首页

> 学术期刊知识库

首页 学术期刊知识库 问题

溶菌酶发酵生产工艺研究论文

发布时间:

溶菌酶发酵生产工艺研究论文

食品加工质量安全管理工作是保障企业产品质量安全符合质量标准的关键、是维护企业市场信誉的关键,是企业在现代激烈市场竞争中赢得市场竞争力的关键。下面是我为大家推荐的食品加工论文,供大家参考。

食品加工论文 范文 一:食品工业泡沫分离技术的应用

泡沫分离又称泡沫吸附分离技术,是以气泡为介质,以各组分之间的表面活性差为依据,从而达到分离或浓缩目的的一种分离 方法 [1].20世纪初,泡沫分离技术最早应用于矿物浮选,后来应用于回收工业废水中的表面活性剂.直到20世纪70年代,人们开始将泡沫分离技术应用于蛋白质与酶的分离提取[2-3].目前,在食品工业中,泡沫分离技术已经应用于蛋白质与酶、糖及皂苷类有效成分的分离提取.由于大部分食品料液都有起泡性,泡沫分离技术在食品工业中的应用将越来越广泛.

1泡沫分离技术的原理及特点

泡沫分离技术的原理

泡沫分离技术是依据表面吸附原理,基于液相中溶质或颗粒之间的表面活性差异性.表面活性强的物质先吸附于分散相与连续相的界面处,通过鼓泡形成泡沫层,使泡沫层与液相主体分离,表面活性物质集中在泡沫层内,从而达到浓缩溶质或净化液相主体的目的.

泡沫分离技术的特点

优点

(1)与传统分离稀浓度产品的方法相比,泡沫分离技术设备简单、易于操作,更加适合于稀浓度产品的分离.(2)泡沫分离技术分辨率高,对于组分之间表面活性差异大的物质,采用泡沫分离技术分离可以得到较高的富集比.(3)泡沫分离技术无需大量有机溶剂洗脱液和提取液,成本低、环境污染小,利于工业化生产.

缺点

表面活性物质大多数是高分子化合物,消化量比较大,同时比较难回收.此外,溶液中的表面活性物质浓度不易控制,泡沫塔内的返混现象会影响到分离效果[4].

2泡沫分离技术在食品工业中的应用

蛋白质的分离

在分离蛋白质的过程中,表面活性差异小的蛋白质,吸附效果受到气-液界面吸附结构的影响,因此蛋白质表面活性的强度是考察泡沫分离效果的主要指标.谭相伟等[5]研究了牛血清蛋白与酪蛋白在气-液界面的吸附,并发现酪蛋白对牛血清蛋白在气-液界面处的吸附有显著影响.此后,Hossain等[6]利用泡沫分离技术对β-乳球蛋白和牛血清蛋白进行分离富集,结果得到96%β-乳球蛋白和83%牛血清蛋白.Brown等[7]采用连续式泡沫分离技术从混合液中分离牛血清蛋白与酪蛋白,结果表明酪蛋白的回收率很高,而大部分的牛血清蛋白留在了溶液中.Saleh等[8]研究了利用泡沫分离法从乳铁传递蛋白、牛血清蛋白和α-乳白蛋白3种蛋白混合液中分离出乳铁传递蛋白,在牛血清蛋白和α-乳白蛋白的混合液中加入不同浓度的乳铁传递蛋白,并不断改变气速,优化了最佳工艺条件.结果得出:在最佳工艺条件下,87%的乳铁传递蛋白留在溶液中,98%牛血清蛋白和91%α-乳白蛋白存在于泡沫夹带液中.由此可见,利用泡沫分离法可以有效地从3种蛋白质混合液中分离出乳铁传递蛋白.Chen等[9]利用泡沫分离技术从牛奶中提取免疫球蛋白.考察了初始pH值、初始免疫球蛋白浓度、氮流量、柱的高度及发泡时间等因素对反应的影响,结果表明:采用泡沫分离方法可以有效地从牛奶中分离出免疫球蛋白.Liu等[10]从工业大豆废水浓缩富集大豆蛋白,最佳工艺条件:温度为50℃,pH值为,空气流量为100mL?min-1,装载液体高度为400mm,得到大豆蛋白富集比为等[11]为了提高泡沫析水性,研发了一种新型的利用铁丝网进行整装填料的泡沫分离塔,利用铁丝网整体填料塔泡沫分离法对牛血清蛋白进行分离.通过研究填料对气泡大小、持液量、富集比和在不同条件下以牛血清蛋白水溶液作为一个参考物的有效收集率的影响,评价填料的作用.结果表明,填料可以加速气泡破裂、减少持液量、提高泡沫析水性和牛血清蛋白的富集比.研究表明,在积液量为490mL,空气流速为300mL?min-1,牛血清蛋白初始浓度为,填料床高度为300mm和初始pH值为的条件下,最佳的牛血清蛋白富集比为,是控制塔条件下富集比的倍.刘海彬等[12]以桑叶为原料,采用泡沫分离法对桑叶蛋白进行分离,并分析了影响分离效果的主要因素,结果测得桑叶蛋白回收率为、富集比为.由此可见,利用泡沫分离法对桑叶进行分离可得到含量较高的桑叶蛋白.与传统的叶蛋白分离方法如酸(碱)热法、有机溶剂法相比较[13-14],泡沫分离法分离效果好,避免了加热导致蛋白质变性以及减少有机溶剂带来的环境污染等问题.李轩领等[15]以亚麻蛋白浓度、NaCl浓度、原料液pH值以及装液量为主要考察因素,用响应面法优化了从未脱胶亚麻籽饼粕中泡沫分离亚麻蛋白的工艺条件.在最佳工艺条件下,得到的亚麻蛋白质,而多糖的损失率仅为.可见,采用泡沫分离技术可以从未脱胶亚麻籽饼粕中有效分离出亚麻蛋白.

酶的分离

蛋白质属于生物表面活性剂,包含极性和非极性基团,在溶液中可选择性地吸附于气-液界面.因此,从低浓度溶液中可泡沫分离出酶和蛋白质等物质.Linke等[16]研究了从发酵液中泡沫分离胞外脂肪酶,考察了通气时间、pH值及气速等主要因素对回收率的影响,研究得出通气时间为50min、pH值为及气速为60mL/min时,酶蛋白回收率为95%.Mohan等[17]从啤酒中泡沫分离回收酵母和麦芽等,结果表明,分离酵母和麦芽所需的时间不同,而且低浓度时更加容易富集.Holmstr[18]从低浓度溶液中泡沫分离出淀粉酶,研究发现在等电点处鼓泡,泡沫夹带液中的淀粉酶活性是原溶液中的4倍.Lambert等[19]采用泡沫分离技术考察了β-葡糖苷酶的pH值与表面张力之间的关系,研究表明,纤维素二糖酶和纤维素酶的最佳起泡pH值分别为和6~等[7]利用泡沫分离技术对牛血清蛋白与溶菌酶以及酪蛋白与溶菌酶的混合体系分别进行了分离纯化的研究.结果表明,溶菌酶不管与牛血清蛋白混合还是与酪蛋白混合,回收率都很低,但是由于溶菌酶可提高泡沫的稳定性,从而提高了牛血清蛋白与溶菌酶的回收率.Samita等[20]对牛血清蛋白与酪蛋白、牛血清蛋白与溶菌酶两种二元体系分别进行了研究,发现在牛血清蛋白与酪蛋白的蛋白质二元体系中酪蛋白在气-液界面处的吸附占了大部分的气-液界面,从而阻止了牛血清蛋白在气-液界面处的吸附.而在牛血清蛋白与溶菌酶的二元体系中,研究表明溶菌酶提高了牛血清蛋白的回收率,同时提高了泡沫的稳定性.针对这种现象,Noble等[21]也采用泡沫分离法分离牛血清蛋白与溶菌酶的二元体系,研究发现泡沫夹带液中存在少量的溶菌酶,提高了泡沫的稳定性,牛血清蛋白溶液在低浓度下本来不能产生稳定泡沫,溶菌酶的存在使得其也能产生稳定的泡沫.这些研究表明,泡沫分离技术可以在较低的浓度下分离具有表面活性的蛋白质,为泡沫分离技术在蛋白质分离中的应用研究开辟了新的领域.国内泡沫分离技术已应用在酶类物质分离中,范明等[22]设计了泡沫分离装置,利用泡沫分离技术分离脂肪酶模拟液和实际生产生物柴油的水相脂肪酶溶液,对水相脂肪酶进行回收并富集.考察了通气速度、进料酶浓度及水相脂肪酶溶液中pH值等主要因素对分离效果的影响,当通气速度为10L/(LH)、进料酶浓度为、pH值为时,蛋白和酶活回收率接近于100%,富集比为.研究表明,初始脂肪酶浓度对泡沫分离的富集比和蛋白回收率有显著影响,pH值对富集比、蛋白和酶活回收率无显著影响,而气速是影响蛋白回收速率的一个重要因素.回收水相脂肪酶的过程中酶活性无损失.可见,泡沫分离是一个回收液体脂肪酶的有效方法[22].

糖的分离

糖一般存在于植物和微生物体内,可根据糖与蛋白质或者其他物质的表面活性差异性,利用泡沫分离技术对糖进行分离提取[23].Fu等[24]采用离心法从基隆产的甘薯块中分离提取可溶性糖和蛋白,得到的回收率分别为和;而采用泡沫分离法时,可溶性糖和蛋白的回收率分别为和等[25]采用泡沫分离法富集假单胞菌生产的鼠李糖脂,最佳工艺条件下得到鼠李糖脂97%,富集比为洲[26]利用间歇式泡沫分离法从美味牛肝菌水提物中分离牛肝菌多糖,考察了pH值、原料液浓度、空气流速、表面活性剂用量及浮选时间等主要因素对分离效果的影响,以回收率为指标评价分离的效果,并优化了分离牛肝菌多糖的工艺条件.在最佳工艺条件下,牛肝菌多糖回收率为.国内关于食用菌多糖的提取一般利用水提醇析法,但是该法需要消耗大量的乙醇,操作周期长,能耗大[27-28],而泡沫分离法具有快速分离、设备简单、操作连续、不需高温高压及适合分离低浓度组分等优势,因此间歇式泡沫分离法是提取食用菌多糖的一种有效方法.

皂苷类有效成分的分离

皂苷包含亲水性的糖体和疏水性的皂苷元,具有良好的起泡性,是一种优良的天然非离子型表面活性成分,因此可采用泡沫分离法从天然植物中分离皂苷[29].泡沫分离法已广泛用于大豆异黄酮苷元、人参皂苷、无患子皂苷、竹节参皂苷、文冠果果皮皂苷等有效成分的分离.

大豆异黄酮苷元的分离Liu等[10]

采用泡沫分离与酸解方法从大豆乳清废水中分离大豆异黄酮苷元,指出从工业大豆乳清废水中提取的异黄酮苷元主要以β-苷元的形式存在,并利用傅里叶变换红外光谱分析发现大豆异黄酮和大豆蛋白以复合物的形式存在.研究结果表明,利用泡沫分离技术可以从大豆乳清废水中有效地富集大豆异黄酮,分离出大豆异黄酮苷元和β-苷元.

无患子总皂苷的分离魏凤玉等[30]

分别采用间歇和连续泡沫分离法分离纯化无患子皂苷,利用正交试验,考察了原始料液浓度、气体流速、温度、pH值等因素对无患子皂苷回收率的影响,确定了泡沫分离最佳工艺条件.林清霞等[31]采用泡沫分离技术分离纯化无患子皂苷,利用紫外分光光度计测定无患子皂苷含量,通过富集比、纯度及回收率判断分离纯化的效果.在进料浓度为、进料量为150mL、气速为32L/h、温度为30℃、pH值为时,得到富集比为,纯度与回收率分别为和.研究结果表明:无患子皂苷的回收率随着进料浓度的增大而减小,随着气速、进料量的增大而增大;富集比随着进料浓度、气速及进料量的增大而减小,pH值对富集比的影响较小;纯度随着进料浓度、气速的增大而降低,进料量、pH值对纯度的影响较小.

