首页

> 学术期刊知识库

首页 学术期刊知识库 问题

谷氨酸发酵工艺研究论文怎么写

发布时间:

谷氨酸发酵工艺研究论文怎么写

在发酵过程中,氧、温度、pH和磷酸盐等的调节和控制如下:①氧。谷氨酸产生菌是好氧菌,通风和搅拌不仅会影响菌种对氮源和碳源的利用率,而且会影响发酵周期和谷氨酸的合成量。尤其是在发酵后期,加大通气量有利于谷氨酸的合成。其中谷氨酸棒状杆菌在溶氧不足时产生的是乳酸或琥珀酸。②温度。菌种生长的最适温度为30~32 ℃。当菌体生长到稳定期,适当提高温度有利于产酸,因此,在发酵后期,可将温度提高到34~37 ℃。③pH。谷氨酸产生菌发酵的最适pH在~。但在发酵过程中,随着营养物质的利用,代谢产物的积累,培养液的pH会不断变化。如随着氮源的利用,放出氨,pH会上升;当糖被利用生成有机酸时,pH会下降。其中谷氨酸棒状杆菌在pH呈酸性时生成乙酰谷胺酰胺。④磷酸盐。它是谷氨酸发酵过程中必需的,但浓度不能过高,否则会转向缬氨酸发酵。发酵结束后,常用离子交换树脂法等进行提取。

氨基酸是构成蛋白质的基本单位,是人体及动物的重要营养物质,氨基酸产品广泛应用于食品、饲料、医药、化学、农业等领域。谷氨酸是一种重要的氨基酸,我们吃的味精就是以谷氨酸为原料生成的。1957年以前,人们用酸法水解小麦面筋或大豆蛋白来制取L- 谷氨酸。1957年,人们分离得到了产生谷氨酸的菌种,接着又进行了大量的研究工作,大规模发酵谷氨酸得以成功[1]。谷氨酸发酵法的建立,对初级代谢产物微生物法生产的研究起到了极大的推动作用。在谷氨酸发酵法成功的激励之下,各种研究项目得以展开。谷氨酸单钠现已完全由发酵法生产,主要用于食品调味剂——味精的生产,其产量已超过400000吨。味精的现状和前景味精近年来已成为人们普遍使用的一种调味品,其消费量在国内呈上升趋势。味精产量增长较快。2001年味精产量万吨,2002年1--6月产量累计万吨,比上年同期增长。味精是一种强碱弱酸盐,它在水溶液中可以完全电离变成谷氨酸离子和钠离子。谷氨酸是氨基酸的一种,氨基酸是构成蛋白质的基本单位,是人体和动物的重要营养物质。谷氨酸一钠被人体吸收以后,同样也是电离成谷氨酸离子和钠离子而分别参加人体的代谢活动。所以味精作为调味剂除了能增加食品的美味外,它在人体中具有特殊的生理作用。(1)谷氨酸在人体内通过转氨酶的作用将其分子中的氨基转移给丙氨酮酸,形成丙氨酸。(2)谷氨酸与血液中的氨形成无毒的谷氨酰氨,使血液中的氨的浓度下降,减少氨中毒的危险性。(3)谷氨酸在体内与胱氨酸、甘氨酸结合形成谷胱甘肽。这个化合物是一种很有效的抗氧化剂,对于延续衰老,促进疾病恢复均有好处。能够分解体内代谢过程中所产生的过氧化物,避免肌体遭受过氧化物的侵害,有利于维持身体健康。(4)谷氨酸在体内能够形成V-氨基丁酸,它是一种神经递质,帮助神经的传导;有人说,味精补脑,其道理恐怕就是基于这种物质的形成。中国调味品行业在空前繁荣和发展的同时,也处在大转变、大整合和大发展时期。国外跨国食品集团涉足调味品生产,在国内频频展开收购;国内民营资本也纷纷投资调味品产业。可以说从东北到西北,从华北到华南,调味品生产企业以国有企业为主的格局正在发生较大转变,很多国有企业市场逐渐萎缩,为行业的整合和企业并购创造了条件,让出了市场。同时,调味品市场竞争也日趋激烈,品牌效益日益明显。谷氨酸是目前氨基酸生产中产量最大的一种,同时,谷氨酸发酵生产工艺也是氨基酸发酵生产中最典型、最成熟的。我们就以谷氨酸的发酵生产为例探讨发酵生产过程的奥妙。第1章 方案论证淀粉糖化的原理及工艺流程根据原料淀粉的性质及采用的水解液催化剂不同,水解淀粉为葡萄糖的方法有三种:酸解法、酶解法、酶酸结合法。本实验采用酸解法水解淀粉,一是由于实验室的仪器设备及条件的限制,二是因为酸解法具有生产方便、设备要求简单、水解时间短、设备生产能力大等优点。淀粉酸水解原理[2]淀粉经酸水解反应生成葡萄糖过程中,同时发生三方面的化学反应:淀粉水解生成葡萄糖,这是主反应;其次是生成的葡萄糖有一部分发生复合反应生成龙胆二糖、异麦芽糖和其它低聚糖;还有一部分葡萄糖分解反应生成5-羟甲基糠醛,有机酸和有色物质等非糖物质。在淀粉酸水解的过程中。这三

