首页

> 学术期刊知识库

首页 学术期刊知识库 问题

柯西中值定理论文模板

发布时间:

柯西中值定理论文模板

1 原函数法此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点1)将要证的结论中的 换成 ;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数 .例1:证明柯西中值定理.分析:在柯西中值定理的结论 中令 ,得 ,先变形为 再两边同时积分得 ,令 ,有 故 为所求辅助函数.例2:若 , , ,…, 是使得 的实数.证明方程 在(0,1)内至少有一实根.证:由于 并且这一积分结果与题设条件和要证明的结论有联系,所以设(取 ),则1) 在[0,1]上连续2) 在(0,1)内可导3) =0, 故 满足罗尔定理的条件,由罗尔定理,存在 使 ,即 亦即 . 这说明方程 在(0,1)内至少有实根 .2 积分法对一些不易凑出原函数的问题,可用积分法找相应的辅助函数. 例3:设 在[1,2]上连续,在(1,2)内可导, , .证明存在 使 .分析:结论变形为 ,不易凑成 .我们将 换为 ,结论变形为 ,积分得: ,即 ,从而可设辅助函数为 ,有 .本题获证.例4:设函数 , 在 上连续,在 内可微, .证明存在 ,使得: .证:将 变形为 ,将 换为 ,则 ,两边关于 积分,得: ,所以 ,其中 ,由 可得 .由上面积分的推导可知, 为一常数 ,故其导数必为零,从整个变形过程知,满足这样结论的 的存在是不成问题的.因而令 ,易验证其满足罗尔定理的条件,原题得证.3 几何直观法此法是通过几何图形考查两函数在区间端点处函数值的关系,从而建立适当的辅助函数.例5:证明拉格朗日中值定理.分析:通过弦 两个端点的直线方程为 ,则函数 与直线AB的方程之差即函数 在两个端点处的函数值均为零,从而满足罗尔定理的条件故上式即为要做辅助函数.例6:若 在 上连续且 .试证在 内至少有一点 ,使 .分析:由图可看出,此题的几何意义是说,连续函数 的图形曲线必跨越 这一条直线,而两者的交点的横坐标 ,恰满足 .进而还可由图知道,对 上的同一自变量值 ,这两条曲线纵坐标之差 构成一个新的函数 ,它满足 <0, >0,因而符合介值定理的条件.当 为 的一个零点时, 恰等价于 .因此即知证明的关键是构造辅助函数 .4 常数k值法 此方法构造辅助函数的步骤分为以下四点:1) 将结论变形,使常数部分分离出来并令为 .2) 恒等变形使等式一端为 及 构成的代数式,另一端为 及 构成的代数式.3)观察分析关于端点的表达式是否为对称式.若是,则把其中一个端点设为 ,相应的函数值改为 .4)端点换变量 的表达式即为辅助函数 .例7:设 在 上连续,在 内可导, ,试证存在一点 ,使等式 成立.分析:将结论变形为 ,令 ,则有 ,令 ,可得辅助函数 .例8:设 在 上存在,在 ,试证明存在 ,使得 .分析:令 ,于是有 ,上式为关于 , , 三点的轮换对称式,令 (or: ,or: ),则得辅助函数 .5 分析法分析法又叫倒推法,就是从欲证的结论出发借助于逻辑关系导出已知的条件和结论.例9:设函数 在[0,1]上连续,在(0,1)内可导,证明在(0,1)内存在一点 ,使得 .分析:所要证的结论可变形为: ,即 ,因此可构造函数 ,则对 与 在[0,1]上应用柯西中值定理即可得到证明.例10:设函数 在[0,1]上连续,在(0,1)内可导,且 =0,对任意 有 .证明存在一点 使 ( 为自然数)成立.分析:欲证其成立,只需证 由于对任意 有 ,故只需证: 即 ,于是引入辅助函数 ( 为自然数).例11:设函数 在区间[0,+ ]上可导,且有 个不同零点: .试证 在[0,+ ]内至少有 个不同零点.(其中, 为任意实数)证明:欲证 在[0,+ )内至少有 个不同零点,只需证方程 =0在[0,+ ]内至少有 个不同实根.因为, , ,故只需证方程 在 内至少有 个不同实根.引入辅助函数 ,易验证 在区间[ ],[ ],…,[ ]上满足罗尔定理的条件,所以,分别在这 个区间上应用罗尔定理,得 ,其中 且 以上说明方程 在[ ] [ ] … [ ] [0,+ ]内至少有 个不同实根,从而证明了方程 =0在[0,+ ]内至少有 个不同实根.6 待定系数法在用待定系数法时,一般选取所证等式中含 的部分为 ,再将等式中一个端点的值 换成变量 ,使其成为函数关系,等式两端做差构造辅助函数 ,这样首先可以保证 =0,而由等式关系 =0自然满足,从而保证 满足罗尔定理条件,再应用罗尔定理最终得到待定常数 与 之间的关系.例12:设 是 上的正值可微函数,试证存在 ,使 .证明:设 ,令 容易验证 在 上满足罗尔定理条件,由罗尔定理,存在 使 ,解得 ,故 .例13:设函数 在 上连续,在 内可导,则在 内至少存在一点 使 .证明:将所证等式看作 ,设 ,令 ,则 满足罗尔定理条件,由罗尔定理得,存在一点 ,使 ,即 ,若 =0,则 ,结论成立;若 ,则 ,从而有 .例14:设 ,则存在 使 .分析:对于此题设 作函数 .应用罗尔定理可得存在 ,使 ,即 ,从而 ,这样并不能证明原结论,遇到这种情况,说明所作的辅助函数不合适,则需要将所证明的等式变形,重新构造辅助函数.证明:将所证等式变形为 ,设 ,令 ,则 满足罗尔定理条件,用罗尔定理可得存在 ,使 ,即 ,于是 ,故 .总之,证明微分中值命题的技巧在于:一是要仔细观察,适当变换待证式子;二是要认真分析,巧妙构造辅助函数.抓住这两点,即可顺利完成证明.