竹节参总皂苷的分离

竹节参的主要成分皂苷是一种优良的天然表面活性剂,而竹节参中的竹节参多糖、无机盐及氨基酸等是非表面活性剂,因此可根据表面活性的差异,采用泡沫分离技术对竹节参皂苷进行分离纯化[32-34].张海滨等[35]考察了气泡大小、pH值、原料液温度及电解质物质的量浓度等主要因素对泡沫分离竹节参总皂苷的影响,以富集比、纯度比及回收率等为指标分析分离纯化的效果,得出最佳工艺条件:气泡直径为,pH值为,温度为65℃,电解质NaCl浓度为.在最佳工艺条件下,总皂苷富集比为,纯度比为,回收率为,能够得到较好的分离.张长城等[36]研究了利用泡沫分离技术对竹节参中皂苷进行分离纯化的方法与条件,指出泡沫分离技术分离纯化竹节参皂苷具有产品回收率高、工艺简单、能耗低及不使用有机溶剂等优点,为竹节参皂苷的开发利用提供了技术支持.

文冠果果皮皂苷的分离

文冠果籽油是优质的食用油,含油率达35%~40%[37],同时可作为生物柴油的原料.文冠果果皮含有皂苷~.研究表明,文冠果果皮皂苷具有抗肿瘤、抗氧化及抗疲劳等功效[38].文冠果果皮皂苷的开发利用带来的附加价值可以有效地降低生物柴油的生产成本.在生产生物柴油的过程中需要处理大量的果皮,因此需要寻求一种简单可行、成本低、收率高以及对环境污染小的皂苷分离方法.吴伟杰等[39]使用自制起泡装置,研究了泡沫分离技术分离文冠果果皮总皂苷的可行性及最佳反应条件.研究得出泡沫分离文冠果皂苷的最佳工艺条件为:料液气体流速为,初始浓度为2mg?mL-1,温度为20℃,pH值为5.与泡沫分离人参、三七等皂苷的气体流速相比较,文冠果果皮的气体流速较低,这样可以更大限度地降低能耗、节约成本.同时,泡沫分离文冠果果皮皂苷可在室温条件下进行,降低了加热所需的能耗.此外,由于文冠果果皮皂苷的水溶液pH值在5左右,泡沫分离时无需调节pH值.在最佳工艺条件下,得到富集比为,回收率为,纯度为.研究表明,泡沫分离文冠果果皮皂苷可以达到较高的富集比、回收率和纯度,对于大力开发利用生物能源、综合利用文冠果以及降低生物柴油的成本有着重要意义.

3展望

泡沫分离技术是一种很有发展前景的新型分离技术,在食品工业中的应用将会越来越广泛,今后在天然产物及稀有物质的分离提取等方面有着更加广泛的应用.同时,泡沫分离技术也存在一定的局限性,为促进泡沫分离技术在食品工业中的应用发展,应该在以下方面进行深入研究:(1)对泡沫分离复杂物料实际分离过程的泡沫形成情况建立理论模型,对标准表面活性剂的分离提取建立标准数据库,对标准表面活性剂和非表面活性物质间的分离建立指纹图谱;(2)如何减少泡沫分离非表面活性物质时的表面活性剂消耗量;(3)如何解决泡沫分离高浓度产品时回收率低的问题;(4)目前泡沫分离设备存在局限性,应研究开发新型的适合食品工业分离的泡沫分离设备,提高泡沫分离的效果[40].

食品加工论文范文二:食品工业废水处理节能研究

食品工业包括制糖、酿造、肉类、乳品加工等,食品工业的废水主要来源于原料的处理、洗涤、脱水、过滤、脱酸、脱臭和蒸煮过程中产生的,这些废水含有大量的有机物、蛋白质、有机酸和碳水化合物,具有很强的耗氧性,如果不经处理直接排入水体会大量消耗水中的溶解氧,从而造成水体缺氧,造成水生生物的死亡。食品工业废水油脂含量高,多伴随大量悬浮物随废水排出,其中动物性食品加工排出的废水还可能含有病菌,此外,这些废水还含有铜、锰、铬等金属离子。近年来,随着食品加工业的快速发展,每年由此产生的废水量也呈现快速增长态势,许多废水未经有效处理便被直接排放,给环境产生了十分严重的破坏。因此,探讨食品工业废水处理对于生态环境保护具有非常重要的现实意义。

1食品工业废水处理工艺现状

目前,国内外对于食品工业废水的处理过程中主要采用的是生物处理工艺,其中主要包括有好氧生物处理工艺、厌氧生物处理工艺,以及由好氧生物处理工艺与厌氧生物处理工艺相结合的处理工艺。在好氧生物处理工艺方面,主要有活性污泥法(目前实际应用较为广泛的主要有SBR法)和生物膜法(具有代表性的是曝气生物滤池法)。由于厌氧生物处理工艺相较于好氧生物处理工艺无论在后期的运行管理费用还是前期的基建投资方面的费用都有较大优势,其中比较具有典型的处理工艺有厌氧颗粒污泥膨胀床(EGSB)工艺、第三代厌氧处理工艺———厌氧内循环反应器(IC)被广泛应用到了食品工业废水处理中。此外,厌氧生物处理工艺在处理食品工业废水方面具有良好的处理效果[1]。

2各种工艺特点及应用效果分析

目前国内外,食品工业废水的处理以生物处理[2]为主。在实际中运用较广,技术较为成熟的主要有厌氧接触法、厌氧污泥床法、浅层曝气、延时曝气、曝气沉淀池法等等。

好氧生物处理工艺

好氧生物处理是在不断供氧的环境中,利用好氧微生物来氧化有机物。在好氧过程中,微生物对复杂的有机物进行分解,一部分被转化为稳定的无机物CO2、H2O和NH3,一部分则由微生物合成为新细胞,最后去除污水中的有机物。

法,即间歇式活性污泥系统(又叫序批式间歇活性污泥法)。SBR法目前在国内外应用较为广泛,生物反应池中集中了生物降解过程、沉淀过程以及污泥回流功能为一体,这种工艺比较简单,它是在以前间歇式活性污泥工艺基础上发展来的一种新工艺,采用SBR法处理废水的运行过程一般包括了进水、充氧曝气、静止沉淀、排水和排泥五个步骤。与连续性活性污泥工艺相比,该工艺具有的有点主要有:曝气池兼具二沉池的功能,不设二沉池,也没有污泥回流设备,系统结构简单,易于管理;耐冲击负荷,一般无需设置调节池;反应推动力大,较为简便的得到优质出水水质;污泥沉淀性能好,SVI值较低,便于自控运行,后期维护管理也较为简便。居华[3]通过SBR法在酱油、酱菜食品废水处理中的应用研究后得出,原废水CODcr在2000mg/L~4000mg/L范围内,经SBR法处理后出水水质得到了二级标准,去除率达96%以上,没有出现污泥膨胀现象,而且操作管理方便,占地面积小,运行的费用也低。

法,即曝气生物滤池法。这种工艺最早可以追溯上个世纪80年代,是由欧美等国家应用和发展起来的,大连马栏河污水处理厂是我国最早采用BAF工艺。该工艺是在生物接触工艺基础上,在滤池中填装陶粒、石英砂等粒状填料,以填料及其附着生产生物膜为介质,发挥生物的代谢功能,通过物理过滤功能,发挥膜和填料的截留吸附作用从而实现污染物的高效处理。廖艳[4]等采用混凝—ABR与曝气生物滤池(BAF)联合处理工艺,对某市肉联厂高浓度废水化学需氧量和氨氮的去除研究后发现,化学需氧量和氨氮的去除效果从原水时的1500mg/L~4500mg/L、30mg/L~85mg/L,经处理后出水COD<100mg/L,氨氮<50mg/L,达到了国家一、二级排放标准,取得良好的环境和社会效益。

法,即膜生物反应器法。是上个世纪90年代逐渐发展起来的一种废水处理技术,该工艺是将膜组件替代传统的二沉池,实现固相和液相分离。其实质是把细菌和微生物以生物膜的方式附着在固体表面上,以污水中的有机物为营养物进行新陈代谢和生长繁殖,从而达到实现净化污水的效果。该工艺具有较强的抗冲击力,对水质和水量变化具有较强适应性;污泥产量较低且沉降性能优,易于固液分离;对于低浓度污水也可以进行处理,在正常运行时可以把原水中的BOD5由20mg/L~30mg/L降至5mg/L~10mg/L;运行费用也不高,管理方便。张亮平,王峰[5]以MBR在湖北某食品厂废水处理中的应用为例进行研究后发现,采用MBR-活性炭-杀菌联合工艺,出水COD和BOD的去除率达到了99%以上,系统工艺能耗低,运行稳定。

厌氧生物处理工艺

在食品废水处理过程中,厌氧处理法与好氧处理法相比由于产生的污泥少,动力流耗小,管理简便,既能节能又能降低成本,逐渐在高浓度有机废水行业———食品工业广泛推崇。

法,即升流式厌氧污泥床法。该种工艺是由高活性厌氧菌体构成的粒状污泥,在UASB装置内随上升的气流呈向上流动的状态。处理效率高、性能可靠、能耗低,也不需要填料和载体,运行成本低等优点,既可以处理高负荷废水,也不会产生堵塞等优点。也是当前应用最为广泛的高速反应器之一。王炜,何好启[6]研究发现,食品废水经由UASB+接触氧化法工艺处置后,CODcr、BOD5、SS和植物油由原水浓度的1170mg/L、570mg/L、600mg/L、150mg/L,处置后的效果为、、40mg/L和3mg/L,出水水质达到了《污水综合排放标准》中的一级标准,且工程的经济运行效益也良好,总运行费用约为元/m3,工艺占地小,处理成本低,运行方式灵活,值得推广。

反应器,即膨胀颗粒污泥床反应器。该工艺是在UASB基础上发展起来的一种新厌氧工艺,与UASB工艺相比,EGSB增加了出水的回流,提升了反应器中水流的速度,其速度可以达到5m/h~10m/h,比UASB的~高出近10倍。李克勋[7]等以天津某淀粉厂采用EGSB处理淀粉废水为例,EGSB的厌氧反应器对COD的去除率超过了85%,出水水质达到了国家一级排放标准,大量有机物被去除,后续单元的处理压力被减轻,此外,厌氧反应器的介入使用,可以产生沼气作为能源进行二次利用,降低运行费用(总运转费用为元/m3?d),具有良好的环境效益和社会效益。

法,即厌氧序批式活性污泥法。ASBR厌氧序批式活性污泥法最早诞生于上世纪90年代的美国,是在SBR基础上发展起来的,该工艺的显著特点是以序批间歇运行,按次序分为进水、反应、沉淀和排水四个步骤,与连续流厌氧反应器相比,该工艺由于不需要大阻力的配水系统,因此极大地减少了系统的能耗,也不会产生断流和短流,运行灵活,抗击能力较强,实现厌氧功能,也同时兼有了SBR的优点。

