首页

毕业论文

首页 毕业论文 问题

向量的数乘运算毕业论文

发布时间:

向量的数乘运算毕业论文

原理:

两个向量a和b的叉积写作a×b(有时也被写成a∧b,避免和字母x混淆)。a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(竖起的大拇指指向是c的方向)

向量积|c|=|a×b|=|a||b|sin。即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。

几何意义:

叉积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。据此有:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。

扩展资料

向量的混合积:

设有三个向量:a=(a1、a2、a3), b=(b1、b2、b3),c=(c1、c2、c3),则称(aⅹb)∙c为向量a,b,c的混合积,记作[abc]。根据行列式的运算性质,可得向量的混合积满足轮换性,即(aⅹb)∙c=( bⅹc)∙a =( cⅹa)∙b。

向量混合积的几何应用:

a、b、c共面⇔[abc]=0⇔存在不全零的数λ、μ、γ,使得λa +μb +γc=0。

参考资料来源:百度百科-向量积

向量的数乘(也称为标量乘法)是指用一个实数去乘以一个向量的每个分量,常用符号表示为 k × v,其中 k 是实数,v 是向量。向量的数乘满足以下定律:1. 结合律:对于任何实数 a、b 和向量 v,有 (a * b) * v = a * (b * v),即先乘以 a 再乘以 b 的结果与先乘以 b 再乘以 a 的结果相同。2. 分配律:对于任何实数 a 和向量 u、v,有 a * (u + v) = a * u + a * v,即先将 u 和 v 相加再乘以 a 的结果等于分别将 u 和 v 乘以 a 后再相加的结果。3. 分配律:对于任何实数 a、b 和向量 v,有 (a + b) * v = a * v + b * v,即先将 a 和 b 相加再乘以 v 的结果等于先将 v 分别乘以 a 和 b 后再相加的结果。4. 单位元素:对于任何向量 v,有 1 * v = v,其中 1 表示实数 1,即将向量乘以 1 不改变向量本身。这些定律表明了向量的数乘具有和实数的乘法类似的性质,方便进行向量运算和矩阵运算。

向量乘法分向量积,数量积1.向量积定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b(这里“×”并不是乘号,只是一种表示方法,与“·”不同,也可记做“∧”)。若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b平行,则a×b=0,a、b垂直,则a×b=|a|*|b|(此处与数量积不同,请注意)。向量积即两个不共线非零向量所在平面的一组法向量。运算法则:运用三阶行列式设a,b,c分别为沿x,y,z轴的单位向量A=(x1,y1,z1)B=(x2,y2,z2)则A*B=a b cx1 y1 z1x2 y2 z2向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积。a×a=0。a平行b〈=〉a×b=0向量的向量积运算律a×b=-b×a(λa)×b=λ(a×b)=a×(λb)a×(b+c)=a×b+a×c.(a+b)×c=a×c+b×c.上两个分配律分别称为左分配律和右分配律。在演算中应注意不能交换“×”号两侧向量的次序。如:a×(2b)=b×(2a)和c×(a+b)=a×c+b×c都是错误的!注:向量没有除法,“向量AB/向量CD”是没有意义的。2.数量积定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量(没有方向),记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉(依定义有:cos〈a,b〉=a·b / |a|·|b|);若a、b共线,则a·b=±∣a∣∣b∣。向量的数量积的坐标表示:a·b=x·x'+y·y'。向量的数量积的运算律a·b=b·a(交换律)(λa)·b=λ(a·b)(关于数乘法的结合律)(a+b)·c=a·c+b·c(分配律)向量的数量积的性质a·a=|a|的平方。a⊥b〈=〉a·b=0。|a·b|≤|a|·|b|。(该公式证明如下:|a·b|=|a|·|b|·|cosα| 因为0≤|cosα|≤1,所以|a·b|≤|a|·|b|)

向量的数乘运算如下:

向量的数乘运算的定义:

1、定义:一般地,我们规定实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa.