格式错了亲,按这个【BBS-××】××××重新发

微分中值定理(即罗尔定理, 拉格朗日定理, 柯西定理, 泰勒定理)是数学分析上册最重要的内容之一, 想要学好中值定理, 首先要学习它们的证明方法, 需要强调的是拉格朗日中值定理与柯西中值定理均可由罗尔中值定理进行证明, 证明的方法为积分法, 这是构造辅助函数最基本的一种手段, 另外由此也可以看出罗尔中值定理的极端重要性.

1.罗尔中值定理的证明过程如下所示:

注意:罗尔中值定理是微分中值定理的基本,根据之后的积分法可知,拉格朗日中值定理和柯西中值定理是由罗尔中值定理证明的,也就是说,理论上,可以用拉格朗日中值定理或者柯西中值定理的题目,均可以由罗尔中值定理证明。

2.拉格朗日中值定理的证明过程如下所示:

3.柯西中值定理的证明过程如下所示:

经过以上三个微分中值定理的证明过程之后,我们会发现,在拉格朗日中值定理中如果f(a)=f(b),就是罗尔中值定理,在柯西微分中值定理中,如果g(x)=x,那么就成为了拉格朗日中值定理,我们就可以得出他们之间的关系为:拉格朗日中值定理是柯西中值定理的一种特殊情况,同样,罗尔中值定理是拉格朗日中值定理的一种特殊情况。

这三大微分中值定理是研究函数的有力工具,微分中值定理反映了导数的局部性与函数的整体性之间的欢喜,应用十分广泛,我们只有对这三个微分中值定理做到真正的理解,才能在用导数判断函数单调性、凹凸性和求极值、求拐点的方法,描绘函数的图像等等,这些更深层次的问题中灵活运用。

你可以理解为:罗尔定理是证明拉格朗日中值定理和柯西中值定理的一个工具,多看看课本认真理解一下

定积分中值定理毕业论文

论文的题目是论文的眼睛 ,是一篇文章成功的关键。下面我将为你推荐关于数学专业毕业论文题目参考的内容,希望能够帮到你!

1. 圆锥曲线的性质及推广应用

2. 经济问题中的概率统计模型及应用

3. 通过逻辑趣题学推理

4. 直觉思维的训练和培养

5. 用高等数学知识解初等数学题

6. 浅谈数学中的变形技巧

7. 浅谈平均值不等式的应用

8. 浅谈高中立体几何的入门学习

9. 数形结合思想

10. 关于连通性的两个习题

11. 从赌博和概率到抽奖陷阱中的数学

12. 情感在数学教学中的作用

13. 因材施教因性施教

14. 关于抽象函数的若干问题

15. 创新教育背景下的数学教学

16. 实数基本理论的一些探讨

17. 论数学教学中的心理环境

18. 以数学教学为例谈谈课堂提问的设计原则

1. 网络优化

2. 泰勒公式及其应用

3. 浅谈中学数学中的反证法

4. 数学选择题的利和弊

5. 浅谈计算机辅助数学教学

6. 论研究性学习

7. 浅谈发展数学思维的学习方法

8. 关于整系数多项式有理根的几个定理及求解方法

9. 数学教学中课堂提问的误区与对策

10. 中学数学教学中的创造性思维的培养

11. 浅谈数学教学中的“问题情境”

12. 市场经济中的蛛网模型

13. 中学数学教学设计前期分析的研究

14. 数学课堂差异教学

15. 一种函数方程的解法

16. 积分中值定理的再讨论

17. 二阶变系数齐次微分方程的求解问题

18. 毕业设计课题(论文主题等)

19. 浅谈线性变换的对角化问题

1. 浅谈奥数竟赛的利与弊

2. 浅谈中学数学中数形结合的思想

3. 浅谈中学数学中不等式的教学

4. 中数教学研究

5. XXX课程网上教学系统分析与设计

6. 数学CAI课件开发研究

7. 中等职业学校数学教学改革研究与探讨

8. 中等职业学校数学教学设计研究

9. 中等职业学校中外数学教学的比较研究

10. 中等职业学校数学教材研究

11. 关于数学学科案例教学法的探讨

12. 中外著名数学家学术思想探讨

13. 试论数学美

14. 数学中的研究性学习

15. 数字危机

16. 中学数学中的化归方法

17. 高斯分布的启示

积分中值定理分为积分第一中值定理和积分第二中值定理,它们各包含两个公式。其中,积分第二中值定理还包含三个常用的推论。积分中值定理揭示了一种将积分化为函数值,或者是将复杂函数的积分化为简单函数的积分的方法,是数学分析的基本定理和重要手段,在求极限、判定某些性质点、估计积分值等方面应用广泛。