3厌氧生物处理工艺优势分析

与好氧生物处理工艺相比,在食品工业废水处理方面,厌氧生物处理工艺具有很多优势:工艺运行时污泥的剩余量非常少,由于不需要附加氧源而降低运行管理费用;食品工业废水有机物浓度高,而厌氧生物处理工艺拥有良好的抗高浓度有机物的冲击负荷力优势,能够做到间接性排放;另外,厌氧生物处理工艺能够产生沼气,实现资源的二次利用,真正实现了 变废为宝 ,降低能耗,因此,厌氧处理工艺在食品工业废水处理中是一种节能型废水处理工艺。作为低能耗而且能够产生二次能源的厌氧生物处理工艺必将成为食品工业废水处理的主流方向[8]。

róng jūn méi

lysozyme

溶菌酶是一种低分子量(14700道尔顿)的、不耐热的堿性蛋白质,其中富含精氨酸。溶菌酶为正常机体免疫防御机制的组成部分。因具有溶解细菌细胞壁的作用而得名,是能溶解某些细菌的一种糖水解酶。溶菌酶主要存在于动植物的组织液和某些微生物体内,如鼻粘液、眼泪、唾液、卵蛋白、枯草杆菌培养物和某些蔬菜中。该酶能水解细菌的细胞壁中N乙酰氨基葡萄糖和N乙酰胞壁酸之间的β1,4糖苷键,故又称胞壁质酶,即N乙酰胞壁质糖苷聚糖水解酶。现从鸡蛋清提取溶菌酶以及从霉菌中提取溶菌酶均已达工业化生产水平。对鸡蛋清溶菌酶的研究较详细,它是由129个氨基酸残基构成的一种堿性蛋白,分子量从~万,对热稳定,对堿不稳定,对革兰氏阳性细菌有较强的杀菌作用。

在人体内,溶菌酶存在于中性粒细胞、单核细胞和巨噬细胞内;也存在于黏膜分泌液中,成为体表防御因素之一。体内多数器官含有一定浓度的溶菌酶。以乳汁、唾液、肠道以及吞噬细胞溶酶体颗粒中含量较多,组织中含量较少。正但肾脏和脾脏的含量较多。单核细胞与巨噬细胞的溶菌酶位于细胞表面,故其释放活跃。而中性粒细胞的溶菌酶位于胞质深层,只在细胞裂解时才释放出来。正常的尿液、汗液及脑脊液中不含溶菌酶。某些疾病患者血清或体液内的溶菌酶活性值有显著差别,故测定溶菌酶活性日益受到临床重视。

溶菌酶能直接水解革兰氏阳性菌细胞壁中乙酰葡糖胺与乙酰胞壁酸分子间的连接,使细胞壁破坏,水分进入,细胞崩解。而革兰氏阴性菌细胞壁粘肽层外有一层脂多糖和脂蛋白,故不受溶菌酶的影响。在抗体存在下,脂多糖及脂蛋白受到破坏时,溶菌酶才能发挥作用;在有抗体、补体、溶菌酶共同存在时,其溶菌作用更为明显。

溶菌酶也存在于鸡蛋清和某些细菌中,可用工业生产的方法将其提纯并加工制成各种制剂,用来治疗中耳炎、咽喉炎、副鼻窦炎等慢性疾病。

溶菌酶可药用,具抗菌、清除局部坏死组织、止血、消肿、消炎等作用。在食品工业上可用作防腐剂,还可添加在牙膏中作为防治龋齿的药用牙膏。在发酵工业上是一种重要的溶菌剂,用于存作细胞壁,制备无菌体提取液。

球蛋白G ,溶菌酶

Lysozyme,Globulin G

有抗菌、抗病毒、止血、消肿及加快组织恢复功能等作用,故临床用于慢性鼻炎、急慢性咽喉炎、口腔溃疡、水痘、带状疱疹和扁平疣等。

口服:每次3~5片(肠溶片),1日3次。口含:每次1片,1日4~6次。外用:用等渗盐水或注射用水或甘油配成1%~2%溶液外搽。治水痘时,每日每千克体重10mg,分3~4次服。

片剂(肠溶片):每片10mg。口含片:每片20mg。

正常人尿中无溶菌酶。某些疾病患者血清或体液内的溶菌酶活性值有显著差别,故测定溶菌酶活性日益受到临床重视。常用的方法有琼脂平板法、比浊法。

Lysozyme

血液生化检查 > 酶类测定

血液

(1)琼脂平板法:根据溶菌酶能使革兰阳性菌细胞壁溶解,尤以对腐生菌。如溶壁微球菌(M.lysodeikticus)最为敏感,故常以溶解溶壁微球菌为指标,可对溶菌酶的活性进行测定。溶壁微球菌与琼脂混合,被检物(含溶菌酶)与该菌作用后,细菌因细胞壁破坏而溶解。致使加样孔周围出现溶菌环。溶菌环直径与样品中溶菌酶含量的对数成直线关系。

(2)比浊测定法:一定浓度的混浊细菌溶液中,由于溶菌酶水解细菌细胞壁黏多肽使细菌裂解,浓度降低,透明度增强,根据浊度变化来推测溶菌酶的含量。

同琼脂平板法和比浊法测定。

同琼脂平板法和比浊法测定。

血清:5~30mg/L(琼脂平板法);~14mg/L(比浊测定法)。脑脊液:0mg/L(琼脂平板法)。唾液:30~70mg/L(比浊测定法)。尿液:0mg/L(琼脂平板法);1~3mg/L(比浊测定法)。

由于方法与实验条件不同,测定结果有所差别,故各实验室应建立自己的正常值标准。

血清溶菌酶测定对鉴别各型急性白血病有一定意义,急粒与急单血清溶菌酶升高;而急淋、急性红白血病降低或正常;经化疗奏效病情缓解后,溶菌酶水平可恢复。血清溶菌酶测定可作为判断局限性肠炎活动性的一个有用的指标,并且有助于判断临床过程的严重程度和对治疗的反应。

尿液溶菌酶含量增高的原因有:①肾小管损害;②高溶菌酶血症;③肾组织破坏。临床上测定尿液溶菌酶主要是作为肾小管损害的一个指标,各种原因的肾小管损害都可引起尿溶菌酶含量增高。肾移植患者定期检查尿溶菌酶活性十分必要。如移植肾接受良好,则溶菌酶活性在7天内恢复正常;若尿中过多的溶菌酶持续存在,必须疑及排斥反应的发生。

细菌性脑膜炎患者脑脊液(CSF)溶菌酶含量远较病毒性脑膜炎患者的含量高。因此,用溶菌酶测定对二者的鉴别有重要意义。此外。CSF溶菌酶测定对中枢神经系统的原发性或继发性肿瘤有一定辅助诊断价值。

慢性支气管炎患者痰液中溶菌酶含量降低;重症肺结核、泌尿系统感染患者血清或尿液中溶菌酶活性均可显著升高。此外,溶菌酶含量测定亦可作为判断局限性肠炎活动性指标。并有助于对临床过程的严重程度和治疗反应进行评价。

有关标本保存期限、溶菌酶标准液的保存时间,文献资料众说不一。一般地说,标本应新鲜,溶菌酶标准液应在临用时准确配制,测定检样中溶菌酶活性。目前已有用抗人溶菌酶抗体建立的溶菌酶免疫测定法。由测酶活性改为测酶含量,初步认为此法具有特异、灵敏、准确等优点。

头孢菌素发酵工艺研究进展论文

上面多哈,呵呵好就给我分哦

1. 第一代头孢菌素 注射剂主要适用于甲氧西林敏感葡萄球菌、溶血性链球菌和肺炎链球菌所致的上、下呼吸道 感染、皮肤软组织感染、尿路感染、败血症、心内膜炎等;亦可用于流感嗜血杆菌、奇异变形杆菌、大肠埃希菌敏感株 所致的尿路感染以及肺炎等。头孢唑林常用于预防手术后切口感染。 头孢拉定、头孢氨苄等口服剂的抗菌作用较头孢唑林为差,主要适用于治疗敏感菌所致的轻症病例。2.第二代头孢菌素 主要用于治疗甲氧西林敏感葡萄球菌、链球菌属、肺炎链球菌等革兰阳性球菌,以及流感嗜血杆菌、大肠埃希菌、奇异变形杆菌等中的敏感株所致的呼吸道感染、尿路感染、皮肤软组织感染、败血症、骨、关节 感染和腹腔、盆腔感染。用于腹腔感染和盆腔感染时需与抗厌氧菌药合用。头孢呋辛尚可用于对磺胺药、青霉素或氨苄 西林耐药的脑膜炎球菌、流感嗜血杆菌所致脑膜炎的治疗,也用于手术前预防用药。 头孢克洛、头孢呋辛酯、头孢丙烯等口服剂,主要适用于上述感染中的轻症病例。头孢呋辛酯口服尚可用于淋病奈 瑟球菌(包括产青霉素酶及非产青霉素酶菌株)所致单纯性淋菌性尿道炎、宫颈炎、直肠肛门感染。3.第三代头孢菌素 适用于敏感肠杆菌科细菌等革兰阴性杆菌所致严重感染,如下呼吸道感染、败血症、腹腔感 染、肾盂肾炎和复杂性尿路感染、盆腔炎性疾病、骨关节感染、复杂性皮肤软组织感染、中枢神经系统感染等。治疗腹 腔、盆腔感染时需与抗厌氧菌药如甲硝唑合用。本类药物对化脓性链球菌、肺炎链球菌、甲氧西林敏感葡萄球菌所致的 各种感染亦有效,但并非首选用药。头孢他啶、头孢哌酮尚可用于铜绿假单胞菌所致的各种感染。 第三代口服头孢菌素主要用于治疗敏感菌所致轻、中度感染,也可用于经第三代头孢菌素注射剂治疗病情已基本好 转后的病例;但需注意第三代口服头孢菌素均不宜用于铜绿假单胞菌和其他非发酵菌的感染。4.第四代头孢菌素 目前国内应用者为头孢吡肟。本药的抗菌谱和适应证与第三代头孢菌素同,尚可用于对第三 代头孢菌素耐药而对其敏感的产气肠杆菌、阴沟肠杆菌、沙雷菌属等细菌感染,亦可用于中性粒细胞缺乏伴发热患者的 经验治疗。 所有头孢菌素类对甲氧西林耐药葡萄球菌和肠球菌属抗菌作用均差,故不宜选用于治疗上述细菌所致感染。