为温室供能用沼气发酵方法及发酵系统摘要:介绍了一种能够为温室供能用的沼气发酵方法及发酵系统的专利技术。发酵系统具体由生物酸化积肥装置、缓冲调节池、高效沼气发生装置、出水沉淀池、出水暂存池和沼气缓存装置等依次经管道和阀门连接组成。发酵方法具体步骤包括生物酸化积肥装置的启动和原料的生物酸化储存,高效沼气发生装置的启动、沼气生产供应、休停和再启动等。该技术与传统沼气技术相比,具有一定的优势能够根据温室生产实际,及时把分散在全年产生的种植业有机废弃物投加到产酸积肥池中,然后根据温室供能需求,随时通过发酵系统生产沼气。发酵残渣根据生产需要分批取出用于温室有机肥。该技术实现了可以根据温室需求对沼气发酵灵活调节的要求。 关键词:沼气;温室;供能;可调控性 1.引言 温室是现代农业工程中重要的技术主题,温室的发展使传统露天农业转化为保护条件下的可控制农业[1]。目前国际上,温室已经广泛应用于花卉、蔬菜栽培[2]。温室栽培的最大优势是通过温室环境的控制,满足作物的最佳生活条件,抵抗自然灾害等,从而获取最大的生产效益。在温室管理中,温室冬季加温、补光和二氧化碳施肥是重要的环境调控措施[3]。这些调控过程都需要能源的消耗,目前的能源消耗以一次化石能源煤和二次能源柴油、电力[4]为主。这些能源的大量消耗一方面加重了全社会的能源供给负担,另一方面也大幅度提高产品的生产成本。受能源价格影响,许多温室不得不放弃温室的冬季加温、补光和二氧化碳施肥,这样不仅不能充分发挥温室的应有功能,甚至会造成温室管理的失败。 在温室管理中,每年会产生大量的种植业有机废弃物。目前,这些被随意堆放的废弃物,造成了严重的农业面源污染[3,4]。然而,这些有机废弃物本身富含大量有机质,是非常好的沼气生产原料。如果能用温室生产管理过程中产生的有机废弃物来生产沼气,从而替代煤、石油、电力等不可再生能源用于温室供能,不仅可以降低温室供能成本,同时废弃物中的营养物质又可以循环利用,减少废弃物排放,改善农业环境。但是,迄今为止没有沼气在温室供能领域应用的成功案例。 2.传统沼气技术与温室供能需求的背离沼气发酵技术可以分为两类,即传统沼气发酵技术和水溶性有机物高效沼气发酵技术[5, 6]。这两类技术应用于温室沼气供应都存在诸多技术难点。具体分析如下: 传统的沼气发酵技术,利用复杂性有机质发酵沼气,沼气产生具有非常大的周期性,往往开始投料时产气慢,中间产气旺盛,而且一旦沼气发酵系统启动,是否产沼气和产生多少沼气,要受原料特性和发酵规律的内在约束,很难调节。而温室用能表现在取暖、二氧化碳施肥等方面,这些能源需求往往受天气的控制,而天气又变化无常。因此,往往是要气时没有气,不要气时产气,如果满足需求将要建立庞大的储气装置,这在投资和占地上是不允许的。如果根据长期天气预报进行计划式投料,在理论上可行,但在实践上是难操作的。一方面,长期天气预报目前的准确性较差,另一方面,关于复杂有机质的产气规律不可能准确预测。同时,温室产生有机废弃物是分散在全年的各个时段,所产生的废弃物大多易腐烂,很难储存。因此传统的沼气技术基本不能适应温室供能需求。 水溶性有机物高效沼气发酵技术,利用可溶解的简单微生物进行沼气发酵,采用高效反应器可以实现较高的效率[7,8]。一是可溶性有机质非常容易反应,沼气的产生量在反应器负荷允许的范围内,基本决定于短期内的进料量,即进料多产气量大,进料少产气量小,停止进料短期即停止产气。二是成熟反应器中的沼气发酵厌氧微生物具有非常强的耐饥饿性,在长期不进料的情况下,反应器内的微生物能够长期耐受,而且再启动时可以迅速恢复正常高效产气。水溶性有机物高效沼气发酵技术的以上两点技术特征均符合温室需能波动性的要求。但是,如果单独为了温室供能需要而刻意外购水溶性有机物作为发酵原料生产沼气,不仅成本上与化石能源不具竞争优势,而且也达不到生物质废弃物资源就地利用、开展循环经济和环境建设的目的。因此,水溶性有机物高效沼气发酵技术也不适合温室供能需求。 3.技术内容本文提供一种可以根据温室生产实际,把分散在全年产生的种植业有机废弃物投加到发酵系统中,然后根据温室供能需求,随时通过发酵系统生产沼气,能够为温室提供可用的沼气发酵系统及发酵方法。