2、规定:|λa|=|λ||a|。当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0。

3、运算律:设λ,μ为实数,则λ(μa)=λμa,(λ+μ)a=λa+μa;λ(a+b)=λa+λb。

特别地,我们有  (-λ)a=-(λa)=λ(-a),λ(a-b)=λa-λb。

共线向量与向量的线性运算:

共线向量定理:向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使得b=λa

向量的线性运算:向量的加、减、数乘运算统称为向量的线性运算。

对于任意向量a,b,以及任意实数λ,μ1,μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b。

对向量数乘运算的三点说明:

1、λa中的实数λ叫做向量a的系数。

2、向量数乘运算的几何意义是把a沿着a的方向或a的反方向扩大或缩小。

3、当λ=0或a=0时,λa=0,注意是0。

乘法运算定律毕业论文

1、乘法分配律公式:(a+b)×c=a×c+b×c

2、乘法结合律公式:(a×b)×c=a×(b×c)

3、乘法交换律公式:a×b=b×a

4、加法结合律公式:(a+b)+c=a+(b+c)

1、乘法是指将相同的数加起来的快捷方式。其运算结果称为积。从哲学角度解析,乘法是加法的量变导致的质变结果。

2、整数的乘法运算满足: 交换律, 结合律, 分配律,消去律。随着数学的发展, 运算的对象从整数发展为更一般群。群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是 哈密尔顿发现的 四元数群。 但是结合律仍然满足。

3、在群上再装备另一种乘法, 则发展成为“环”, 两种乘法中的一种可以视为传统意义上的加法,因此要求满足分配律和交换律;但是另一种“乘法”却不要求交换律。在环里面,我们不再要求消去律成立。 如果这个环有消去律,就叫做 整环。但是对于环来说, 不一定有“ 除法”的概念。 如果环有除法的话,就叫做“域”。域是最接近我们平时所说的有理数集合的东西。 但是它包含了更多信息。

乘法运算性质:将相同的数加起来的快捷方式。其运算结果称为积,“x”是乘号。从哲学角度解析,乘法是加法的量变导致的质变结果。整数(包括负数),有理数(分数)和实数的乘法由这个基本定义的系统泛化来定义。

副标题:正确。

1、两个数的差与一个数相乘,可以把被减数和减数分别与这个数相乘,再把两个积相减,所得的结果不变。一般地:(a-b)×c=a×c-b×c或者c×(a-b)=c×a-c×b。

2、若干个数的和与若干个数的和相乘,可以把第一个和里的每一个加数与第二个和里的每一个加数相乘,再把所得的积加起来,所得的结果不变。

扩展资料:

三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。

主要公式为a×b×c=a×(b×c),它可以改变乘法运算当中的运算顺序,在日常生活中乘法结合律运用的不是很多,主要是在一些较复杂的运算中起到简便的作用。

乘法原理:如果因变量f与自变量x1,x2,x3,….xn之间存在直接正比关系并且每个自变量存在质的不同,缺少任何一个自变量因变量f就失去其意义,则为乘法。

在概率论中,一个事件,出现结果需要分n个步骤,第1个步骤包括M1个不同的结果,第2个步骤包括M2个不同的结果,……,第n个步骤包括Mn个不同的结果。那么这个事件可能出现N=M1×M2×M3×……×Mn个不同的结果。

参考资料来源:百度百科——乘法运算定律

乘法运算性质:将相同的数加起来的快捷方式。其运算结果称为积,“x”是乘号。从哲学角度解析,乘法是加法的量变导致的质变结果。整数(包括负数),有理数(分数)和实数的乘法由这个基本定义的系统泛化来定义。

副标题:正确。

1、两个数的差与一个数相乘,可以把被减数和减数分别与这个数相乘,再把两个积相减,所得的结果不变。一般地:(a-b)×c=a×c-b×c或者c×(a-b)=c×a-c×b。

2、若干个数的和与若干个数的和相乘,可以把第一个和里的每一个加数与第二个和里的每一个加数相乘,再把所得的积加起来,所得的结果不变。

扩展资料:

乘法竖式计算要注意四个问题:

1、两个数的最后一位要对齐。

2、尽量把数字多的数写在上面,数字少的数写在下面,以减少乘的次数。

3、如果两个数的末尾有“0”,写竖式时可以只将“0”前面的数的最后一位对齐,最后在竖式积的后面添上两个数共有的“0”的个数。

4、小数乘法要根据小数的倍数确定积的小数点的位置。

乘法运算

1、同号得正,异号得负,并把绝对值相乘。

2、任何数与零相乘,都得零。

3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。

4、几个数相乘,有一个因数为零,积就为零。

5、几个不等于零的数相乘,首先确定积的符号,然后后把绝对值相乘。

aX(b十C)=aXb十aXc

函数极限的运算毕业论文

极限理论是数学分析课程的理论依据,就因为引入极限思想,微积分才有了理论根基,从而可以解决很多初等数学不能解决的实际问题.极限理论贯穿于数学分析课程的始终.因此,教学中让学生深刻理解极限理论对学好整门课程起到至关重要的作用.作者就自己多年教授数学分析课程的经验,谈谈数列极限与函数极限的联系与本质区别.1.关于数列极限数列初等数学中对数列这样定义:按照一定顺序排列的一列数称为数列.数学分教材[1]关于数列的定义:若函数f的定义域是全体正整数集N,则称f:N→R或f(n),n∈N为数列.正因为正整数集的元素可按从小到大的顺序排列,所以数列f(n)也可写作a,a,…a…,或简单地记作{a},其中a是该数列的通项.看得出来,数列就是一正整数集为定义域的函数,即所有数列的定义域都是正整数集.数列的极限的定义定义1设{a}为数列,a为定数.若对任给的正数?藓,总存在正整数N,使得当n>N时,有|a-a|<?藓,则称数列{a}收敛于a,定数a为数列{a}的极限,并记作a=.关于函数极限→∞时函数极限定义2设f为定义[a,+∞)在上的函数,A为定数,若对任给的正数?藓,存在正数M(≥a),使得当x>M时有|f(x)-A|<?藓,则称函数当x→+∞时以A为极限,记作f(x)=A.现设f为定义在U(-∞)或U(∞)上的函数,当x→-∞或x→∞时,若函数值无限地接近某定数A,则称f当x→-∞或x→∞时以A为极限,f(x)=A或f(x)=→x时函数极限定义3(函数极限的?藓-δ定义)设函数f在点x的某个空心邻域U(x;δ′)内有定义,A为定数,若对任给的正数ε,存在正数δ(<δ′),使得当0<|x-x|<δ时有|f(x)-A|<0ε,则称函数f当x→x时以A为极限,记作f(x)=A.类似可定义f(x)=A及f(x)=.数列极限与函数极限的异同及根本原因从以上定义可以看出,数列极限与函数极限有相同点也有不同点,研究二者的方法大同小异,相同点是数列极限与函数极限中当x→+∞时的类型完全相似,因此可以用相同的方法研究.二者的不同点在于,数列极限只有一种类型,就是n→∞时的极限;而函数极限细分有六种类型x→+∞;x→-∞;x→∞;x→x;x→x;x→x的极限,分类的标准是根据的趋向的不同来分类.二者的相同点源自二者都是函数,数列可以认为是特殊情况的函数,任何一个不同的数列都以正整数集为定义域;而通常意义下的函数在数学分析课程中是定义在实数范围的,其定义域可以是实数集也可以是实数集的某个子集.正因为将二者同看成函数的情况下,由于二者的定义域范围不同,导致二者极限类型的不同.数列的定义域是正整数集,那自变量的取值为1、2、3……,自变量的最小取1,因此不可能趋向于-∞,又因为数列各项必须取整数,所以它不可能趋近于某个定数,自变量n只可能有一种趋向于+∞;而通常意义下的函数是在实数范围内的讨论,因此,自变量x既可以趋近于+∞,又可以趋近于-∞;如果自变量x同时趋近于+∞和-∞时函数极限存在,则称x→∞时函数极限存在.同理,因为实数集的稠密性,自变量x会趋近于某个定数x,根据自变量x趋近于x的方向不同又可以分为x点处的左极限和右极限,于是某定点处有三种类型x→x;x→x;x→x函数极限.综上,数列是特殊的函数,正因为数列作为函数的特殊性,使数列极限相对简单并且具有相对理想的性质,收敛数列的所有性质都具有整体性;而收敛函数的所有性质都只能满足局部性质.导致二者性质差别的真正原因也在于二者作为函数定义域的范围不同.笔者认为,还要真正学透极限,一定要从本质上研究导致他们不同的原因,相同的理论完全可以通过类比的方式学习,而学习的重点应该放在二者的不同上,弄懂有什么不同,为什么不同,只有懂得了“为什么”,才能真正学懂相应知识.