积分中值定理在应用中所起到的重要作用是可以使积分号去掉,或者使复杂的被积函数化为相对简单的被积函数,从而使问题简化。因此,对于证明有关题设中含有某个函数积分的等式或不等式,或者要证的结论中含有定积分,或者所求的极限式中含有定积分时,一般应考虑使用积分中值定理,去掉积分号,或者化简被积函数。

求极限

在函数极限的计算中,如果含有定积分式,常常可以运用定积分的相关知识,比如积分中值定理等,把积分号去掉。

不等式证明

积分不等式是指不等式中含有两个以上积分的不等式,当积分区间相同时,先合并同一积分区间上的不同积分,根据被积函数所满足的条件,灵灵活运用积分中值定理,以达到证明不等式成立的目的。

在证明定积分不等式时,常常考虑运用积分中值定理,以便去掉积分符号,如果被积函数是两个函数之积时,可考虑用积分第一或者第二中值定理。对于某些不等式的证明,运用原积分中值定理只能得到“≥”的结论,或者不等式根本不能得到证明。而运用改进了的积分中值定理之后,则可以得到“>”的结论,或者成功的解决问题。

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

中值定理的毕业论文题目

论文的题目是论文的眼睛 ,是一篇文章成功的关键。下面我将为你推荐关于数学专业毕业论文题目参考的内容,希望能够帮到你!

1. 圆锥曲线的性质及推广应用

2. 经济问题中的概率统计模型及应用

3. 通过逻辑趣题学推理

4. 直觉思维的训练和培养

5. 用高等数学知识解初等数学题

6. 浅谈数学中的变形技巧

7. 浅谈平均值不等式的应用

8. 浅谈高中立体几何的入门学习

9. 数形结合思想

10. 关于连通性的两个习题

11. 从赌博和概率到抽奖陷阱中的数学

12. 情感在数学教学中的作用

13. 因材施教因性施教

14. 关于抽象函数的若干问题

15. 创新教育背景下的数学教学

16. 实数基本理论的一些探讨

17. 论数学教学中的心理环境

18. 以数学教学为例谈谈课堂提问的设计原则

1. 网络优化

2. 泰勒公式及其应用

3. 浅谈中学数学中的反证法

4. 数学选择题的利和弊

5. 浅谈计算机辅助数学教学

6. 论研究性学习

7. 浅谈发展数学思维的学习方法

8. 关于整系数多项式有理根的几个定理及求解方法

9. 数学教学中课堂提问的误区与对策

10. 中学数学教学中的创造性思维的培养

11. 浅谈数学教学中的“问题情境”

12. 市场经济中的蛛网模型

13. 中学数学教学设计前期分析的研究

14. 数学课堂差异教学

15. 一种函数方程的解法

16. 积分中值定理的再讨论

17. 二阶变系数齐次微分方程的求解问题

18. 毕业设计课题(论文主题等)

19. 浅谈线性变换的对角化问题

1. 浅谈奥数竟赛的利与弊

2. 浅谈中学数学中数形结合的思想

3. 浅谈中学数学中不等式的教学

4. 中数教学研究

5. XXX课程网上教学系统分析与设计

6. 数学CAI课件开发研究

7. 中等职业学校数学教学改革研究与探讨

8. 中等职业学校数学教学设计研究

9. 中等职业学校中外数学教学的比较研究

10. 中等职业学校数学教材研究

11. 关于数学学科案例教学法的探讨

12. 中外著名数学家学术思想探讨

13. 试论数学美

14. 数学中的研究性学习

15. 数字危机

16. 中学数学中的化归方法

17. 高斯分布的启示

数学专业毕业论文选题方向如下:

1、并行组合数学模型方式研究及初步应用。

2、数学规划在非系统风险投资组合中的应用。

3、金融经济学中的组合数学问题。

4、竞赛数学中的组合恒等式。

5、概率方法在组合数学中的应用。

6、组合数学中的代数方法。

7、组合电器局部放电超高频信号数学模型构建和模式识别研究。

8、概率方法在组合数学中的某些应用。

9、组合投资数学模型发展的研究。

10、高炉炉温组合预报和十字测温数学建模。

11、基于数学形态学-小波分析组合算法的牵引网故障判定方法。

12、证券组合投资的灰色优化数学模型的研究。

13、一些算子在组合数学中的应用。

14、概率方法在组合数学及混合超图染色理论中的应用。

15、竞赛数学中的组合恒等式。

毕业论文(graduation study),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

泰勒中值定理的研究论文

泰勒公式的余项f(x)=f(a) + f'(a)(x-a)/1! + f''(a)(x-a)^2/2! + …… + f(n)(a)(x-a)^n/n! + Rn(x) [其中f(n)是f的n阶导数] 泰勒余项可以写成以下几种不同的形式: 1.佩亚诺(Peano)余项: Rn(x) = o((x-a)^n) 2.施勒米尔希-罗什(Schlomilch-Roche)余项: Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^(n+1-p)(x-a)^(n+1)/(n!p) [f(n+1)是f的n+1阶导数,θ∈(0,1)] 3.拉格朗日(Lagrange)余项: Rn(x) = f(n+1)(a+θ(x-a))(x-a)^(n+1)/(n+1)! [f(n+1)是f的n+1阶导数,θ∈(0,1)] 4.柯西(Cauchy)余项: Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^n (x-a)^(n+1)/n! [f(n+1)是f的n+1阶导数,θ∈(0,1)] 5.积分余项: Rn(x) = [f(n+1)(t)(x-t)^n在a到x上的积分]/n! [f(n+1)是f的n+1阶导数]