其中,发酵系统由生物酸化积肥装置、 缓冲调节池、 高效沼气发生装置、出水沉淀池、出水暂存池和沼气缓存装置依次经管道和阀门连接组成。其结构如图1所示。其中,生物酸化积肥装置和缓冲池设置主控制阀,缓冲池与高效沼气发生装置之间设置泵, 高效沼气发生装置、出水沉淀池出水暂存池之间通过水的重力自流完成连接, 出水暂存池同时与缓冲调节池和生物酸化积肥装置相连, 中间依次设泵和配水器,高效沼气发生装置联接沼气缓存装置。为了保证沼气发酵能够满足温室供能需求,以上发酵系统按如下步骤管理第一、进行生物酸化积肥装置的启动和原料生物酸化储存,具体方法如下 (1)按相当于温室平均每天产生量的~倍质量收集温室种植业有机废弃物或其他种植业有机废弃物作为启动原料,对启动原料进行粉碎预处理;(2)向步骤(1)所得预处理原料中添加含N元素物质,混合,控制混合料碳氮比为(20:1)~(30:1);(3)将步骤(2)所得混合料投入到初次使用的生物酸化积肥装置中,加入接种物进行接种,混合,得到发酵原料,接种物的加入量为启动原料干重的3%~5%;(4)向步骤(3)中生物酸化积肥装置中加水进行发酵,水的加入量为至少高于启动原料平面10cm,发酵温度控制在20~40℃;(5)经过4~5天发酵后,发酵液pH值降到6以下,即完成酸化积肥装置的启动;(6)按照步骤(1)~(2)的方法随时收集处理温室生产的有机废弃物,及时投入已经启动的生物酸化积肥装置中,不需接种,直接加水至原料平面以上10cm;(7)重复步骤(6)直至一个生物酸化积肥装置投满,重新启用另一个生物酸化积肥装置,重复操作步骤(1)~(6) ;第二、进行高效沼气发生装置启动,调控装置运行满足温室用能与沼气生产的协调,具体方法如下: (1)高效沼气发生装置启动:投入接种物进入高效沼气发生装置,用水或水与生物酸化积肥装置中抽出的酸液混合物加满沼气发生装置,静止3~5d,接种物加入量为3~10kgVSS/m3;从生物酸化积肥装置抽出有机酸液泵入缓冲调节池中,用出水暂存池中的系统出水或外来水调节,控制有机酸液的化学耗氧量(COD)浓度为2000~5000mg/L,作为沼气发酵料;按 COD/( m3·d)~2kg COD/( m3·d)的速率阶段式调整水力负荷,连续进料直到实现水力负荷为5kg COD/( m3·d)~10kg COD/( m3·d),即完成沼气发生装置的启动,整个启动大约需50~80d。启动期间,温度控制为25~35℃。负荷调整的原则为,每次水力负荷调整运行稳定后,才开始进行下一阶段负荷的增加;沼气发生装置的出水经沉淀池沉淀后,流入出水暂存池,部分作为生物酸化积肥装置液体补加,部分用于缓冲调节池酸液的发酵料调节使用(2)沼气生产供应:根据温室生产实际预算沼气需求的时间和数量,按1kg COD产 ~沼气折算有机酸液的需求数量和时间,并按时按量从生物酸化积肥装置中抽机酸液进入缓冲调节池,按步骤(1)中所述方法调节成沼气发酵料;按5kgCOD/( m3·d)~30kg COD/(m3·d)水力负荷的流量,采用间歇或连续方式向已经启动好的沼气发生装置中进料进行沼气生产,产生的沼气进入沼气缓存装置备用;进料的流速控制、间歇或连续方式取决于每次沼气的需求量和沼气缓存装置的体积。沼气需求大、沼气缓存装置体积小时,采用大流量连续进料,反之,使用小流量间歇进料;当一个生物酸化积肥装置中的抽出物小于800~1000mg/L时,即该生物酸化积肥装置停止产酸,停止从该装置继续抽取发酵液。(3)沼气生产休停:对于启动好而温室不需要使用沼气,或者一个沼气使用周期结束,温室很久不使用沼气时,停止向高效沼气发生装置中继续进料,装置进入休停状态。休停期间,保持每10~30d补加一次发酵料,保证系统内微生物的营养需求。补加发酵料的调节方法同步骤(1)所述;补加发酵料的量为反应器体积1~3倍,补加速度为2~5kg COD/(m3·d)。(4)沼气生产休停后的再启动:对于步骤(3)中已经处于休停状态的高效沼气装置,再进入新的用气周期前必须进行再启动;再启动的方法是在新用气周期开始前3~10d,按照步骤(1)中所述方法调节发酵料,按 COD/(m3·d)~ kg COD/(m3·d)负荷向高效沼气装置进行适应性进料。