第一种:利用函数连续性:lim f(x) = f(a) x->a

(就是直接将趋向值带出函数自变量中,此时要要求分母不能为0)

第二种:恒等变形

当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决:

第一:因式分解,通过约分使分母不会为零。

第二:若分母出现根号,可以配一个因子使根号去除。

第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小)

当然还会有其他的变形方式,需要通过练习来熟练。

第三种:通过已知极限

特别是两个重要极限需要牢记。

扩展资料

有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。

1.夹逼定理:(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立

(2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A

不但能证明极限存在,还可以求极限,主要用放缩法。

2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。

在运用以上两条去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。

3.柯西准则

数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N时,都有|am-an|<ε成立。

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

大学毕业论文的数量怎么算

本科毕业论文正文要求至少8000字,只计算正文部分,不包含摘要、前言、致谢。

论文正文要求:专科毕业论文正文字数一般应在5000字以上,本科文学学士毕业论文通常要求8000字以上,硕士论文可能要求在3万字以上(不同院校可能要求不同)。

毕业论文正文:包括前言、本论、结论三个部分。

1、前言(引言)是论文的开头部分,主要说明论文写作的目的、现实意义、对所研究问题的认识,并提出论文的中心论点等。前言要写得简明扼要,篇幅不要太长。

2、本论是毕业论文的主体,包括研究内容与方法、实验材料、实验结果与分析(讨论)等。在本部分要运用各方面的研究方法和实验结果,分析问题,论证观点,尽量反映出自己的科研能力和学术水平。

3、结论是毕业论文的收尾部分,是围绕本论所作的结束语。其基本的要点就是总结全文,加深题意。

扩展资料:

撰写论文注意事项:

毕业论文的撰写及答辩考核是顺利毕业的重要环节之一,也是衡量毕业生是否达到要求重要依据之一。但是,由于许多应考者缺少系统的课堂授课和平时训练,往往对毕业论文的独立写作感到压力很大,心中无数,难以下笔。因此,就毕业论文的撰写进行必要指导,具有重要的意义。

一、毕业论文是应考者的总结性独立作业,目的在于总结学习专业的成果,培养综合运用所学知识解决实际问题的能力。从文体而言,它也是对某一专业领域的现实问题或理论问题进行科学研究探索的具有一定意义的论说文。完成毕业论文的撰写可以分两个步骤,即选择课题和研究课题。

二、选好课题后,接下来的工作就是研究课题,研究课题一般程序是:搜集资料、研究资料,明确论点和选定材料,最后是执笔撰写、修改定稿。

1、研究课题的基础工作——搜集资料。考生可以从查阅图书馆、资料室的资料,做实地调查研究、实验与观察等三个方面来搜集资料。搜集资料越具体、细致越好,最好把想要搜集资料的文献目录、详细计划都列出来。

首先,查阅资料时要熟悉、掌握图书分类法,要善于利用书目、索引,要熟练地使用其他工具书,如年鉴、文摘、表册、数字等。其次,做实地调查研究,调查研究能获得最真实可靠、最丰富的第一手资料,调查研究时要做到目的明确、对象明确、内容明确。

调查的方法有:普遍调查、重点调查、典型调查、抽样调查。

调查的方式有:开会、访问、问卷。最后,关于实验与观察。实验与观察是搜集科学资料数据、获得感性知识的基本途径,是形成、产生、发展和检验科学理论的实践基础,本方法在理工科、医类等专业研究中较为常用,运用本方法时要认真全面记录。

2、研究课题的重点工作——研究资料。考生要对所搜集到手的资料进行全面浏览,并对不同资料采用不同的阅读方法,如阅读、选读、研读。

3、研究课题的核心工作――明确论点和选定材料。在研究资料的基础上,考生提出自己的观点和见解,根据选题,确立基本论点和分论点。

提出自己的观点要突出新创见,创新是灵魂,不能只是重复前人或人云亦云。同时,还要防止贪大求全的倾向,生怕不完整,大段地复述已有的知识,那就体现不出自己研究的特色和成果了。

4、研究课题的关键工作――执笔撰写。下笔时要对以下两个方面加以注意:拟定提纲和基本格式。

5、研究课题的保障工作――修改定稿。通过这一环节,可以看出写作意图是否表达清楚,基本论点和分论点是否准确、明确,材料用得是否恰当、有说服力,材料的安排与论证是否有逻辑效果,大小段落的结构是否完整、衔接自然,句子词语是否正确妥当,文章是否合乎规范。

参考资料来源:百度百科-毕业论文

毕业论文的字数通常是指正文部分的字数,不包括参考文献和附录的字数。在计算时,可以使用Word等软件自带的字数统计功能,选择要统计的部分进行统计即可。同时,学校或导师也会给出字数的要求,需要按照要求进行计算。另外,在计算字数时,还需要注意以下几点:1. 中英文的计算方式不同:中文按照汉字计算,英文按照单词计算,统计时需要分别进行。2. 图表和公式的字数也需要考虑进去:将图表和公式中的文字都加入到字数统计中。3. 插图、表格和附录等不计入字数:这些内容不属于正文,不计入论文的字数统计之中。总之,对于毕业论文的字数计算,需要按照学校或导师的要求,合理统计字数,同时注意排版规范,以确保论文质量。