数学定理列表(按字母顺序排列) 阿贝尔-鲁菲尼定理 阿蒂亚-辛格指标定理 阿贝尔定理 安达尔定理 阿贝尔二项式定理 阿贝尔曲线定理 艾森斯坦定理 奥尔定理 阿基米德中点定理 波尔查诺-魏尔施特拉斯定理 巴拿赫-塔斯基悖论 伯特兰-切比雪夫定理 贝亚蒂定理 贝叶斯定理 博特周期性定理 闭图像定理 伯恩斯坦定理 不动点定理 布列安桑定理 布朗定理 贝祖定理 博苏克-乌拉姆定理 垂径定理 陈氏定理 采样定理 迪尼定理 等周定理 代数基本定理 多项式余数定理 大数定律 狄利克雷定理 棣美弗定理 棣美弗-拉普拉斯定理 笛卡儿定理 多项式定理 笛沙格定理 二项式定理 富比尼定理 范德瓦尔登定理 费马大定理 法图引理 费马平方和定理 法伊特-汤普森定理 弗罗贝尼乌斯定理 费马小定理 凡·奥贝尔定理 芬斯勒-哈德维格尔定理 反函数定理 费马多边形数定理 格林公式 鸽巢原理 吉洪诺夫定理 高斯-马尔可夫定理 谷山-志村定理 哥德尔完备性定理 惯性定理 哥德尔不完备定理 广义正交定理 古尔丁定理 高斯散度定理 古斯塔夫森定理 共轭复根定理 高斯-卢卡斯定理 哥德巴赫-欧拉定理 勾股定理 格尔丰德-施奈德定理 赫尔不兰特定理 黑林格-特普利茨定理 华勒斯-波埃伊-格维也纳定理 霍普夫-里诺定理 海涅-波莱尔定理 亥姆霍兹定理 赫尔德定理 蝴蝶定理 绝妙定理 介值定理 积分第一中值定理 紧致性定理 积分第二中值定理 夹挤定理 卷积定理 极值定理 基尔霍夫定理 角平分线定理 柯西定理 克莱尼不动点定理 康托尔定理 柯西中值定理 可靠性定理 克莱姆法则 柯西-利普希茨定理 戡根定理 康托尔-伯恩斯坦-施罗德定理 凯莱-哈密顿定理 克纳斯特-塔斯基定理 卡迈克尔定理 柯西积分定理 克罗内克尔定理 克罗内克尔-韦伯定理 卡诺定理 零一律 卢辛定理 勒贝格控制收敛定理 勒文海姆-斯科伦定理 罗尔定理 拉格朗日定理 (群论) 拉格朗日中值定理 拉姆齐定理 拉克斯-米尔格拉姆定理 黎曼映射定理 吕利耶定理 勒让德定理 拉格朗日定理 (数论) 勒贝格微分定理 雷维收敛定理 刘维尔定理 六指数定理 黎曼级数定理 林德曼-魏尔斯特拉斯定理 毛球定理 莫雷角三分线定理 迈尔斯定理 米迪定理 Myhill-Nerode定理 马勒定理 闵可夫斯基定理 莫尔-马歇罗尼定理 密克定理 梅涅劳斯定理 莫雷拉定理 纳什嵌入定理 拿破仑定理 欧拉定理 (数论) 欧拉旋转定理 欧几里德定理 欧拉定理 (几何学) 庞加莱-霍普夫定理 皮克定理 谱定理 婆罗摩笈多定理 帕斯卡定理 帕普斯定理 普罗斯定理 皮卡定理 切消定理 齐肯多夫定理 曲线基本定理 四色定理 算术基本定理 斯坦纳-雷姆斯定理 四顶点定理 四平方和定理 斯托克斯定理 素数定理 斯托尔兹-切萨罗定理 Stone布尔代数表示定理 Sun-Ni定理 斯图尔特定理 塞瓦定理 射影定理 泰勒斯定理 同构基本定理 泰勒中值定理 泰勒公式 Turán定理 泰博定理 图厄定理 托勒密定理 Wolstenholme定理 无限猴子定理 威尔逊定理 魏尔施特拉斯逼近定理 微积分基本定理 韦达定理 维维亚尼定理 五色定理 韦伯定理 西罗定理 西姆松定理 西尔维斯特-加莱定理 线性代数基本定理 线性同余定理 有噪信道编码定理 有限简单群分类 演绎定理 圆幂定理 友谊定理 因式定理 隐函数定理 有理根定理 余弦定理 中国剩余定理 证明所有素数的倒数之和发散 秩-零度定理 祖暅原理 中心极限定理 中值定理 詹姆斯定理 最大流最小割定理 主轴定理 中线定理 正切定理 正弦定理阿尔贝—鲁菲尼 19世纪之前的300年间,数学家们一直为证明一元四次以上的方程是否有解而忙碌着,可惜他们不是望而却步,就是半途而废,没有一位能揭开这个结。1818年,挪威一位阿尔贝,在研究了前人的有关这一问题的大量资料后,坚定地对他的老师说:“让我来解答这一历史难题吧,我能证明四次以上的方程是否有解。”他凭着自信,聪明和勤奋,花了六年的时间,给了历史一个圆满的回答:一般高于四次的方程没有代数解。这就是著名的阿尔贝—鲁菲尼定理。 1824年,阿贝尔证明了五次或五次以上的代数方程没有一般的用根式求解的公式.该证明写进了“论代数方所谓方程有根式解(代数可解),就是这个方程的解可由该方程的系数经过有限次加减乘除以及开整数次方等运算表示出来.关于代数方程的求解,从16世纪前半叶起,已成为代数学的首要问题,一般的三次和四次方程解法被意大利的几位数学家解决.在以后的几百年里,代数学家们主要致力于求解五次乃至更高次数的方程,但是一直没有成功.对于方程论,拉格朗日比较系统地研究了方程根的性质(1770),正确指出方程根的排列与置换理论是解代数方程的关键所在,从而实现了代数思维方式的转变.尽管拉格朗日没能彻底解决高次方程的求解问题,但是他的思维方法却给后人以启示.P.鲁菲尼(Ruffini)于1799年首次证明了高于四次的一般方程的不可解性,但其“证明”存有缺陷.两年以后,高斯解决了分圆方程的可解性理论问题.拉格朗日和高斯的工作是阿贝尔研究工作的出发点.中学时,他就读过拉格朗日关于方程论的著作;大学一年级开始全面研究高斯的《算术研究》(Disquis-tiones arithmeticae).后来,他又了解了柯西关于置换理论方面的成果.然而,他当时并不晓得鲁菲尼的工作.阿贝尔就是在这种背景下思考代数方程可解性理论问题的. 1824年,阿贝尔首次作出了一般的五次方程用根式不可解的正确证明.更详细的证明,于1826年发表在克雷尔杂志第一期上.题目为“高于四次的一般方程的代数解法不可能性的证明”.在这篇论文中,阿贝尔讨论并修正了鲁菲尼论证中的缺陷.鲁菲尼的“证明”缺乏域的概念,所以不可能在由已知方程的系数所确定的基础域及域的扩张下进行工作.另外,鲁菲尼“证明”中还用到了一个未加证明的关键性命题,后称阿贝尔定理.该定理说,如果一个代数方程能用根式求解,则出现在根的表达式中的每个根式,一定可以表成方程诸根及某些单位根的有理函数.阿贝尔就是应用这个定理证明高于四次的一般方程不能有根式解的. 上面所说的阿贝尔定理,也就是“置换群”的思想。 他在进一步思考哪些方程(比如x^n-1=0)才可用根式解的问题的时候,阿贝尔证明了下述定理:对于一个任意次的方程,如果方程所有的根都可用其中的一个根有理地表出(我们用x表示),并且任意两个根Q(x)与Q1(x)(这里Q,Q1均为有理函数),满足关系QQ1(x)=Q1Q(x),那么所考虑的方程总是代数可解的.或者说,根xi=Q1(Xi),Q2(Xi),…,Qn(Xi)是根x1,x2,…,xn的一个置换.方程根进行这样置换的个数是n.阿贝尔考虑并证明了这些置换的性质,这就是“置换群”。 阿贝尔遗作中有一篇值得深入研究的未完成的手稿,即“关于函数的代数解法”(Sur la résolution algébrique des fonctions,1839).文中叙述了方程论的发展状况,重新讨论了特殊方程可解性的问题,为后来E·伽罗瓦(Galois)遗作的出版开辟了道路.在前言部分,阿贝尔暗示出一种重要的思维方法,他认为解方程之前,应首先证明其解的存在性,这样可使整个过程避免“计算的复杂性”.在代数方程可解性理论研究中,他还提出了一个研究纲领,就是在他的工作中需要解决两类问题:一是构造任意次数的代数可解的方程;二是判定已知方程是否可用根式求解.他试图全部刻画可用根式求解的方程的特性.但因早逝而没能完成这个工作,他只解决了第一类问题.几年后,伽罗瓦接过他的工作,用群的方法彻底解决了代数方程的可解性理论问题,从而建立了现在所谓的伽罗瓦理论.其余的你可以在网上搜索一下。不罗列了。