日淀粉制葡萄糖的基本原理是什么?第35 麦芽低聚糖是以精制玉米淀粉为原料,采用先进的生物技术而制成的一种集保健,营养于一 体的新型糖源.

谷氨酸发酵论文外文文献

菌种的制备:1、选取菌种,如“北京棒状杆菌”2、活化:,32℃斜面培养24h,冰箱4℃保存备用3、菌种的扩大培养:一级种子:采用液体培养基,由葡萄糖、玉米浆等组成,PH为,在三角瓶中32℃震荡培养12h,冰箱4℃保存备用;二级种子:和一级种子类似,只是将葡萄糖换成水解糖,在种子罐中32℃通气搅拌培养7~10h。可移种活冷却至10℃保存发酵原料的处理:淀粉-------水解(酸解或酶解)--------淀粉水解液发酵生产:A、生长阶段:流加尿素供给氮源,并调节PH至,温度为30~32流加尿素℃;B、产酸阶段:流加尿素提供氨和维持℃通气培养。周期大约需30h谷氨酸的提取纯化:等电点法等

1952年,周光宇博士响应国家号召从比利时回国。1952-1957年她在北京市生物制品研究所工作期间建立了生化研究室,并研究确定了生物制品的一些生化法规,解决了生产上血清蛋白沉淀等一系列问题,同时培养了中国首批生物制品生化人员,曾获得1954年北京市劳模称号。1957年王应睐先生为了弥补生物化学研究所微生物学专门人才的空白,争取到周光宇来所参加工作。她到生化所后充分利用生化的理论和技术,指导发酵生产研究的探索工作。曾用不到一年时间完成了“甲烯琥珀酸”发酵的研究。接着她通过查阅国外文献和对国内“谷氨酸发酵”(谷氨酸的单钠盐即味精)现状的调查,发现当时日本已用谷氨酸发酵法生产味精,成本低,在国际市场上有相当大的竞争力。而当时中国味精生产还仍然采用面筋盐酸水解法进行,不仅生产成本高、产量低,而且生产劳动条件特别差。由于工人长期接触盐酸气体,身体健康受到极大危胁,特别中国在国际市场上的品牌“佛手牌”味精将失去优势。当时在中国大跃进的形势下,又是为了解决“粮食多了”怎么办?周光宇决定开展“谷氨酸发酵”研究。发酵没有菌种,她就和北京大学生物系合作,发动学生采集标本分离菌种,建立了定性分析谷氨酸的方法,通过大量的菌种筛选获得了可进行发酵试验的菌种。在有了菌种的情况下,她又组织与上海天厨味精厂和上海轻工业研究所科研人员的协作研究。通过对发酵条件的艰苦研究,建立了从发酵液中定性和定量分析谷氨酸以及从发酵液中分离谷氨酸等技术。当时,她的研究获得了当时国际上摇瓶产谷氨酸的最高水平,表明了中国谷氨酸发酵已达到了能大规模工业生产味精的水平,促进了中国味精的工业生产。同时,也为中国培养了一批科研人员,为中国20世纪60年代味精发酵工业奠定了坚实的基础。为此,周光宇1959年被评为中国首届全国“三八”红旗手,谷氨酸发酵的有关论文1959年被评为上海市优秀论文。1978年“谷氨酸发酵”获中国科学院与上海市的重大成果奖。20世纪60年代初期,中国遭受了三年自然灾害,周光宇比过去更深刻地意识到农业是中国国民经济的基础。传统的农业育种技术已满足不了提高农作物的产量和质量的要求,迫切希望有新的育种技术。