毕业论文字数要求的范围一般是指正文部分,不包含摘要、前言、致谢等内容。

论文的字数指的是正文字数,即第一章到最后一章,不包含摘要、目录、致谢、参考文献、附录等,这里说的是字数,不是字符数。比如3万字的毕业论文,就是3万字的汉字,不包括标点和空格。

硕士毕业论文不仅有字数要求也有页数要求,页数要求在60-80页之间,这也是指的正文部分。

参考文献的篇数一般不少于40篇,其中外文参考文献不少于20篇,参考文献中近五年的文献数一般不少于总数的三分之一,参考文献在正文中要有引用标注。

从序开始!也就是说目录之后到谢词之前的!不包括谢词!==================论文写作方法===========================论文网上没有免费的,与其花人民币,还不如自己写,万一碰到骗人的,就不上算了。写作论文的简单方法,首先大概确定自己的选题,然后在网上查找几份类似的文章,通读一遍,对这方面的内容有个大概的了解!参照论文的格式,列出提纲,补充内容,实在不会,把这几份论文综合一下,从每篇论文上复制一部分,组成一篇新的文章!然后把按自己的语言把每一部分换下句式或词,经过换词不换意的办法处理后,网上就查不到了,祝你顺利完成论文!

运算数学毕业论文目录

毕业论文是学生时代最重要的一件事,事关能否毕业,而毕业论文的格式又决定了一篇论文的水准,所以我们在做毕业论文时,一定要按正确的毕业论文的格式排版。 第一、构成项目 毕业论文包括以下内容: 封面、内容提要与关键词、目录、正文、注释、附录、参考文献。其中“附录”视具体情况安排,其余为必备项目。如果需要,可以在正文前加“引言”,在参考文献后加“后记”。 第二、各项目含义 (1)封面 封面由文头、论文标题、作者、学校名称、专业、年级、指导教师、日期等项内容组成。 (2)内容提要与关键词 内容提要是论文内容的概括性描述,应忠实于原文,字数控制在300字以内。关键词是从论文标题、内容提要或正文中提取的、能表现论文主题的、具有实质意义的词语,通常不超过7个。 (3)目录 列出论文正文的一二级标题名称及对应页码,附录、参考文献、后记等对应的页码。 (4)正文 正文是论文的主体部分,通常由绪论(引论)、本论、结论三个部分组成。这三部分在行文上可以不明确标示。 (5).注释 对所创造的名词术语的解释或对引文出处的说明,注释采用脚注形式。 (6)附录 附属于正文,对正文起补充说明作用的信息材料,可以是文字、表格、图形等形式。 (7)参考文献 作者在写作过程中使用过的文章、著作名录。 4、毕业论文格式编排 第一、纸型、页边距及装订线 毕业论文一律用国家标准A4型纸(297mmX210mm)打印。页边距为:天头(上)30mm,地脚(下)25mm,订口(左)30mm,翻口(右)25mm。装订线在左边,距页边10mm。 第二、版式与用字 文字、图形一律从左至右横写横排,倍行距。文字一律通栏编辑,使用规范的简化汉字。忌用繁体字、异体字等其他不规范字。 第三、论文各部分的编排式样及字体字号 (1)文头 封面顶部居中,小二号行楷,顶行,居中。固定内容为“成都中医药大学本科毕业论文”。 (2)论文标题 小一号黑体。文头居中,按小一号字体上空一行。(如果加论文副标题,则要求:小二号黑体,紧挨正标题下居中,文字前加破折号) 论文标题以下的行距为:固定值,40磅。 (3)作者、学院名称、专业、年级、指导教师、日期 项目名称用小三号黑体,后填写的内容处加下划线标明,8个汉字的长度,所填写的内容统一用三号楷体,各占一行,居中对齐。下空两行。 (4)内容提要及关键词 紧接封面后另起页,版式和字号按正文要求。其中,“内容提要”和 “:” 黑体,内容用宋体。上空一行,段首空两格,回行顶格:“关键词”与 “内容提要”间隔两行,段首空两格。“关键词”和 “:” 用黑体,内容用宋体。关键词通常不超过七个,词间空一格。 (5)目录 另起页,项目名称用3号黑体,居中排列,上下各空一行;内容用小4号仿宋。 (6)正文文字:另起页。 (7)论文标题:用二号黑体加粗,居中排列,上空一行;下标明年级、专业、作者,作者姓名另起一行,四号楷体,居中排列;下空两行接正文。正文文字一般用小四号宋体,每段起首空两格,回行顶格,单倍行距。 (8)正文文中标题 一级标题,标题序号为“一、”与正文字号相同,黑体,独占行,末尾不加标点; 二级标题,标题序号为“(二)”,与正文字体字号相同,独占行,末尾不加标点; 三级以下标题序号分别为“1.”和(1),与正文字体字号相同。为避免与注释相互混淆,不可用“①”。可根据标题的长短确定是否独占行,若独占行,则末尾不使用标点,否则,标题后必须加句号。每级标题的下一级标题应各自连续编号。 (9)注释:正文中加注之处右上角加数码,形式统一为“①”,同时在本页留出适当行数,用横线与正文分开,空两格后定出相应的注号,再写注文。注号以页为单位排序,每个注文各占一段,用小5号宋体。引用文章时,注文的顺序为:作者、文章标题、刊物名、某年第几期〈例如 : ①龚祥瑞:《论行政合理性原则》, 载《法学杂志》1987年第1期。);引用著作时,注文的顺序为:作者、著作名称、出版者、某年第几版、页数 ( 例如:② [ 英 ] 威廉·韦德著:《行政法》,楚剑译,中国大百科全书出版社 1997年版,第5页。)。 (10)附录 项目名称为小四号黑体,在正文后空两行空两格排印,内容编排参考“示范文本”。 (11)参考文献 项目名称用小四号黑体,在正文或附录后空两行顶格排印,另起行空两格用小四号宋体排印参考文献内容,具体编排方式同注释(参考的著作可不写第几页) 。 (12)页码 首页不编页码,从第二页起,居中编排。

