易患性高达一定水平即达到一个限度时,这个个体就将患病,这个易患性的限度称为阈值。 (4)、遗传度 在多基因遗传病中,易患性受遗传基础和环境因素的双重影响,其中遗传基础所起作用大小的程度称为遗传度或遗传率。一般用百分率(%)来表示。 2、多基因遗传病的特点 (1)、有家族聚集倾向,患者亲属的发病率高于群体发病; (2)、随着亲属级别的降低,患者亲属的发病风险迅速降低; (3)、近亲婚配时,子女患病风险增高; (4)、发病率有种族(或民族)差异。 三、遗传与变异在当代 人类基因组计划的工作草图已于今年的6月26日绘制完成,但要将全部30多亿个碱基完全装配完成还需要一段时间,预计要到明年的6月份。即使完成了人类基因组计划的“精图”,也只是我们认识人类基因功能的开始,完全弄清基因的功能及其相互间的作用,至少还要40年的时间。毋庸赘言,这是一项浩繁巨大的工程。 迄今为止,人们对整个人类基因组中所含有的基因数目尚存争议,有人说是3万,有人说是14万,相差非常大。在整个人类基因组序列中,只存在1%的差异,就是这1%的差异导致了人种、肤色、身高、眼睛、胖瘦以及疾病的易感性等方面的不同。科学家除继续研究基因的数量和功能外,基因在多大程度上受外界环境和体内因素的影响以及这种改变是否可以一代代地延续下去,也是需要解决的问题。 上述问题涉及到后成说(epigenetics)这一范畴。后成说是研究通过其他的化学途径,而不是通常所说的碱基突变,使基因活性发生半永久性改变的一门科学。后成说的重要性一直存有很大争议。如果后成说真有科学依据的话,那么它将是解释不同个体之间,甚至不同物种之间存在差异的关键所在,同时还将是疾病发生的一个重要机制。 不同基因的表达:基因含有合成蛋白质的指令,蛋白质合成的过程称为基因表达。但是遗传学家们很早以前就知道通过对DNA链碱基上的化学基团进行修饰来调控基因表达、影响蛋白质的合成。最常见的修饰方式是基因的甲基化(甲基是由一个碳原子和三个氢原子组成的基团),即在基因上添加甲基基团,结果常常会终止基因表达。 科研人员通过对某些哺乳动物的研究发现,此类修饰只存在于个体中,而不遗传给后代,因为这种修饰在精子和卵子细胞中常常被清除。最近有人发现,后成特征在小鼠中可以遗传。在悉尼大学生化学家怀特劳博士所做的实验中,遗传学相同的小鼠,同其父母相比,更像它们的母亲。因为它们继承了其母亲的卵子DNA的甲基化类型。该型甲基化在决定小鼠毛色中起着非常重要的作用。 怀特劳博士小组的大量的研究数据表明,要探明动物是如何把物理特征或疾病易感性传给后代的,有必要先搞清可遗传的后成特征。如果后成特征可遗传,那么这些特征所引起的疾病应能够像普通的基因突变一样在家系之间传递。该研究小组对小鼠的后成标记在传代过程中如何关闭和表达进行了深入地研究。研究人员将一个可以产生特异类型红细胞的基因(称为转基因)导入具有相同遗传学特征小鼠的基因组中(接受该基因的小鼠称之为转基因鼠)。研究发现这些转基因小鼠体内的转基因正以不同的方式表达。有些转基因小鼠体内40%的红细胞表达该基因,而另一些则根本就不表达。同时该小组还对小鼠毛色进行了研究,发现与毛色有关的DNA甲基化增高与转基因的不表达(或称为“沉默”表达)有关。但是在这种情况下,后成性改变可来自父方,也可以来自母方。 令人费解的是,虽然这种基因表达的沉默现象至少可以维持三代,但不是不可逆转的。在该型的后代小鼠与非同类小鼠交配时,发现在后代小鼠中不存在甲基化和表达沉默现象,转基因又可在小鼠的幼崽中获得表达。如果这种基因沉默和再活化现象是自然发生的话,那么就可以解释个体之间和代与代之间差异的原因。 后成说还可以解释物种之间的差异。最近普林斯顿大学的迪尔格曼通过两种相近小鼠的交配,将多个小鼠基因上的后成特征破坏。这些小鼠相互之间不能进行正常的交配,并且它们杂交的后代表现为生长异常。研究人员认为这种生长异常与杂交后代基因上的甲基化模式破坏有关。他们推测后成性效应非常显著,仅靠改变这些特征就可以造就新物种。 大家都知道,物种的产生是遗传变异逐渐积累的结果。但是,迪尔格曼认为有些物种出现之快不是该假说所能解释的。所以物种后成说的假设有一定优势。例如,甲基化可以迅速地关闭整条基因的表达,并引起根本的改变。这种改变足以阻止新的品种与旧品种之间的杂交,尤其是阻止新物种的产生。 四、结论 变异基因的表达:许多生物学家对此种假说表示不屑。基因序列虽不能完全解释动物的特征,但是至少可以解释一些由基因突变所引起的疾病。 疾病基因突变假说的倡导者把癌症作为经典的实例,来说明在个体DNA水平上,到底有多少碱基差错才能导致肿瘤。但加州大学伯克利分校的杜斯博格博士不同意这一观点,认为癌症并不是由基因异常引起的,而是由另一形式的后成现象 染色体异常引起的。 根据癌症基因突变假说,指导细胞分裂和死亡的基因突变使正常的细胞分裂和死亡过程遭到破坏,导致细胞不受控制地生长。但是,最近杜斯博格博士领导的研究小组报道,至今还没有人证实突变的基因会使正常的细胞变为癌细胞。他还指出,如果突变基因对细胞分裂具有显著影响的话,为什么有些情况下,突变发生的数月甚至数年后才发展为癌症,这是非常奇怪的现象。他认为可以用后成性非整倍现象对上述问题加以解释,非整倍性是指细胞具有错误的染色体个数。 在细胞分裂时,染色体排列整齐,通过纺锤体(一种蛋白质的支架)分配到子代细胞中。杜斯博格推测,致癌的化学物质可以影响纺锤体,因此,造成子代细胞具有或多或少的染色体。由于这种错误分配的染色体不稳定,细胞分裂时染色体之间相互混合并发生非自然的重组。 大多数重组对细胞而言是至关重要的,但最终会产生一个分裂异常的细胞。产生这种异常细胞的概率非常小,这种低概率事件可以解释为什么从接触致癌物质到细胞发生癌变,要经过这么长时间。细胞的非整倍性是5000多种肿瘤的一种显著特征。 与个体碱基突变相比,染色体数的增加或减少使细胞表征发生显著改变。因为染色体数目的改变(即非整倍性),可以导致成千上万种蛋白质活性发生改变,而不仅仅是一种或两种蛋白质,导致细胞分裂的失控。假如这种假说成立的话,那么现在试图通过定点修复癌基因来治疗癌症的策略将毫无效果。 杜斯博格博士10年前曾因自己的假说而声名狼藉,他认为人类免疫缺陷病毒(HIV)并不能引起艾滋病。一系列的HIV和艾滋病的研究表明,杜斯博格的理论是极其荒谬的。这严重地损害了他的声誉,因此,他的其他理论也很容易被人忽视。但是,他的非整倍性假说似乎非常有价值。癌症中非整倍体的普遍性尚需进一步阐明。

人类基因组计划明确的内容

相关百科

热门百科

首页
发表服务