70年代初期,国际上出现了微生物的基因工程,虽然当时以高等生物为材料的研究尚未开始,但她已意识到当分子生物学发展到基因工程的出现,可能成为植物育种从自然选择、杂交育种、远缘杂交之后进入了农业育种与分子生物学科结合发展的时代。它不仅可以打破有性杂交的屏障,更可能组合来自任何生物的基因或人工合成的基因,广泛地扩大基因库,为农业定向育种开辟新途径,向农业现代化进军。而当时要在国内开展基因工程的研究在技术操作和设备方面都存在很大的困难。她认为如果着重紧跟国外文献,单纯地发展基因工程研究课题,投资不少,还受缺乏有效基因及其表达元件的限制,很难达到预期的生产效益。她提出我们开始的研究路线是反文献之道而行之,要先发展具有生产效益的分子育种成果,再从中进行有效基因的识别、分离和重组研究。这就可能解决有益基因的来源问题,可能自由地发展与基因工程结合的分子育种,达到广泛扩大生产的目的,但研究从何处着手呢?为了实现农业分子育种的设想,周光宇1974年开始了对农业育种的调查,重点对国内远缘杂交成功的粮食作物,如玉米稻、高梁稻、竹子稻进行了调查研究。人们早已知道远缘亲本间的染色体结构从总体上说是不能亲和的,也就是说这种杂交是不会成功的。但为什么在中国有很多远缘杂交成功的作物呢?为了搞清这个疑问,她曾去广东、广西、江苏、浙江、吉林、湖南、辽宁和北京等省(市)的农业大学、农业科学院向育种学家和遗传学家请教和共同讨论,向有着实践育种经验的农民学习。她还曾亲临海南岛的育种基地在烈日下的大田里亲自操作杂交育种。通过对远缘杂交的调查实践,她从分子生物学角度分析和总结出了一种远缘杂交现象(即稳定杂交子代与母本比,变异很小,光学显微镜下观察染色体的数目、大小和形状与母本相同,但表型的变异可以遗传)的基础上,提出了DNA片段杂交理论,其认为虽然远缘亲本间的染色体结构从总体上说是不能亲和的,但部分基因间的结构从进化角度来分析有可能保持一定的亲和性,当远缘花粉的基因组进入母体(受体)后,部分分解成的DNA片段(基因或调控顺序)有可能被整合进入受体染色体,引起子代的遗传变异。这种使外源DNA片段(基因)进入另一种植物而引起的变异,实际是天然的基因工程。由于整合进入染色体的外源DNA片段较小,所以在光学显微镜下看不到DNA片段插入后引起染色体形态和结构上的差异;由于外源DNA片段只能极少数插入到染色体上,因此子代的表型基本相同于受体母本,只有少数性状可引起变异。当她的DNA片段杂交理论提出后,因名不见经传,而受到当时少数遗传学派权威学者的强烈反对,认为不符合遗传育种的规律。在科技界也有极少数的权威人士,对分子育种事实不加研究,却妄加评论,植物分子育种的发展遇到很大阻力。但周光宇坚信事实总能胜于雄辩。她要以科学的事实来说话。由于基因工程是DNA片段(基因)杂交整合,研究远缘杂交中的DNA片段杂交假说就成了当时是否能开展DNA导入植物,进行分子育种的理论根据。她为此设计并领导实验验证,她所领导的课题组与有关单位合作,通过以远缘杂交高梁稻为材料进行酯酶同工酶的分析,证明了高粱稻中有来自远缘亲本高粱的酯酶存在;经以高粱特异DNA为探针与高粱稻杂交,证明了高粱稻中确有来自高粱的DNA整合;在重复顺序DNA复性动力学的研究中,证明了高粱稻复性动力学明显的变化是由于高粱重复顺序插入水稻所引起的。