1) 目录是毕业论文的提纲,也是毕业论文的小标题,应在目录中显示出层次顺序并按先后编好页次。2) 引言、正文、结论、后记、参考文献、附录按顺序编页;中英文摘要、目录另行编页。6.引言在毕业论文正文之前,简要说明研究工作的目的、范围、相关领域的前人研究情况和知识空白、理论基础和分析、研究方法、预期结果和意义,不能与摘要雷同。7.正文:正文是毕业论文的核心,占主要篇幅;毕业论文内容必须实事求是,客观真切,合乎逻辑,层次分明,语句流畅。毕业论文正文不少于8000字,正文书写的层次顺序采用分级阿拉伯数字,

8.注释正文中的注释一般用页注,在引文出处的右上角标注阿拉伯数字,按每页编排序号,例XXXXXX①,并在当页下方居左注明出处,须具体到页码(网上资料必须注明网址和各级栏目查询序列和时间)。9.图、表及数学公式:为准确表达实验数据、观测结果和研究方案等,应精心设计、绘制图、表,少而精,应具有自明性:1)表内不宜用“同上”、“同左”等类似的词或符号,应当一律填入具体数字或文字。表内“空白”代表无此项,“—”或“…”代表未发现,“0”代表结果为零;2)正文中的公式、算式或方程式因较长须转行时,只能在+、-、×、÷处转行,上下式在“=”处对齐;3)图、表应按正文中出现的顺序连续编号,如第一图应标明图号“图1”;第一表应标明表号“表1”;图、表必须注明简短确切的题名,必要时应注明资料来源。如图例、表例所示。表1 *********图1 ************** 资料来源:**************4)图、表采用5号宋体字。5)一般在文章中先看到图表号及图表的内容提要,图、表在后。6)曲线图的纵横轴必须标注“量、标准规定符号、单位”。坐标上标注的量的符号和缩写词必须与正文一致。10.结论:是最终和总体的结论,不是正文中各段的小结的简单重复。结论应准确、完整、明确、精练。要阐述自己的创造性观点、工作在所研究领域中的应用价值和推广意义。11.后记:即致谢部分。主要感谢导师和对毕业设计(论文)写作有直接贡献及帮助的人士和单位,致谢词诚恳,实事求是,用词恰如其分。

12.参考文献:在正文之后,是作者在毕业设计(论文)中直接引用的参考文献,只限那些亲自阅读过的、主要的及公开发表过的、最新近的文献。正文引用的文献必须出现在参考文献中。参考文献数量应在10篇以上,其中期刊文献占50%以上,国外文献在2篇以上。

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

相关百科

热门百科

首页
发表服务