勾股定理是一个基本的初等几何定理,直角三角形两直角边的平方和等于斜边的平方。如果直角三角形两直角边为a和b,斜边为c,那么a²+b²=c²,若a、b、c都是正整数,(a,b,c)叫做勾股数组。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。“勾三,股四,弦五”是勾股定理的一个最著名的例子。远在公元前约三千年的古巴比伦人就知道和应用勾股定理,还知道许多勾股数组。古埃及人也应用过勾股定理。在中国,西周的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

公式定义 泰勒公式(Taylor's formula) 泰勒中值定理:若函数f(x)在含有x的开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和: f(x)=f(x。)+f'(x。)(x-x。)+f''(x。)/2!*(x-x。)^2,+f'''(x。)/3!*(x-x。)^3+……+f(n)(x。)/n!*(x-x。)^n+Rn(x) 其中Rn(x)=f(n+1)(ξ)/(n+1)!*(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。 (注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x。的相乘。)编辑本段证明 我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式: P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n. 接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0。根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=(Rn(x)-Rn(x.))/((x-x.)^(n+1)-0)=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得(Rn'(ξ1)-Rn'(x.))/((n+1)(ξ1-x.)^n-0)=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间。但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。综上可得,余项Rn(x)=f(n+1)(ξ)/(n+1)!?(x-x.)^(n+1)。一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。麦克劳林展开式 :若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和: f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+Rn 其中Rn=f(n+1)(θx)/(n+1)!?x^(n+1),这里0<θ<1。 证明:如果我们要用一个多项式P(x)=A0+A1x+A2x^2+……+Anx^n来近似表示函数f(x)且要获得其误差的具体表达式,就可以把泰勒公式改写为比较简单的形式即当x.=0时的特殊形式: f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+f(n+1)(ξ)/(n+1)!?x^(n+1) 由于ξ在0到x之间,故可写作θx,0<θ<1。麦克劳林展开式的应用 : 1、展开三角函数y=sinx和y=cosx。 解:根据导数表得:f(x)=sinx , f'(x)=cosx , f''(x)=-sinx , f'''(x)=-cosx , f(4)(x)=sinx…… 于是得出了周期规律。分别算出f(0)=0,f'(0)=1, f''(x)=0, f'''(0)=-1, f(4)=0…… 最后可得:sinx=x-x^3/3!+x^5/5!-x^7/7!+x^9/9!-……(这里就写成无穷级数的形式了。) 类似地,可以展开y=cosx。 2、计算近似值e=lim x→∞ (1+1/x)^x。 解:对指数函数y=e^x运用麦克劳林展开式并舍弃余项: e^x≈1+x+x^2/2!+x^3/3!+……+x^n/n! 当x=1时,e≈1+1+1/2!+1/3!+……+1/n! 取n=10,即可算出近似值e≈。 3、欧拉公式:e^ix=cosx+isinx(i为-1的开方,即一个虚数单位) 证明:这个公式把复数写为了幂指数形式,其实它也是由麦克劳林展开式确切地说是麦克劳林级数证明的。过程具体不写了,就把思路讲一下:先展开指数函数e^z,然后把各项中的z写成ix。由于i的幂周期性,可已把系数中含有土i的项用乘法分配律写在一起,剩余的项写在一起,刚好是cosx,sinx的展开式。然后让sinx乘上提出的i,即可导出欧拉公式。有兴趣的话可自行证明一下。编辑本段泰勒展开式原理 e的发现始于微分,当 h 逐渐接近零时,计算 之值,其结果无限接近一定值 ...,这个定值就是 e,最早发现此值的人是瑞士著名数学家欧拉,他以自己姓名的字头小写 e 来命名此无理数. 