这些研究结果发表了论文,为DNA片段杂交理论提供了有力的数据支持,也为她植物分子育种技术提供了理论和设计的基础。植物分子育种技术(外源DNA导入植物技术)的设计思想是模拟授粉杂交的育种技术。设计将带有特殊性状的供体总DNA的片段,在受体自花授粉后一定时间内,使DNA沿着花粉管通道进入胚囊,转化受精卵及其前后的细胞,由于这些细胞不具有正常细胞壁,可当作天然原生质体,易与DNA整合。她与江苏农科院的科研人员首先在棉花上合作建立了花粉通道转DNA(基因)技术方法系统。她领导的研究组用了3[H]-DNA在棉花授粉后导入,证明DNA经花粉管通道确实能直接到达胚囊;将M13(mp7)DNA导入棉花,证明了棉胚中有M13(mp7)DNA的整合;抗卡那霉素基因导入水稻获得表达等。这些充分证明了该设计的可行性。植物分子育种技术首先应用于棉花得到成功,获得了很多变异后代和生产上有经济价值的后代。1983年周光宇在美国权威杂志MethodsinEnzymology上发表了国际上开创性的植物分子育种技术的论文,引起了学术界的重视。该技术不断在国内外得到广泛的理论上的验证和育种应用。周光宇应邀在美、欧、亚洲10个国家的大学和科研单位讲学50余次,在国内外的国际学术讨论会上报告18次。为了推动发展中国植物分子育种事业,周光宇分别于1988年5月在山东德州、1991年12月在上海、1994年5月在长沙主持召开了三届全国植物分子育种学术讨论会,有近100个单位、500余人参加了会议,会议中通过交流技术和理论知识,使中国分子育种技术得到广泛普及。在她的理论和方法指导及她的推动下,该技术在国内得到广泛的验证和应用,如中国科学院遗传与发育研究所GUS基因转化小麦成功;中国农科院基因转化棉花取得抗虫效果;黑龙江省农科院将野生大豆DNA导入栽培大豆,育出大豆高蛋白含量和早熟等优良品系;吉林省农科院育出抗大豆花叶病株系;江苏农科院、湖南农业大学都育出高产优质、具抗逆性、抗枯萎耐黄萎病新品种;广西农科院以药用野生稻DNA导入栽培稻,育成特异糯稻新品种等。目前国内有近百家实验室采用该技术在稻、麦、棉、豆、菜、甘蔗以及林木等40多种植物上获得了理想的结果。1988年美国康乃尔大学和西德马普植物育种研究所的研究组分别发表论文,对周创建的分子育种技术作了重复性的分子验证。1994年在荷兰召开的第四届国际植物分子生物学学术会议上,以色列Tel-Ariv大学植物系与西德马普植物育种研究所合作报道,用花粉管通道转基因技术将NPTⅡ和Bar基因转化12个春小麦,转化率高达6%。1986年,周光宇创造的植物分子育种技术在由中国科学院科技合作局和农牧渔业部共同主持召开的院(部)级评议会上得到充分肯定。到会专家一致认为“这一技术为研究外源基因导入提供了一个良好的实验系统,为扩大植物的变异范围提供了一项新的技术。在育种上,这是一个有应用价值的新途径。”