我国自20世纪70年代起开始研发头孢菌素类品种,目前仍以品种的仿制研发为主,至多只是一些工艺上的改进和创新,对产品的精细研究仍然较少。国内创新研究开发成功品种头孢硫脒在仿制过程中,上海医药工业研究院研制成功头孢硫脒。据发表的临床引用文章显示,分别用头孢唑林(一代)、头孢呋辛(二代)、头孢噻肟(三代)作对照,头孢硫脒的临床疗效分别优于头孢唑林、头孢呋辛,与头孢噻肟相近。 由青霉素扩环得到7ADCA7ADCA所制备的头孢菌素类品种有C3位未改造品种,第一代到第三代加头孢氨苄、头孢他美酯等。青霉素出路之一是精加工生产6APA、7ADCA,2002年一季度国内生产7ADCA即达210吨以上。由头孢菌素C裂解制备7ACA以7ACA为母核所制备的头孢菌素类品种占绝大多数,如:头孢噻吩、头孢呋辛、头孢曲松、头孢吡肟等。近几年国内的7ACA已得到长足发展,已能满足大量出口,2005年一季度即生产620吨(医药经济报,2005629)。但头孢菌素C裂解后的产物,应综合利用,其中的去乙酰7ACA是某些头孢菌素类品种的重要中间体,如制备头孢呋辛中C3位即要去乙酰基。由青霉素G钾盐制备GCLE(或GCLH)目前头孢菌素类品种的制备除运用7ADCA、7ACA母核合成目标物以外,还有一重要母核即GCLE,它是某些C3修饰品种必不可少的原料,用GCLE(或GCLH)可制备头孢菌素类品种见图5。 C7位氨基改造化学合成现有文献及实际生产时所用的方法有:(1)酰氯法(包括改进的酰氯法):其中:氯化剂有PCl5、SOCl2、POCl3等。(2)混合酸酐法:其中:成酐剂有特戊酰氯、氯甲酸异丙酯等。(3)活性酯法:本方法用Ph3P/促进剂DM、(C2H5O)3P、(CH3O)3P。本活性酯制备用DCC/HOBT。此方法用得最多。上述三种方法中,以活性酯法为最好,此法可以避免另外二种方法的不利因素。7α改造为甲氧基的化学合成(1)由7ACA为起始物制备7α甲氧基7ACA。(2)由GCLE制备AMTZE前述制备7α甲氧基7ACA方法提示,可由GCLE为起始原料制备AMCE,进而制备AMTZE,如图7所示。AMCE为头孢美唑、头孢米诺、头孢替坦和头孢拉宗的重要中间体,占目前上市的5个甲氧头孢中的4个。C3位改造的化学合成(1)由GCLE转碘化物法C3位改造可直接用GCLE在C3CH2Cl改造为C3CH2I接不同的侧链,如:甲硫四氮唑、N甲基吡咯烷酮等。收率高,质量好,但GCLE有效部位少。(2)碱性溶液加热法本方法针对少数早期品种,如头孢磺啶,用硫氰酸钾和异烟酰胺在水溶液中加热40~80℃而制得。本方法收率高,色泽深,不易纯化。(3)三氟化硼/乙腈或浓硫酸法制备C3CH2SR。此外,如头孢曲松、头孢唑南和头孢曲嗪等均选用此方法之一进行C3的改造。(4)硅基化保护碘化法近年来,随着硅试剂在头孢菌素品种中的应用,利用其三甲基硅基保护7ACA的伯胺和羧羟基,而后进行C3位碘代再接相应的硫基杂环、含氮杂环、含氮稠环均得到成功,且不需要用GCLE法中C3位改造后,还需退去C7位和C2位的保护基步骤。C2位酯化反应头孢菌素类品种在C2COOH形成酯后,适用于口服。酯化反应通用的是卤代物法,且均在对其C7和C3改造成功后进行。卤代物最好用碘化物,溴代物次之,不用氯代物和氟代物,可用的卤代物(图12)。 头孢菌素类品种在国内仍是抗感染药物的主力军据2004年中国医院用药商情(IMS)统计数据,2004年国内销售的头孢菌素类品种多达36种,销售额达160亿元以上,上亿元的品种有21个,其中十亿元以上的有五个,而实际未统计在内的销售额远不止于此。国内生产现状与国外主要国家的比较中国药典2005年版共收载15个品种,其中只有头孢硫脒为我国自主研发,进入药典的品种明显少于美、日等国。因此有必要加强仿制品种的研究,特别是第二代品种(表1)。国内医药企业应加大工艺研究一方面应加大第三代、第四代品种的工艺研究,另一个方面应加强现有品种工艺的进一步完善,以适应急剧增长的市场需求。产品的溶解加强对现有品种和在研品种的微粉化研究,建议引进气流粉碎机解决产品溶解性能。7ACA的标准问题国内7ACA现生产厂家近十家,但产品质量参差不齐,应着手建立7ACA的统一标准,便于对头孢菌素产品的收率和质量的控制。 (1)开发窄谱品种在治疗复杂性混合感染中广谱抗生素发挥发挥了重大作用,但在一般情况下临床亦选用窄谱抗生素,如头孢磺啶(第二代)对铜绿假单胞菌十分有效,除氨基糖苷类外为首选品种。(2)大力研究第四代头孢菌素类品种工艺,以期得到真正意义上的工业化生产。(3)应加强以7ACA为原料的口服头孢品种的仿制研发。国内口服头孢菌素发展极快,在2004年销售千万元以上的十余个品种中,口服品种占很大比例。(4)创新品种的研究走“metoo”路线。国内在氨基糖苷类方面已开发出依替米星、威他米星。头孢菌素类亦可效仿。(5)对一些新剂型进行研发,如β内酰胺类抗生素是时间依赖型抗生素,因此开发一些缓释产品解决半衰期短的问题。如美国药典就已收载头孢克洛的缓释胶囊。(6)对甲氧基头孢菌素类品种的仿研应加大力度,加快步伐对“头霉素C”的生物发酵进行研究,但目前更多的还是从7ACA、GCLE出发用化学方法合成7α甲氧基母核。在完成现有品种的仿研的同时从中寻找“metoo”类新品种。