计算对数函数 的导数,得 ,当 a=e 时, 的导数为 ,因而有理由使用以 e 为底的对数,这叫作自然对数. 若将指数函数 ex 作泰勒展开,则得 以 x=1 代入上式得 此级数收敛迅速,e 近似到小数点后 40 位的数值是 将指数函数 ex 扩大它的定义域到复数 z=x+yi 时,由 透过这个级数的计算,可得 由此,De Moivre 定理,三角函数的和差角公式等等都可以轻易地导出.譬如说,z1=x1+y1i, z2=x2+y2i, 另方面, 所以, 我们不仅可以证明 e 是无理数,而且它还是个超越数,即它不是任何一个整系数多项式的根,这个结果是 Hermite 在1873年得到的. 甲)差分. 考虑一个离散函数(即数列) R,它在 n 所取的值 u(n) 记成 un,通常我们就把这个函数书成 或 (un).数列 u 的差分 还是一个数列,它在 n 所取的值以定义为 以后我们干脆就把 简记为 (例):数列 1, 4, 8, 7, 6, -2, ... 的差分数列为 3, 4, -1, -1, -8 ... 注:我们说「数列」是「定义在离散点上的函数」如果在高中,这样的说法就很恶劣.但在此地,却很恰当,因为这样才跟连续型的函数具有完全平行的类推. 差分算子的性质 (i) [合称线性] (ii) (常数) [差分方程根本定理] (iii) 其中 ,而 (n(k) 叫做排列数列. (iv) 叫做自然等比数列. (iv)' 一般的指数数列(几何数列)rn 之差分数列(即「导函数」)为 rn(r-1) (乙).和分 给一个数列 (un).和分的问题就是要算和 . 怎么算呢 我们有下面重要的结果: 定理1 (差和分根本定理) 如果我们能够找到一个数列 (vn),使得 ,则 和分也具有线性的性质: 甲)微分 给一个函数 f,若牛顿商(或差分商) 的极限 存在,则我们就称此极限值为 f 为点 x0 的导数,记为 f'(x0) 或 Df(x),亦即 若 f 在定义区域上每一点导数都存在,则称 f 为可导微函数.我们称 为 f 的导函数,而 叫做微分算子. 微分算子的性质: (i) [合称线性] (ii) (常数) [差分方程根本定理] (iii) Dxn=nxn-1 (iv) Dex=ex (iv)' 一般的指数数列 ax 之导函数为 (乙)积分. 设 f 为定义在 [a,b] 上的函数,积分的问题就是要算阴影的面积.我们的办法是对 [a,b] 作分割: ;其次对每一小段 [xi-1,xi] 取一个样本点 ;再求近似和 ;最后再取极限 (让每一小段的长度都趋近于 0). 若这个极限值存在,我们就记为 的几何意义就是阴影的面积. (事实上,连续性也「差不多」是积分存在的必要条件.) 积分算子也具有线性的性质: 定理2 若 f 为一连续函数,则 存在.(事实上,连续性也「差不多」是积分存在的必要条件.) 定理3 (微积分根本定理) 设 f 为定义在闭区间 [a,b] 上的连续函数,我们欲求积分 如果我们可以找到另一个函数 g,使得 g'=f,则 注:(1)(2)两式虽是类推,但有一点点差异,即和分的上限要很小心! 上面定理1及定理3基本上都表述着差分与和分,微分与积分,是两个互逆的操作,就好像加法与减法,乘法与除法是互逆的操作一样. 我们都知道差分与微分的操作比和分与积分简单多了,而上面定理1及定理3告诉我们,要计算 (un) 的和分及 f 的积分,只要去找另一个 (vn) 及 g 满足 , g'=f (这是差分及微分的问题),那么对 vn 及 g 代入上下限就得到答案了.换句话说,我们可以用较简单的差分及微分操作来掌握较难的和分及积分操作,这就是"以简御繁"的精神.牛顿与莱布尼慈对微积分最大的贡献就在此. 甲)Taylor展开公式 这分别有离散与连续的类推.它是数学中「逼近」这个重要想法的一个特例.逼近想法的意思是这样的:给一个函数 f,我们要研究 f 的行为,但 f 本身可能很复杂而不易对付,于是我们就想法子去找一个较「简单」的函数 g,使其跟 f 很「靠近」,那么我们就用 g 来取代 f.这又是以简御繁的精神表现.由上述我们看出,要使用逼近想法,我们还需要澄清 两个问题:即如何选取简单函数及逼近的尺度. (一) 对于连续世界的情形,Taylor 展式的逼近想法是选取多项函数作为简单函数,并且用局部的「切近」作为逼近尺度.说得更明白一点,给一个直到到 n 阶都可导微的函数 f,我们要找一个 n 次多项函数 g,使其跟 f 在点 x0 具有 n 阶的「切近」,即 ,答案就是 此式就叫做 f 在点 x0 的 n 阶 Taylor 展式. g 在 x0 点附近跟 f 很靠近,于是我们就用 g 局部地来取代 f.从而用 g 来求得 f 的一些局部的定性行为.因此 Taylor 展式只是局部的逼近.当f是足够好的一个函数,即是所谓解析的函数时,则 f可展成 Taylor 级数,而且这个 Taylor 级数就等于 f 自身. 值得注意的是,一阶 Taylor 展式的特殊情形,此时 g(x)=f(x0)+f'(x0)(x-x0) 的图形正好是一条通过点 (x0,f(x0)) 而且切于 f 的图形之直线.因此 f 在点 x0 的一阶 Taylor 展式的意义就是,我们用过点 (x0,f(x0)) 的切线局部地来取代原来 f 曲线.