海洋生物来源药物先导化合物的研究进展【摘要】 海洋生物中活性物质丰富,本篇文章对国内外近3年来从海洋生物中分离提取到的萜类化合物以及糖苷类化合物进行了归纳,并对其研究趋势进行了展望。这些新发现的萜类化合物广泛分布于海藻、珊瑚、海绵以及一些海洋真菌等海洋生物中,主要以单萜、倍半萜、二萜、三萜结构型式存在;而糖苷类化合物在海藻、海绵、海参、海星等海洋生物中发现大部分以糖苷脂、甾体糖苷、萜类糖苷型式存在。【关键词】 海洋生物 萜类化合物 糖苷类 生物活性【Abstract】 Marine organism show some important biological activities. This paper reviews terpenoids and glycosides from marine organism at home and abroad since 2005, and provides scientific evidence for reasonable exploitation and application. Terpenoids are mainly occurred on marine algae, coral, sponge and some fungi by monoterpene, sesquiterpene, diterpene and triterpene. And glycosides with structures of lipid, steroid and terpenoid are distributed to marine algae, sponge, sea cucumber and starfish.【Key words】 Marine organism; terpenoid; glycoside; bioactivity海洋是生命之源,由于海洋环境的特殊性,具有高压、低营养、低温(特别是深海)、无光照以及局部高温、高盐等生命极限环境,海洋生物适应了海洋独特的生活环境,必然造就了海洋生物具有独特的代谢途径和遗传背景,必定也会有新的、在许多陆地生物中未曾发现过的新结构类型和特殊生物活性的化合物。萜类物质是一类天然的烃类物质,其分子中具有异戊二烯(C5H8)的基本单位。故凡由异戊二烯衍生的化合物,其分子式符合(C5H8)n通式的均称萜类化合物(terpenoids)或异戊二烯类化合物(isopenoids)。但有些情况下,在分子合成过程中由于正碳离子引起的甲基迁移或碳架重排以及烷基化、降解等原因,分子的某一片断会不完全遵照异戊二烯规律产生出一些变形碳架,它们仍属于萜类化合物。海洋生物中萜类化合物主要以单萜、倍半萜、二萜、二倍半萜为主,三萜和四萜种类和数量都较少,且大部分以糖苷形式存在。萜类化合物是海洋生物活性物质的重要组成部分,广泛分布于海藻、珊瑚、海绵、软体动物等海洋生物中,具有细胞毒性、抗肿瘤活性、杀菌止痛等活性作用。糖苷的分类有多种方法,按照在生物体内是原生的还是次生的可将其分为原生糖苷和次生糖苷(从原生糖苷中脱掉一个以上的苷称为次生苷或次级苷);按照糖苷中含有的单糖基的个数可将糖苷分为单糖苷、双糖苷、三糖苷等;按照糖苷的某些特殊化学性质或生理活性可将糖苷分为皂苷、强心苷等;按照苷元化学结构类型可分为黄酮糖苷、蒽醌糖苷、生物碱糖苷、三萜糖苷等,海洋类的糖苷大部分是按照此特点分类的,主要包括鞘脂类糖苷、甾体糖苷、萜类糖苷和大环内酯糖苷等,在很多海洋生物如海藻、珊瑚、海参、海绵等中均发现有糖苷类化合物存在。已有的研究表明海洋糖苷类成分大都具有抗肿瘤、抗病毒、抗炎、抗菌、增强免疫力等生物活性。抗白血病和艾氏癌药物阿糖胞苷Ara-C(D-arabinosyl cytosine) 1、抗病毒药物的Ara - A 2以及Ara-C的N4-C16-19饱和脂肪酰基化衍生物3是海洋糖苷类药物成功开发的典范〔1〕。本篇文章对国内外自2005年来从海洋生物中分离提取到的萜类化合物以及糖苷类化合物进行了总结。1 萜类化合物 单萜 2005年M. G. Knott等人〔2〕对从红藻Plocamium corallorhiza中分离得到的三种多卤代单萜化合物plocoralides A-C(1~3)〔3,4〕进行了活性研究,发现化合物Plocaralides B(2), C(3)对食管癌细胞WHCOI具有中等强度的细胞毒作用,这些化合物具有卤素取代基。 倍半萜 从海泥来源的真菌Emericella variecolor GF10的发酵液中分离得到两个新型的倍半萜化合物6-epi-ophiobolin G(4)和6-epi-ophiobolin N(5),化合物在1~3μM浓度时能使神经癌细胞Neuro 2A凋亡,同时伴随细胞萎缩和染色体聚集〔5〕。这一类ophiobolins是天然的三环或四环的倍半萜化合物,对线虫、真菌、细菌以及肿瘤细胞有着普遍的抑制活性。Willam Fenical等人从海洋沉积物分离得到一株放线菌CNH-099,在该菌的代谢产物中分离到具有细胞毒作用的新颖的 marinonc 衍生物 neomarinone(6)、isomarinone(7)、hydroxydebromomarinone(8)和methoxydeuromomarinonc(9),它们均是倍半萜萘醌类抗生素。Neomarinone(6)和marinones(7~9)对HCrll6结肠癌细胞显示中等程度的体外细胞毒作用(IC50=8μg/ml),而且,neomarinone(6)对NCI-s60癌细胞也具有中等程度细胞毒作用(IC50=10μg/ml)〔6〕。化合物花侧柏烯倍半萜(10~12)从希腊北爱情海希俄斯岛采集的红藻 L. microcladia中分离得到〔7〕。红藻 L. microcladia 经有机溶剂CH2Cl2/MeOH (3:1)提取,以Cyclohexane/EtOAc(9:1)为洗脱液进行硅胶柱层析,最后经HPLC纯化得到化合物(10-12)。该试验并对化合物活性进行了研究,发现三种化合物均对肺癌细胞NSCLC-N6 和 A-549有抑制作用,化合物(10):IC50= μM (NSCLC-N6)和 μM (A-549),化合物(11):IC50 = μM (NSCLC-N6) 和 μM (A-549) ,化合物(12):IC50= μM (NSCLC-N6)和 μM (A-549)。后两个化合物对肺癌细胞毒活性作用明显高于第一个化合物,推测可能由于后两个化合物结构中酚羟基以及五环内双键的存在提高了化合物活性,而化合物中溴原子的存在并没有对其活性构成影响。从中国南京采集的红藻L. okamurai也分离出四种衍生的花侧柏烯倍半萜化合物,分别是Laureperoxide (13), 10-bromoisoaplysin (14), isodebromolaurinterol (15)和10-hydroxyisolaurene (16)〔8〕。5种snyderane倍半萜(17~21)化合物从红藻L. luzonensis中分离得到〔9〕。从一个软海绵种属Halichondria sp中分离得到四种具有抗微生物活性的含氮桉烷倍半萜化合物halichonadins A-D(22~25)〔10〕。该海绵采集于日本冲绳运天港, kg样品溶于4L MeOH,所得的115g MeOH提取物分别用1200ml EtOAc和400MlH2O萃取, EtOAc萃取物经硅胶柱层析后,洗脱液为MeOH/CHCl3(95:5)和石油醚/乙醚(9:1),得到化合物halichonadins A-D(22~25)和已知化合物acanthenes B、C。活性检测实验显示:化合物halichonadins A-D均具有抗细菌活性,同时halichonadins B和C也具有抗真菌活性,化合物halichonadins C对新型隐球菌(Cryptococcus neoformans)的半致死浓度(IC50)达到μg/ml。三个部分环化的倍半萜(26~28)化合物具有抑制磷酸酶Cdc25B活性,从海绵Thorectandra sp.中分离得到〔11〕。冷冻的海绵样品经4℃去离子水浸泡冷冻干燥后得到的干涸物, 随后用MeOH/CH2Cl2(1:1)和MeOH/H2O(9:1)的有机溶剂提取获得粗提物。采用活性追踪的方式,对粗提物(IC50=8μg/ml)进一步分离,将其溶于100mlMeOH/H2O(9:1)有机溶剂中,得到的粗提物加入300ml正己烷,获得水相部分溶于MeOH/H2O(7:3)的溶剂中,再用300ml CH2Cl2提取得到的部分经活性测定显示对磷酸酯酶抑制活性最强(IC50=6μg/ml),之后采用反相C-18柱HPLC分离,得到部分环化的倍半萜化合物(26)16-oxo-luffariellolide(12mg, tR=18min),化合物(27) 16-hydroxy-luffariellolide ( mg, tR=19min)以及化合物(28) luffariellolide (, tR=38min)。五种属于倍半萜类的化合物hyrtiosins A-E (29~33),从中国海南两个不同地方的海绵Hyrtios erecta种属中分离得到〔12〕。氧化的倍半萜化合物gibberodione(34), peroxygibberol(35) 和 sinugibberodiol(36)从台湾软珊瑚Sinularia gibberosa分离得到〔13〕,化合物(35)具有较温和的细胞毒性〔14〕。从珊瑚Eunicea sp.中提取的七种倍半萜代谢产物(37~43)〔15〕,含有榄烷,桉烷和吉玛烷骨架结构,研究显示对Eunicea 种属的疟原虫具有轻度的抑制作用。 二萜 以前很少有从绿藻中分离得到萜类化合物的报道,但是与2004年相比,提取的代谢产物数量有所增加〔16〕。从澳大利亚塔斯马尼亚采集的绿藻Caulerpa brownii中分离出许多新型二萜类化合物,其中化合物(44~48)在没有分支的绿藻中提取得到〔17〕,而类酯萜化合物(49)是从分支的绿藻中获得,该研究同时显示提取的类酯萜化合物对细胞、鱼类、微生物均有不同程度的毒性作用〔18〕。日本Koyama K等人从褐藻Ishige okamurae来源的未知海洋真菌(MPUC 046)中分离到一种新型的二萜类化合物phomactin H(50)〔19〕。真菌(MPUC 046)经含150g小麦的400ml海水25℃发酵培养31天后,采用CHCl3溶剂提取、硅胶层析及HPLC纯化得到phomactin H。该化合物同已发现的phomactin A-G化合物一样,均属于血小板活化因子(PAF)拮抗剂,能抑制PAF诱导的血小板凝聚,同时推测此活性与化合物的某个特定骨架结构有关。从法国南部大西洋海滨采集的褐藻Bifurcaria bifurcata中分离得到(51~55)五种新型的极性非环状二萜类化合物〔20〕。该褐藻经CHCl3/MeOH(1:1)提取,硅胶层析(洗脱液为不同比例的Hexane,EtOAc,MeOH),经反相C-18柱HPLC纯化获得十二种化合物,其中五种为新型二萜类化合物。化合物(51~53)在Hexane: EtOAc(2:3)洗脱液中发现,而化合物(54)和(55)则从Hexane: EtOAc(1:4)洗脱液中获得。6种新型的Dactylomelane二萜类化合物 (56~61)从西班牙特纳里夫南部家那利群岛采集的红藻Laurencia中分离得到〔21〕,其结构具有C-6到C-11环化的单环碳新型结构。采集的红藻经CH2Cl2/MeOH(1:1)有机溶剂提取后,用洗脱液Hexane/CHCl3/MeOH(2:1:1)进行Sephadex LH-20反相色谱分离,结合TLC点样筛选的部分用洗脱液EtOAc/hexane(1:4)进行硅胶柱层析,最后采用硅胶柱进行HPLC纯化得到六种新型的单环碳二萜类化合物Dactylomelans。从红藻L. luzonensis中也分离得到二萜类化合物luzodiol (62)〔9〕。一个溴代二萜类化合物 (63)从日本其他红藻Laurencia物种中分离得到 〔22〕。Xenicane二萜类化合物(64~71)从台湾珊瑚Xenia blumi分离出来,而化合物xeniolactones A-C (72~74)则是从台湾Xenia florida中分离出来的〔23〕。化合物 (64~67), (69), (70) 和 (72)具有轻微的细胞毒性作用。非Xenicane代谢产物xenibellal (75)对Xenia umbellata也具有轻微的细胞毒性作用〔24〕。化合物Confertdiate (76)是一个四环的二萜类物质,从中国珊瑚Sinularia conferta中分离得到〔25〕。从史密森尼博物院癌症研究所收集的海葵中分离得到的二萜类化合物actiniarins A-C (77~79)能适度抑制人cdc25B磷酸酶重组〔26〕。 Periconicins A,B (80~81)〔27〕是从内生红树林真菌Periconia sp.分离得到的二萜类的新化合物,能抑制不同微生物的生长活性,诸如bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 6358p, Staphylococcus epidermis ATCC 12228等等。南海真菌2492#是从采自香港红树林植物Phiagmites austrah样品中分离得到的,从2492#菌株的发酵液中分离得到的两种二萜类化合物 (82~83)有很好的生理活性〔28〕,如抗肿瘤、降压、调整心率失常,同时降压调整心率失常的作用在相同的条件下优于临床现用的阳性对照物。从中国红树林植物Bruguiera gymnorrhiza分离出二萜类化合物 (84~86),化合物(86)对小鼠成纤维细胞具有适当的细胞毒活性〔29〕。也从中国红树林另一物种Bruguiera sexangula var. rhynchopetala分离出三种二萜类化合物 (87~89) 〔30〕。与之结构相似的二萜类化合物 (90~93)从中国Bruguiera gymnorrhiza中分离得到,其中化合物 (92)和 (93)有轻微的细胞毒活性〔31〕。 二倍半萜 Willam Fenical研究小组从曲霉属Aspergillus海洋真菌(菌株编号CNM-713)分离到一个新的二倍半萜化合物aspergilloxide (94),该化合物为含有25个碳原子的新骨架,对人的结肠癌细胞HCT-116有微弱的细胞毒活性〔32〕。在此之前,Willam Fenical等人从巴哈马的红树林中的漂浮木中也分离到一株真菌Fusarium heterosporum CNC-477, 并从中分离得到一系列多羟基二倍半萜类化合物neomangicols A-C(95~97)〔33〕和mangicols A-G (98~104)〔6〕,它们的结构如下图所示。Neomangicols的骨架为25个碳的二倍半萜,是首次从天然物中分离得到。药理实验显示化合物 (96)具有和庆大霉素大致相当的对革兰阳性细菌的抑制能力,化合物 (98)和 (99)对MPA(phorbol myristate acetate)诱导的鼠类耳朵水肿有抗炎症活性。 三萜 从海洋生物中提取得到的三萜类化合物主要以三萜皂苷、三萜烯类、三萜糖苷等形式存在。四环三萜皂苷类化合物nobilisidenol (105) 和 (106)是从中国黑乳海参Holothuria nobilis分离得到的〔34〕。采集于福建东山的黑乳海参洗净切碎后用85%的EtOH冷浸提取,得到的流浸膏均匀分散于水中,依次用石油醚、二氯甲烷、n-BuOH萃取,研究发现n-BuOH提取物经大孔吸附树脂、正相硅胶层析、反相C-18硅胶柱层析以及反相C-18 柱HPLC分离得到三萜皂苷类化合物nobilisidenol (105)和(106)。易杨华等同时从海参中提取到了其它的三萜糖苷类化合物以及三萜皂苷脱硫衍生物〔35,36〕。三萜烯类化合物intercedensides D-I(107-112)从中国海参Mensamaria intercedens中分离得到,具有细胞毒功能〔37〕。新西兰海参Australostichopus mollis是单硫酸酯三萜糖甙化合物mollisosides A(113), B1(114) 和 B2(115)的来源〔38〕。具有细胞溶解作用的三萜类化合物sodwanone S (116)是从印度洋多毛岛采集的海绵Axinella weltneri中分离得到的〔39〕。三萜苷类化合物sarasinosides J-M (117-120)分离自印尼苏拉威西岛采集的海绵Melophlus sarassinorum,对B. subtilis和S. cerevisae的细菌具有抗微生物活性作用〔40〕。2 糖苷类化合物从中国海南采集的甲藻A. carterae中分离得到一种不饱和的糖基甘油酯化合物(121)〔41〕。甲藻采集于中国海南三亚,经分离筛选得到的A. carterae大规模培养后用甲苯/MeOH(1:3)的有机溶剂提取,所得干涸物分别用甲苯、1N NaCl 水溶液提取。研究发现有机相提取物经硅胶柱(洗脱液为不同比例的MeOH/CHCl3)、反相C-18硅胶柱层析(洗脱液为MeOH/H2O=9:1),最后经反相C-18柱制备型HPLC(流动相为MeOH/H2O =95:5)分离纯化得到25mg不饱和的糖基甘油酯化合物(121)。从多米尼克普次矛斯采集的绿藻Avrainvillea nigricans中可以分离出一个甘油酯avrainvilloside(122),该化合物含有6-脱氧-6-氨基糖苷部分〔42〕。两个甘油一酯化合物homaxinolin(123)和(124),磷脂酰胆碱homaxinolin(125)以及能抑制细胞生长的脂肪酸(126)是从韩国海绵Homaxinella sp.中分离得到的〔43〕。从红海采集的海绵Erylus lendenfeldi分离得到的两个甾体糖苷类化合物erylosides K(127)和L(128)能选择性的抑制酵母菌株的rad50芽体,rad50能修复协调受损的双链DNA〔44〕。海参Stichopus japonicus是五种糖苷化合物SJC-1(129),SJC-2(130), SJC-3(131), SJC-4(132) 和 SJC-5(133)的主要来源〔45〕。五种化合物均从弱极性CHCl3/MeOH部分分离出来,其中SJC-1(129), SJC-2(130), SJC-3(131)是典型的鞘甘醇或植物型鞘甘醇葡萄糖脑苷脂类化合物,含有羟基化或非羟基化的脂肪酰基结构。SJC-4(132) 和 SJC-5(133)也含有羟基化的脂肪酰基结构,但是含有独特的鞘甘醇基团,是两种新型的葡萄糖脑苷脂类化合物。Linckiacerebroside A(134)是从日本海星Linckia laevigata分离出的一种新型糖苷脂化合物〔46〕。甾体糖苷孕甾-5, 20-二烯-3β-醇-3-O-α-L-吡喃岩藻糖苷(135) 和 孕甾-5, 20-二烯-3β-醇-3-O-β-D-吡喃木糖苷(136)从中国短足软珊瑚Cladiella sp.中分离得到〔47〕。将新鲜的软珊瑚干质量 kg用乙醇在室温下浸泡 3 次, 合并提取液, 减压浓缩后得到深褐色浸膏 用30%的甲醇溶解后, 依次用石油醚、乙酸乙酯、正丁醇萃取, 石油醚提取液经减压浓缩后得棕黑色胶状物 ,将此提取物硅胶柱减压层析, 用石油醚乙酸乙酯溶剂体系梯度洗脱, 从石油醚/乙酸乙酯(20:80)洗脱液中所得的洗脱部分在反相C-18柱上进行HPLC分离, 用MeOH洗脱得到化合物60mg(135)和3mg(136),该类化合物具有抗早孕和抑制肿瘤细胞生长活性。四种甾体糖苷化合物(137-140)是从中国珊瑚Junceella juncea EtOH/CH2Cl2提取液中分离得到〔48〕。3 结语目前,从海洋生物中发现的萜类和糖苷类天然化合物的数量近几年呈现逐渐增加的趋势,有些化合物的活性确切而且活性作用强烈是很有希望的一些药物先导化合物,但是用于临床研究的化合物还相对较少,因此开发更多新的天然化合物是有必要的。其次,从海洋生物中发现的活性化合物也存在着活性较低或毒性较大等问题,可以通过对其结构进行修饰,使其活性达到最佳效果。此外,从海洋生物中提取的活性化合物含量通常较低,而且化合物在提取过程中受到提取试剂、方法等外界因素的影响,所以采用化学合成的方法进行化合物的半合成或者全合成解决化合物在提取过程中结构易变、试剂耗量大等缺点。例如从海洋真菌中发现的结构新颖,有抗菌、抗癌和神经心血管活性的物质头孢菌素C,就是从海洋真菌中分离得到的,这是一大类半合成的广为人知的抗生素,它已广泛用于临床〔49〕。所以采用合成或半合成的方法解决活性化合物作为药源的大量生产方式是通行的。我们期待着这些药物先导化合物在药物开发方面发挥重要作用。

枯草杆菌的发酵生产研究型论文

先进入了配料间,在配料间有许多设备,刚一进门右边是配料罐,就是把原物料按照比列配好装进料车,进行搅拌混匀。配料罐下边就有一个高压泵。该绷得功能就是把配好的物料通过管道压入储料罐,在配料罐旁边就有一个卧式的储水罐,该罐主要是和配好的干物料进行混合形成料浆,,在储料罐前面有一个维持罐,该罐主要是将干物料和水混合后灭菌。在储料罐下方也有一个高压泵,将干物料压入维持罐。在灭菌时过程要求比较严格,整个管路,包括通往发酵罐的管路,还有发酵罐都需要蒸汽灭菌,至于灭菌的时间随情况而定,一般至少需要一个小时。由于原料比较贵,而且投入量比较多,所以一般灭菌时间较实验室长。 从配料间出来看到一排很歪曲的管路,这就是喷淋降温管,因为灭过菌的培养基温度很高,在120度左右,将他送入发酵罐后降温过程比较慢,所以再送入发酵罐前进行降温。该降温管路设计巧妙,通过用冷水喷淋,可以在很快时间内将培养基降至80—90度。 在配料间外面还有一个空气过滤机,它通过好几重过滤,把空气变成无菌空气,并将之通过管路送入发酵罐。 发酵罐是几个比较大的罐子,高达十几米,容积达到上百吨。在我们参观过程中,发现他们的发酵罐和我们在实验室看到大体相同,只是他们的取样口在中间,而且,他们的放料口和排污口在同一管道,是通过阀门控制的。整个发酵罐通过电子检测,温度,压力,pH值等项。 在发酵罐旁边有种子罐,主要是培养种子菌,在种子长到对数期时通过管道被输送到发酵罐中。发酵罐中发酵周期一般是6到7天。 发酵后的发酵液通过管道输送到过滤车间中,该车间的设备是无机陶瓷膜过滤器,经过过滤后滤液中含有高浓度的肌苷。下一步就是把滤液进一步浓缩。所以我们又参观了浓缩车间。该车间的设备是一个三效浓缩机,是把滤液经过三重过滤,将水分通过真空抽掉,使之浓度升高。三效浓缩机是由三个罐子组成。浓缩车间产出的物料经管道输送到精制车间,主要工艺是经过降温,离心,洗涤等。降温过程是在短时间内将产品降到5度以下,经过离心使其结晶。经洗涤后在离心,最后将产品取出,这时的产品就是初肌苷。 初肌苷在另一车间被进一步精制,将之送入脱色罐中进行脱色,在罐中主要是通过活性炭吸附产品表面的色素和杂质。经过一段时间的脱色,在通过脱色罐下方的空气压滤机将活性炭滤去。 经过这些工艺后产出的产品就是肌苷了,经过检测,合格的可以出售或者用于加工其他药品。

枯草芽孢杆菌在发酵过程中产生乳酸,使PH值降低它在厌氧呼吸作用时释放能量,温度升高

枯草芽孢杆菌产生的对热、紫外线、电磁辐射和某些化学药品有强抗性的芽孢,可忍受各种不良环境,能防治多种植物病害,易定殖在植物表面。其芽孢可以制成粉剂、可湿性粉剂等各种剂型的生防制剂而应用于农业生产,此制剂具有与化学农药混用而不失活的特性。因此,有必要对芽孢杆菌的产孢特性进行研究,以期获得最佳产孢条件,最终获得商品化芽孢制剂。微生物发酵的生产水平不仅取决于生产菌种本身的性能,而且要提供合适的发酵条件,才能使它的生产能力充分发挥出来。优化发酵工艺可以充分发挥菌种的潜在能力,提高发酵过程的生产效率,降低生产成本。因此,工艺优化的研究尤其重要。

微生物 微生物(microorganism简称microbe)是包括细菌、病毒、真菌以及一些小型的原生动物等在内的一大类生物群体,它个体微小,却与人类生活密切相关。微生物在自然界中可谓“无处不在,无处不有”,涵盖了有益有害的众多种类,广泛涉及健康、医药、工农业、环保等诸多领域。 原核:细菌、放线菌、螺旋体、支原体、立克次氏体、衣原体。 真核:真菌、藻类、原生动物。 非细胞类:病毒和亚病毒。 微生物一般地,在中国大陆地区的教科书中,均将微生物划分为以下8大类:细菌、病毒、真菌、放线菌、立克次体、支原体、衣原体、螺旋体。 微生物的定义 一切肉眼看不见的或看不清的微小生物的总称 1 特点: 个体微小,一般<。 构造简单,有单细胞的,简单多细胞的,非细胞的 进化地位低。 2 分类 原核类: 三菌,三体 。 真核类: 真菌,原生动物,显微藻类。 非细胞类: 病毒,亚病毒 ( 类病毒,拟病毒,朊病毒) 3 五大共性: 体积小,面积大 吸收多,转化快 生长旺,繁殖快 适应强,易变异 分布广,种类多 二、微生物的类群 1 细菌: (1)定义:一类细胞细短,结构简单,胞壁坚韧,多以二分裂方式繁殖和水生性强的原核生物 (2)分布:温暖,潮湿和富含有机质的地方 (3)结构:主要是单细胞的原核生物,有球形,杆形,螺旋形 细胞壁 基本结构 细胞膜 细胞质 结构 拟核 鞭毛 特殊结构 荚膜 芽孢 (4)繁殖: 主要以二分裂方式进行繁殖的 (5)菌落: 单个细菌用肉眼是看不见的,当单个或少数细菌在固体培养基啊行大量繁殖时,便会形成一个肉眼可见的,具有一定形态结构的子细胞群落. 菌落是菌种鉴定的重要依据.不同种类的细菌菌落的大小,形状光泽度颜色硬度透明毒都不同. 2 放线菌 (1)定义:一类主要成菌丝状生长和以孢子繁殖的陆生性较强的原核生物 (2)分布:含水量较低,有机物较丰富的,呈微碱性的土壤中 (3)形态构造:主要由菌丝组成,包括基内菌丝和气生菌丝(部分气生菌丝可以成熟分化为孢子丝,产生孢子) (4)繁殖:通过形成无性孢子的形式进行无性繁殖 无性繁殖 有性繁殖 (5)菌落:在固体培养基上:干燥,不透明,表面呈致密的丝绒状,彩色干粉 3 病毒 (1) 定义:一类由核酸和蛋白质等少数几种成分组成的”非细胞生物”,但是它的生存必须依赖于活细胞. (2)结构: (3)大小: 一般直径在100nm左右 最大的病毒直径为200nm的牛痘病毒 最小的病毒直径为28nm的脊髓灰质炎病毒 (4)增殖:以 噬菌体为例: 吸附 侵入 增殖 装配 释放 第二节微生物的营养 一、微生物的化学组成 C,H,O,N,P,S以及其他元素 二、微生物的营养物质 1 水和无机盐 2 碳源:凡能为微生物提供生长繁殖所需碳元素的营养物质 来源 作用 3氮源:凡能为微生物提供所必需氮元素的营养物质 来源 作用:主要用于合成蛋白质,核酸以及含氮的代谢产物 4 能源:能为微生物生命活动提供最初能源来源的营养物质或辐射能 根据碳源和能源分类: 5生长因子:微生物生长不可缺少的微量有机物 能引起人和动物致病的微生物叫病源微生物有八大类: 1.真菌:引起皮肤病。深部组织上感染。 2放线菌:皮肤,伤口感染。 3螺旋体:皮肤病,血液感染 如梅毒,钩端螺旋体病。 4细菌:皮肤病化脓,上呼吸道感染 ,泌尿道感染,食物中毒,败血压症,急性传染病等。 5立克次氏体:斑疹伤寒等。 6衣原体:沙眼,泌尿生殖道感染。 7病毒:肝炎,乙型脑炎,麻疹,艾滋病等。 8支原体:肺炎,尿路感染。 生物界的微生物达几万种,大多数对人类有益,只有一少部份能致病。有些微生物通常不致病,在特定环境下能引起感染称条件致病菌。 能引起食品变质,腐败,正因为它们分解自然界的物体,才能完成大自然的物质循环。 有些人误将真菌当作细菌,是一种比较普遍的误解。尤其以80年代以前未受过系统生物学教育者。 微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。 微生物千姿百态,有些是腐败性的,即引起食品气味和组织结构发生不良变化。当然有些微生物是有益的,它们可用来生产如奶酪,面包,泡菜,啤酒和葡萄酒。微生物非常小,必须通过显微镜放大约1000 倍才能看到。比如中等大小的细菌,1000个叠加在一起只有句号那么大。想像一下一滴牛奶,每毫升腐败的牛奶中约有5千万个细菌,或者讲每夸脱牛奶中细菌总数约为50亿。也就是一滴牛奶中可有含有50 亿个细菌。 微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。 微生物间的相互作用机制也相当奥秘。例如健康人肠道中即有大量细菌存在,称正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。 随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。 以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,而微生物基因组研究又是其中的重要分支。世界权威性杂志《科学》曾将微生物基因组研究评为世界重大科学进展之一。通过基因组研究揭示微生物的遗传机制,发现重要的功能基因并在此基础上发展疫苗,开发新型抗病毒、抗细菌、真菌药物,将对有效地控制新老传染病的流行,促进医疗健康事业的迅速发展和壮大! 从分子水平上对微生物进行基因组研究为探索微生物个体以及群体间作用的奥秘提供了新的线索和思路。为了充分开发微生物(特别是细菌)资源,1994年美国发起了微生物基因组研究计划(MGP)。通过研究完整的基因组信息开发和利用微生物重要的功能基因,不仅能够加深对微生物的致病机制、重要代谢和调控机制的认识,更能在此基础上发展一系列与我们的生活密切相关的基因工程产品,包括:接种用的疫苗、治疗用的新药、诊断试剂和应用于工农业生产的各种酶制剂等等。通过基因工程方法的改造,促进新型菌株的构建和传统菌株的改造,全面促进微生物工业时代的来临。 工业微生物涉及食品、制药、冶金、采矿、石油、皮革、轻化工等多种行业。通过微生物发酵途径生产抗生素、丁醇、维生素C以及一些风味食品的制备等;某些特殊微生物酶参与皮革脱毛、冶金、采油采矿等生产过程,甚至直接作为洗衣粉等的添加剂;另外还有一些微生物的代谢产物可以作为天然的微生物杀虫剂广泛应用于农业生产。通过对枯草芽孢杆菌的基因组研究,发现了一系列与抗生素及重要工业用酶的产生相关的基因。乳酸杆菌作为一种重要的微生态调节剂参与食品发酵过程,对其进行的基因组学研究将有利于找到关键的功能基因,然后对菌株加以改造,使其更适于工业化的生产过程。国内维生素C两步发酵法生产过程中的关键菌株氧化葡萄糖酸杆菌的基因组研究,将在基因组测序完成的前提下找到与维生素C生产相关的重要代谢功能基因,经基因工程改造,实现新的工程菌株的构建,简化生产步骤,降低生产成本,继而实现经济效益的大幅度提升。对工业微生物开展的基因组研究,不断发现新的特殊酶基因及重要代谢过程和代谢产物生成相关的功能基因,并将其应用于生产以及传统工业、工艺的改造,同时推动现代生物技术的迅速发展。 农业微生物基因组研究认清致病机制发展控制病害的新对策 据资料统计,全球每年因病害导致的农作物减产可高达20%,其中植物的细菌性病害最为严重。除了培植在遗传上对病害有抗性的品种以及加强园艺管理外,似乎没有更好的病害防治策略。因此积极开展某些植物致病微生物的基因组研究,认清其致病机制并由此发展控制病害的新对策显得十分紧迫。 经济作物柑橘的致病菌是国际上第一个发表了全序列的植物致病微生物。还有一些在分类学、生理学和经济价值上非常重要的农业微生物,例如:胡萝卜欧文氏菌、植物致病性假单胞菌以及我国正在开展的黄单胞菌的研究等正在进行之中。日前植物固氮根瘤菌的全序列也刚刚测定完成。借鉴已经较为成熟的从人类病原微生物的基因组学信息筛选治疗性药物的方案,可以尝试性地应用到植物病原体上。特别像柑橘的致病菌这种需要昆虫媒介才能完成生活周期的种类,除了杀虫剂能阻断其生活周期以外,只能通过遗传学研究找到毒力相关因子,寻找抗性靶位以发展更有效的控制对策。固氮菌全部遗传信息的解析对于开发利用其固氮关键基因提高农作物的产量和质量也具有重要的意义。 环境保护微生物基因组研究找到关键基因降解不同污染物 在全面推进经济发展的同时,滥用资源、破坏环境的现象也日益严重。面对全球环境的一再恶化,提倡环保成为全世界人民的共同呼声。而生物除污在环境污染治理中潜力巨大,微生物参与治理则是生物除污的主流。微生物可降解塑料、甲苯等有机物;还能处理工业废水中的磷酸盐、含硫废气以及土壤的改良等。微生物能够分解纤维素等物质,并促进资源的再生利用。对这些微生物开展的基因组研究,在深入了解特殊代谢过程的遗传背景的前提下,有选择性的加以利用,例如找到不同污染物降解的关键基因,将其在某一菌株中组合,构建高效能的基因工程菌株,一菌多用,可同时降解不同的环境污染物质,极大发挥其改善环境、排除污染的潜力。美国基因组研究所结合生物芯片方法对微生物进行了特殊条件下的表达谱的研究,以期找到其降解有机物的关键基因,为开发及利用确定目标。 极端环境微生物基因组研究深入认识生命本质应用潜力极大 在极端环境下能够生长的微生物称为极端微生物,又称嗜极菌。嗜极菌对极端环境具有很强的适应性,极端微生物基因组的研究有助于从分子水平研究极限条件下微生物的适应性,加深对生命本质的认识。 有一种嗜极菌,它能够暴露于数千倍强度的辐射下仍能存活,而人类一个剂量强度就会死亡。该细菌的染色体在接受几百万拉德a射线后粉碎为数百个片段,但能在一天内将其恢复。研究其DNA修复机制对于发展在辐射污染区进行环境的生物治理非常有意义。开发利用嗜极菌的极限特性可以突破当前生物技术领域中的一些局限,建立新的技术手段,使环境、能源、农业、健康、轻化工等领域的生物技术能力发生革命。来自极端微生物的极端酶,可在极端环境下行使功能,将极大地拓展酶的应用空间,是建立高效率、低成本生物技术加工过程的基础,例如PCR技术中的TagDNA聚合酶、洗涤剂中的碱性酶等都具有代表意义。极端微生物的研究与应用将是取得现代生物技术优势的重要途径,其在新酶、新药开发及环境整治方面应用潜力极大。 微生物在整个生命世界中的地位! 当人类在发现和研究微生物之前,把一切生物分成截然不同的两大界-动物界和植物界。随着人们对微生物认识的逐步深化,从两界系统经历过三界系统、四界系统、五界系统甚至六界系统,直到70年代后期,美国人Woese等发现了地球上的第三生命形式-古菌,才导致了生命三域学说的诞生。该学说认为生命是由古菌域(Archaea)、细菌域(Bacteria)和真核生物域(Eucarya)所构成。在图示“生物的系统进化树”中,左侧的黄色分枝是细菌域;中间的褐色和紫色分枝是古菌域;右侧的绿色分枝是真核生物域。 古菌域包括嗜泉古菌界(Crenarchaeota)、广域古菌界(Euryarchaeota)和初生古菌界(Korarchaeota);细菌域包括细菌、放线菌、蓝细菌和各种除古菌以外的其它原核生物;真核生物域包括真菌、原生生物、动物和植物。除动物和植物以外,其它绝大多数生物都属微生物范畴。由此可见,微生物在生物界级分类中占有特殊重要的地位。 生命进化一直是人们关注的热点。Brown等依据平行同源基因构建的“Cenancestor”生命进化树,认为生命的共同祖先Cenancestor是一个原生物。原生物在进化过程中产生两个分支,一个是原核生物(细菌和古菌),一个是原真核生物,在之后的进化过程中细菌和古菌首先向不同的方向进化,然后原真核生物经吞食一个古菌,并由古菌的DNA取代寄主的RNA基因组而产生真核生物。 从进化的角度,微生物是一切生物的老前辈。如果把地球的年龄比喻为一年的话,则微生物约在3月20日诞生,而人类约在12月31日下午7时许出现在地球上。赞同92| 评论