这种局部化「用平直取代弯曲」的精神,是微分学的精义所在. 利用 Taylor 展式,可以帮忙我们做很多事情,比如判别函数的极大值与极小值,求积分的近似值,作函数表(如三角函数表,对数表等),这些都是意料中事.事实上,我们可以用逼近的想法将微积分「一以贯之」. 复次我们注意到,我们选取多项函数作为逼近的简单函数,理由很简单:在众多初等函数中,如三角函数,指数函数,对数函数,多项函数等,从算术的观点来看,以多项函数最为简单,因为要计算多项函数的值,只牵涉到加减乘除四则运算,其它函数就没有这么简单. 当然,从别的解析观点来看,在某些情形下还另有更有用更重要的简单函数.例如,三角多项式,再配合上某种逼近尺度,我们就得到 Fourier 级数展开,这在应用数学上占有举足轻重的地位.(事实上,Fourier 级数展开是采用最小方差的逼近尺度,这在高等数学中经常出现,而且在统计学中也有应用.) 注:取 x0=0 的特例,此时 Taylor 展式又叫做 Maclaurin 展式.不过只要会做特例的展开,欲求一般的 Taylor 展式,作一下平移(或变数代换)就好了.因此我们大可从头就只对 x=0 点作 Taylor 展式. (二) 对于离散的情形,Taylor 展开就是: 给一个数列 ,我们要找一个 n 次多项式数列 (gt),使得 gt 与 ft 在 t=0 点具有 n 阶的「差近」.所谓在 0 点具有 n 阶差近是指: 答案是 此式就是离散情形的 Maclaurin 公式. 乙)分部积分公式与Abel分部和分公式的类推 (一) 分部积分公式: 设 u(x),v(x) 在 [a,b] 上连续,则 (二) Abel分部和分公式: 设(un),(v)为两个数列,令 sn=u1+......+un,则 上面两个公式分别是莱布尼慈导微公式 D(uv)=(Du)v+u(Dv),及莱布尼慈差分公式 的结论.注意到,这两个莱布尼慈公式,一个很对称,另一个则不然. (丁)复利与连续复利 (这也分别是离散与连续之间的类推) (一) 复利的问题是这样的:有本金 y0,年利率 r,每年复利一次,要问 n 年后的本利和 yn= 显然这个数列满足差分方程 yn+1=yn(1+r) 根据(丙)之(二)得知 yn=y0(1+r)n 这就是复利的公式. (二) 若考虑每年复利 m 次,则 t 年后的本利和应为 令 ,就得到连续复利的概念,此时本利和为y(t)=y0ert 换句话说,连续复利时,t 时刻的本利和 y(t)=y0ert 就是微分方程 y'=ry 的解答. 由上述我们看出离散复利问题由差分方程来描述,而连续复利的问题由微分方程来描述.对于常系数线性的差分方程及微分方程,解方程式的整个要点就是叠合原理,因此求解的办法具有完全平行的类推. (戊)Fubini 重和分定理与 Fubini 重积分定理(也是离散与连续之间的类推) (一) Fubini 重和分定理:给一个两重指标的数列 (ars),我们要从 r=1 到 m,s=1到 n, 对 (ars) 作和 ,则这个和可以这样求得:光对 r 作和再对 s 作和(反过来亦然).亦即我们有 (二)Fubini 重积分定理:设 f(x,y) 为定义在 上之可积分函数,则 当然,变数再多几个也都一样. (己)Lebesgue 积分的概念 (一) 离散的情形:给一个数列 (an),我们要估计和 ,Lebesgue 的想法是,不管这堆数据指标的顺序,我们只按数值的大小来分堆,相同的分在一堆,再从每一堆中取一个数值,乘以该堆的个数,整个作和起来,这就得到总和. (二)连续的情形:给一个函数 f,我们要定义曲线 y=f(x) 跟 X 轴从 a 到 b 所围出来的面积. Lebesgue 的想法是对 f 的影域 作分割: 函数值介 yi-1 到 yi 之间的 x 收集在一齐,令其为 , 于是 [a,b] 就相应分割成 ,取样本点 ,作近似和 让影域的分割加细,上述近似和的极限若存在的话,就叫做 f 在 [a,b] 上的 Lebesgue 积分.余项 泰勒公式的余项f(x)=f(a) + f'(a)(x-a)/1! + f''(a)(x-a)^2/2! + …… + f(n)(a)(x-a)^n/n! + Rn(x) [其中f(n)是f的n阶导数] 泰勒余项可以写成以下几种不同的形式: 1.佩亚诺(Peano)余项: Rn(x) = o((x-a)^n) 2.施勒米尔希-罗什(Schlomilch-Roche)余项: Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^(n+1-p)(x-a)^(n+1)/(n!p) [f(n+1)是f的n+1阶导数,θ∈(0,1)] 3.拉格朗日(Lagrange)余项: Rn(x) = f(n+1)(a+θ(x-a))(x-a)^(n+1)/(n+1)! [f(n+1)是f的n+1阶导数,θ∈(0,1)] 4.柯西(Cauchy)余项: Rn(x) = f(n+1)(a+θ(x-a))(1-θ)^n (x-a)^(n+1)/n! [f(n+1)是f的n+1阶导数,θ∈(0,1)] 5.积分余项: Rn(x) = [f(n+1)(t)(x-t)^n在a到x上的积分]/n! [f(n+1)是f的n+1阶导数]