薏米酒发酵工艺研究论文

原料:薏苡仁(薏米),糯米,生熟两用高产酒曲。 一、预处理。薏苡仁、糯米,清洗后分别浸泡在不同容器的清水中,其中,浸泡20小时至36小时,薏苡仁和糯米的浸米度均为42~45%,浸泡后,再分别将薏苡仁和糯米在常压下蒸煮至熟而不烂为止,备用;​ 二、发酵。将蒸煮后的薏苡仁和糯米摊凉后,加入酒曲发充分拌匀后,移入容器中,在在28℃发酵,形成酒醪。三、蒸馏。将发酵好之后的薏苡仁和糯米的酒醪进行蒸馏,蒸酒期间要控制好火候。四、调配。用蒸馏出的薏仁酒为基酒,调制得39°--55°的饮用薏仁酒。这种酿造薏苡仁酒(薏米酒薏苡仁酒(薏米酒)的方法,混合添加了对人体有益的健康元素,能够满足消费者对酒类的色、香、味等官能性的需要,工艺简单、酒香纯正、口感好,该酒还具有增强薏仁功效、调节血脂的作用。

薏米又叫:薏苡仁、苡仁、六谷子,为禾本科植物薏苡的种仁。其性凉,味甘、淡,入脾、肺、肾经,具有利水、健脾、除痹、清热排脓的功效。 薏米生于温暖潮湿的十边地和山谷溪沟,海拔2000米以下较普遍。

由于薏米的营养价值很高,被誉为“世界禾本科植物之王”;在欧洲,它被称为“生命健康之禾”;在日本,最近又被列为防癌食品,因此身价倍增。薏米具有容易被消化吸收的特点,不论用于滋补还是用于医疗,作用都很缓和。

下面就详细的介绍薏苡仁酒(薏米酒)的酿酒方法,具体步骤如下:

原料:薏苡仁(薏米),糯米,新工艺生熟两用高产酒曲。(薏苡仁和糯米的比例为一比二,例如10公斤薏苡仁配以20公斤糯米,酒曲的用量比较小,1斤粮食4克酒曲。

一、预处理。取一份薏苡仁,二份糯米,清洗后分别浸泡在不同容器的清水中,其中,浸泡20小时至36小时,薏苡仁和糯米的浸米度均为42~45%,浸泡后,再分别将薏苡仁和糯米在常压下蒸煮至熟而不烂为止,备用;

二、发酵。将蒸煮后的薏苡仁和糯米摊凉后,加入酒曲发充分拌匀后,放入容器中,在20~30度的温度中发酵,形成酒醪;

三、蒸馏。将发酵好之后的薏苡仁和糯米的酒醪放入唐三镜酿酒设备中进行蒸馏,蒸酒期间要控制好火候。

四、调配。用蒸馏出的薏仁酒为基酒,调制得39°—55°的饮用薏仁酒。这种糯米薏米混合发酵的方法发酵,混合添加了对人体有益的健康元素,能够满足消费者对酒类的色、香、味等官能性的需要,工艺简单、酒香纯正、口感好,该酒还具有增强薏仁功效、调节血脂的作用。

更多酿酒技术可百度搜索“唐三镜黄丽娜”了解更多酿酒资讯。

薏米→浸泡(加入糯米)→蒸煮→淋冷→落缸搭窝(加入酒药)→窝曲发酵(加入麦曲)→糟烧↓←蒸 馏←发 酵←酒 糟投 酒→静置后发酵→压榨↑→原酒→静置→煎酒→存放→装瓶→成品

甜米酒发酵工艺的研究论文

甜米酒的制作方法和过程:

主料:圆糯米4斤。

辅料:安琪甜酒曲1包(8克)、凉开水 500毫升、密封罐5斤装(2个)。

步骤:

1、糯米洗净,清水浸泡过夜。

2、将糯米浸泡至用手可以碾碎,就说明泡好了,泡好的米充分冲洗干净。

3、用电饭煲煮饭模式,将糯米煮熟,加水宁多勿少。用煮的方法出酒量高,当然也可以用蒸屉蒸。

4、酒曲倒入凉开水中,混合。

5、煮好的糯米晾凉到30度左右,太热或太凉都会影响酒曲发酵。

6、将糯米装入无水无油的容器中,一层糯米,撒一层酒曲水,用干净的勺子轻轻压实,再放一层糯米,再撒一层酒曲压实,一直重复这个动作。

7、最后所有的糯米都装入容器中,最上一层,把余下的酒曲水一次全部倒入,盖上盖子,春秋放在常温室内,夏天建议放在空调房中,如果是冬天做,而且室内没暖气,记得给它保暖,保温发酵。发酵最佳温度20-27度,时长15-20天,视环境与原料而有不同。

8、第三天时,已经开始出酒汁,这是个糖化过程。酵母菌在发酵中产生酒精与二氧化碳,桶内压力过大,糯米往上飘浮,并且不断产生二氧化碳,因此装糯米的容器需要留出五分之二的空间,防止发酵过程中外溢。

9、第四天,打开盖子,糯米上长满白色菌丝,这不是坏了,是正常现象,用干净的勺子搅拌一下,再盖上盖子,继续发酵。如果打开盖子看到了黑色的菌丝,那就是前期消毒没做好,基本上就不可以要了。

10、第六天,糯米开始下沉,糖化慢慢转化为酒精。

11、第十八天,不再冒出二氧化碳时,糯米全部沉底,即完成发酵。

甜米酒也叫甜酒或醪糟,这种酒属于酿造酒,据说酿造酒已经有上千年 历史 之久。

什么叫酿造酒?所谓酿造就是大米或粮食接触细菌,这里所指的细菌相当于酒曲,经过糖化发酵,闻起来有一股酒香味,这就是酿酒。

酿酒的度数比较低,可以说是最简单的酿酒技术。

酿酒成功的关键,取决于酒曲,通过酒曲制成引物,再经过发酵、糖化等作用才能产生酒香味。

甜米酒酿酒的工艺分6个步骤:

1、酒曲捣碎;

2、粮食浸泡;

3、蒸熟;

4、冷却;

5、拌酒曲;

6、入坛子;

7、发酵。

虽然酿造甜米酒看似简单,但是想成功酿出香甜美味的甜米酒,也是要掌握很多酿酒关键技术点。

酿酒过程只要做错了一步,酿出来的酒不是发酸、发苦、空花、夹生就是一点酒香味都没有。

今天就来与大家分享一下,怎么样可以自己在家,一次性成功,酿造一坛好的甜米酒。

在炎热的夏季慢慢品味,亲手酿造的冰镇甜米酒,给自己带来一种无比的幸福感觉。

酿造甜米酒的家常做法

材料:

糯米1000克:甜酒曲4克;凉开水200ml。

做法和步骤

第一步:浸泡糯米

把糯米淘洗干净后,加入足量清水浸泡糯米,水量要高于糯米约20厘米左右。

浸泡8小时 12小时,糯米要充分浸泡让米粒吸足水分,浸泡至用手拿起米粒,轻轻一捏就能碾碎为止,这样才是酿造甜米酒泡米的最佳状态。

泡米也是酿甜米酒的关键因素,如果浸泡时间不够,糯米吸收水分不足,在蒸制过程中糯米不容易熟透,就会造成甜米酒成品夹生、反生等情况。

第二步:蒸熟糯米

蒸锅和纱布清洗干净确保无油。把干净的纱布铺在蒸锅里,浸泡好的糯米倒入纱布上铺平后,用筷子在糯米周边均匀地戳上气孔,这样可加快糯米熟透。

先开大火水烧开后,转为中小火蒸50分钟至60分钟。其间分三次泼入开水到糯米饭中,泼入水后用筷子搅拌均匀糯米饭,使糯米增加吸入水分更容易熟透,这样甜米酒才不会出现夹生酒饭。

第三步:拌入甜酒曲

糯米饭蒸熟后,倒入一个无油用开水烫洗干净的盆子中,把糯米饭摊开放凉,放凉时间控制在60 90分钟最合适。让糯米饭温度降低至30 左右,用手去触摸糯米饭表面不烫手即可。

糯米饭温度过高的时候拌入酒曲,酒曲就会失效使米酒变得酸涩。因此拌入酒曲时糯米饭的温度不能超过35 。

当糯米饭温度降至30 左右 时,均匀地拌入甜酒曲(酒曲可以自做,下期文章会专门介绍)但到超市买,来得更方便。

甜酒曲拌入的比例为1000克糯米,拌入4克甜酒曲,严格按照此比例添加,放多了酒曲,容易使甜米酒变苦。最后还要分次加入凉开水将糯米饭打湿拌匀。也可以直接将甜酒曲,倒入凉开水里拌入糯米饭中拌匀。

入坛前拌好甜酒曲的糯米饭,要求做到三点, 1、熟透;2、不粘成一团;3、不黏糊 。只有这样做出的甜米酒才能达到最佳效果。

第四步:入坛发酵

把拌好酒曲的糯米饭,装入一个干净无油用开水烫过的容器中,用无油的勺子轻轻按压一下糯米,然后在糯米中间扎一个酒窝,以便随时观看出酒情况。

容器装好糯米后,用保鲜膜包裹严实,拧紧瓶盖,一定要密封好瓶盖。存放在30 左右的环境下发酵24 36小时即可。

如果发酵温度低于30 以下,可以用衣服把装有糯米饭的容器包裹起来,放温暖处发酵72小时左右,就可以了。

甜米酒变酸、变苦的原因

发酵温度过高则容易使米酒变酸,发酵时间太长则容易使米酒变苦。甜米酒发酵的温度和时间要适合,所以酿甜米酒每一步都关键,否则难以成功。

第五步:终止米酒继续发酵

糯米经过24 36小时的发酵过程,当你打开容器的瓶盖时,首先闻到一阵阵的酒香味,酒饭伴随着米酒散发淡淡的清香。这时要加入适量的凉开水,终止甜米酒的继续发酵,放入冰箱冷藏,随吃随取。

技术总结:

1、酿甜米酒所使用到的所有容器,要清洗干净无油,并用开水烫一下杀菌。

2、浸泡大米时间8小时至12小时左右,用手捏一下米粒就能碾碎为止。

3、蒸制糯米时,在米的表面用筷子均匀扎上一些气孔。蒸50分钟至60分钟熟透为止,其间分三次泼入开水在糯米表面,使大米吸入更多水分容易熟透避免夹生。

4、拌入酒曲,蒸熟透的糯米放凉至30 时,均匀拌入酒曲。加入适量的凉开水将糯米饭打湿拌匀。不粘成一团、不黏糊最佳。

5、发酵,拌好酒曲的糯米饭装入容器后稍微按压,在中间挖一个孔,便于查看出酒情况。拧紧瓶盖密封好,存放在30 左右的室温发酵24 36小时。

6、甜米酒发酵好后,加入适量凉开水到米酒中,放入冰箱冷藏保存,终止米酒继续发酵。

1000克糯米可以酿出1500克至2000克左右的甜米酒。以上酿甜米酒的做法,此配方比例已经用了15年了,经过无数次反复实践的经验,酿出的甜米酒不夹生、不发酸、不发苦。甜米酒的成品芳香甜美比外面卖得还要好喝。

米酒味甜醇香,风味独特,很受男女老幼的喜爱。它的制作非常简单,很容易掌握。将筛选干净的糯米,用水洗净,放入锅中用猛火蒸1小时左右,待熟透后取出。然后把蒸好的米,倒入一盆温开水中,进行搓洗(这样避免糯米相互粘连)再捞起滤干。待温度降至40℃左右,把一定量(一般甜酒曲每袋做米酒10斤)的甜酒曲研细,将80%的曲倒入米中,拌匀。装入盆中或罐中,再将余下的20%的曲均匀地撒在上面。取35℃的温开水,慢慢倒入盆中加盖封好放在坑或锅中,要求温度保持30℃左右两天即可。五香酱油生产技术一、原料配比 水100公斤,食盐20公斤,饴糖4公斤,食用酒精1公斤,桂皮50公斤,丁香50克,八角50克,花椒50克,味精50克,按此比例可增减。二、制作方法先把桂皮、丁香、八角、花椒用白布包扎,大铁锅内加水100公斤,把包扎好的香料放进锅中(水的位置应在锅边处作一记号,在熬制中蒸发的水分要进行补充,保持原有水量),加水熬制1小时,然后将食盐、饴糖放入锅内再熬1小时。马上把熬成的原油倒进事先准备好的缸里,同时把食用酒精和味精也放进缸里,缸一定要消毒处理,待冷却之后,滤去杂质即成五香酱油。用纯根霉、酵母制作甜米酒甜米酒亦即醪槽儿,它是用米饭和甜酒曲混合,保温一定时间制成的。其中起主要作用的是甜酒曲中的根霉和酵母两种微生物。根霉是藻菌纲、毛霉目、毛霉科的一属,它能产生糖化酶,将淀粉水解为葡萄糖。根霉在糖化过程中还能产生少量的有机酸(如乳酸)。甜酒曲中少量的酵母菌,则利用根霉糖化淀粉所产生的糖酵解为酒精。所以,甜米酒既甜又微酸还醇香,口感舒适、营养丰富,深受人们喜爱。人们通常采用市售酒曲制作甜米酒。由于市售酒曲质量不够稳定,以致使甜米酒的风味变化较大,有时甚至制作失效,造成浪费。鉴于这种情况,我们在指寻学生进行课外活动时,根据甜米酒的制作原理,采用纯根霉、酵母发酵米饭,从而获得风味纯正、稳定的甜米酒。通过该活动,既使学生知道甜米酒的制作原理和制作过程,获得一些微生物学知识和操作技能,又为甜米酒的大规模生产以及深加工提供一些参考。1.材料与方法1.1 菌种扩大培养我们使用的菌种是来自中科院成都生物所的根霉3.866,酒酵母1308。(1)根霉培养:取大米20g,水60ml,分装几支大试管中,置0.1MPa灭菌15min。冷却后,在接种箱内接少量菌丝和孢子于米粒上,28~30℃培养30h左右,待其长出大量孢子时取出备用。(2)酵母培养:取浓度为13°B×麦芽汁,按需量取6N硫酸调节PH值至4.1~4.5。取50ml装入100ml三角瓶中,置0.1Mpa灭菌30min。冷却后,在接种箱内将斜面酵母接1~2环于三角瓶中,28~30℃培养20~24h。1.2 甜米酒的制作将大米2kg加水浸泡4~8h,待手捏米粒即碎散时,用纱布控干水分,放入带屉的锅中蒸30~40min,即成松散的米饭。一般食堂卖的捞后蒸的米饭也可以,但要分散成粒。待米饭冷却后,分装9个同样大的饭盒内,每盒装200g左右,随意分成A、B、C三组,用3种不同的方式同时进行实验:(1)市售酒曲(对照):在A组的每个饭盒内,加入1g酒曲(若是块状则研成粉末)与米饭混匀,使其中的根霉孢子分散在全部米饭中。再用干净的匙压平表面,中间留一凹洞,盖上盖,放入27~30℃环境中。12h后,每隔5h开盖观察,看米饭是否结团变软、变甜,凹洞中是否有水出现。如果米饭变软,表示已糖化好;有水有酒香味,表示已有酒精,即可停止保温。这时最好再蒸一次,杀死其中的微生物和停止酶活动,以便放置取食。(2)先用根霉糖化,后用酵母发酵:取大试管中的纯根霉菌种3g,加少量冷开水捣成根霉糟液,平均放入B组的3个饭盒内,与米饭混匀后,按(1)所述处理。当米饭结团变软、变甜时,再向每个饭盒内加酵母液1ml,封盖,待有酒味时,再行杀菌,放置取食。(3)根霉与酵母混合:按(1)所述操作。所不同的是,在C组的每个饭盒内,同时加入1g纯根霉菌种和1ml酵母液。1.3 观察记录 在保温12h后,每隔5h进行观察记录。记录内容包括实验方式、观察时间、米饭变化情况、口味等。上述3种方式保温时间均为30~35h。其中方式(1)米饭结团较差,较甜,微酸。酒味较浓,略带涩味;(2)保温30h左右,米饭变软,凹洞有清水(纯甜),加入酵母2h左右有酒味,结团好,气泡少,甜、微酸、醇香、味道纯正;(3)米饭结团好,较甜,微酸,酒味浓。2.注意事项(1)接触米饭的用具要洗净,用开水烫过。(2)米饭要有较高的湿度,制作时可洒少量温开水于米饭上。(3)不同原料、不同菌种(包括市售酒曲)以及菌种的不同用量,对甜米酒有一定影响。如,糯米较大米所需菌种量略少,保温时间略短,味道较好。根霉3.866能产生有机酸,生长最适温度偏低。就菌种用量而言,根霉多糖化快,酵母多酒味重,保温时间较短。(4)保温以27~30℃为佳,温度低成熟时间长,温度高时间短。保温时间应控制在米饭变软变甜少有酒味即止,时间太长产酸和乙醇过多,吃起来不甜,过酸,酒味过

酒酿(米酒)制作前提条件: 1、 做酒酿的前提是你要买到酒曲。 2、米酒要在30摄氏度(华氏大约80度)下发酵,所以制作酒酿要选择夏天或冬天(暖 气旁)的季节。步骤: 1、将糯米蒸熟成米饭(不要太硬)后凉至不烫手的温度(利用中温发酵,米饭太热或太凉,都会影响酒曲发酵的); 2、 将米饭铲出一些到用来发酵米酒的容器里(我是用有盖的陶瓷汤盆),平铺一层; 3、 将捻成粉后的酒曲,均匀地撒一些在那层米饭上 4、再铲出一些米饭平铺在刚才的酒曲粉上,再铺上一层米饭……就这样,一层米饭、一层酒曲的铺上,大约4层(随意,看您的米饭和酒曲的多少); 5、将容器盖盖严,放在适宜的温度下(如果房间温度不够,可以用厚毛巾等将容器包上保温); 6、大约发酵36小时,将容器盖打开(此时已经是酒香四溢啦),加满凉开水(为的是终止发酵),再盖上盖后,放入冰箱(尽快停止发酵,早日吃到口)原理:甜米酒亦即醪槽儿,它是用米饭和甜酒曲混合,保温一定时间制成的。其中起主要作用的是甜酒曲中的根霉和酵母两种微生物。根霉是藻菌纲、毛霉目、毛霉科的一属,它能产生糖化酶,将淀粉水解为葡萄糖。根霉在糖化过程中还能产生少量的有机酸(如乳酸)。甜酒曲中少量的酵母菌,则利用根霉糖化淀粉所产生的糖酵解为酒精。

相关百科

热门百科

首页
发表服务