微分中值定理论文答辩ppt

去万方,中国知网下点相关的资料,看看能不能对你有些启发,要抓住一些小的方面仔细研究,范围太大不好写

估值定理的推导,可以直接用 f(x)-m的积分≥0来证明,M的情形类似。

中值定理可以由那个定积分除以(b-a),由估值定理,这个值在m和M之间,根据连续函数的介值定理,f(x)中总有ξ使其函数值在最小、最大值之间,然后把 b-a乘过来就得到了。

定积分是阴影部分面积,自然是介于绿线下面部分和红线下面部分的面积;中值定理:这个面积等于某个介于最小、最大值之间的,蓝线下面的面积。

扩展资料:

如果是一元函数f(x)在区间[a,b]上的定积分,只需把上述估定理公式中的S改成区间长度 b -a,如区间在[n+1,n]单调递减的函数f(x)的积分,(n+1-n)*f(n+1)<= ∫f(x)dx<=f(n) *(n+1-n),即任意一个函数在闭区间[a,b]上连续他从闭区间[a,b]的定积分,其中m为f(x)在闭区间[a,b]上的最小值,M为最大值。

导数只是反映函数在一点的局部特征;如果要了解函数在其定义域上的整体性态,就需要在导数及函数间建立起联系,微分中值定理就是这种作用。微分中值定理,包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理。

无穷小(大)量阶的比较时,看到两个无穷小(大)量之比的极限可能存在,也可能不存在。如果存在,其极限值也不尽相同。称两个无穷小量或两个无穷大量之比的极限为型或型不定式极限。

参考资料来源:百度百科——中值定理

参考资料来源:百度百科——积分估值定理

论文答辩ppt就是你毕业论文的浓缩,拿理工类的来说,比如软件设计类的要有概述、系统需求分析、系统功能设计、系统功能实现、总结,至于详细内容,就是你论文里边纲领性的内容,提到即可,不可详述。

1、首先,PPT封面应该有:毕设题目、答辩人、指导教师以及答辩日期;2、其次,需要有一个目录页来清楚的阐述本次答辩的主要内容有哪些;3、接下来,就到了答辩的主要内容了,第一块应该介绍课题的研究背景与意义;4、之后,是对于研究内容的理论基础做一个介绍,这一部分简略清晰即可;5、重头戏自然是自己的研究内容,这一部分最好可以让不太了解相关方面的老师们也能听出个大概,知道到底都做出了哪些工作,研究成果有哪些,研究成果究竟怎么样;6、最后,是对工作的一个总结和展望。7、结束要感谢一下各位老师的指导与支持。

相关百科

热门百科

首页
发表服务