我国常用的菌种有北京棒状杆菌、纯齿棒状杆菌等。谷氨酸的生物合成包括糖酵解作用(EMP途径)、磷酸戊糖途径(HMP途径)、三羧酸循环(TCA循环)、乙醛酸循环和丙酮酸羧化支路等。生物合成谷氨酸的主要方式是α-酮戊二酸的还原性氨基化作用。谷氨酸的生物合成受机体内复杂机制的调控。影响谷氨酸发酵过程的参数有很多,谷氨酸发酵过程主要受种子质量,培养基组成,温度,pH以及供氧速率等因素控制。提取谷氨酸常用的工艺为等电点法和离子交换法

氨基酸发酵研究现状论文

氨基酸发酵是典型的代谢控制发酵 ,由发酵所生成的产物 ——氨基酸,都 是微生物的中间代谢产物,它的积累是建立于对微生物正常代谢的抑制。在 脱氧核糖核酸(DNA)的分子水平上改变、控制微生物的代谢,使有用产物大 量生成、积累。 以探讨氨基酸发酵工厂的生产技术为主要目的。氨基酸发酵生产以发 酵为主,发酵的好坏是整个生产的关键,但后处理提纯操作和提纯设备选用当 否,也会大大影响总的得率。氨基酸发酵工艺学研究的对象应该包括从投入 原料到最终产品获得的整个过程,其中有微生物生化问题、生化工程问题,也 有分析与设备问题。 今后的发展是采用诱变、细胞工程、基因工程的手段选育出从遗传角 度解除了反馈调节和遗传性稳定的更理想菌种,提高产酸;采用过程控制,进 行最优化控制,连续化、自动化,稳产、高产;探求新工艺、新设备,以提高产 率和收得率;研究发酵机制等问题,以便能更好地控制氨基酸这样微生物中间 代谢产物的发酵。

发酵工业 (化学工程技术术语)外文名 Fermentation industry发酵工业是传统发酵技术和现代DNA重组、细胞融合等新技术相结合并发展起来的现代生物技术,并通过现代化学工程技术,生产有用物质或直接用于工业化生产的一种大工业体系。 【简介】按照发酵的特点,可以对发酵工业做不同的类别划分。(1)、根据微生物种类不同分为:好氧性发酵和厌氧性发酵,其中通过厌氧发酵来获得食品称为酿造工业。(2)、根据培养基状态不同分为:固体发酵和液体发酵。(3)、根据发酵设备分:敞口发酵、密闭发酵、浅盘发酵、深层发酵。(4)、根据微生物发酵操作方式的不同分为:分批发酵、连续发酵、补料分批发酵。(5)、根据微生物发酵产物的不同分为:微生物菌体发酵、微生物酶发酵、微生物代谢产物发酵、微生物的转化发酵、生物工程细胞发酵。发酵产物决定发酵工艺,工艺决定设备,所以发酵工厂基本对应以下五种类型:微生物菌体发酵这是以获得具有某种用途的菌体为目的的发酵。传统的菌体发酵工业包括用于制作面包的酵母发酵及用于人或动物食品的微生物菌体蛋白(单细胞蛋白)的生产。新的菌体发酵可用来生产一些药用真菌,如香菇类、冬虫夏草、灵芝等。有的微生物菌体还可以用作生物防治剂,如苏云金杆菌、白僵菌。微生物酶发酵微生物具有种类多、产酶的品种多、生产容易和成本低等特点,因而工业应用的酶大多来自微生物发酵。微生物酶制剂在食品、轻工业、医药、农业中有广泛的用途。微生物代谢产物发酵微生物代谢产物的种类很多,已知的有37个大类,其中16类属于药物。根据菌体生长与产物形成时期之间的关系,可以将发酵产物分为两类。在微生物对数生长期所产生的产物,如氨基酸、核苷酸、蛋白质、核酸、糖类等,是菌体生长繁殖所必需的。这些产物叫初级代谢产物。在菌体生长静止期,某些菌体能合成在生长期中不能合成的、具有一些特定功能的产物,如抗生素、生物碱、细菌毒素、植物生长因子等。这些产物与菌体生长繁殖无明显关系,称为次级代谢产物。微生物转化发酵微生物转化就是利用微生物细胞的一种或多种酶,把一种化合物转变成结构相关的更有经济价值的产物。可进行的转化反应包括:脱氢反应、氧化反应、脱水反应、缩合反应、脱羧反应、氨化反应、脱氨反应和异构化反应等。最突出的微生物转化是甾类转化,甾类激素包括醋酸可的松等皮质激素和黄体酮等性激素,是用途很广的一大类药物。生物工程细胞的发酵这是指利用生物工程技术所获得的细胞,如DNA重组的"工程菌",细胞融合所得的"杂交"细胞等进行培养的新型发酵,其产物多种多样。如用基因工程菌产胰岛素、干扰素、青霉素酰化酶等,用杂交瘤细胞生产用于治疗和诊断的各种单克隆抗体。【发展简史】20世纪20年代的酒精、甘油和丙酮等发酵工业,属于厌氧发酵。20世纪40年代初,随着青霉素的发现,抗生素发酵工业逐渐兴起。由于青霉素产生菌是需氧型的,微生物学家就在厌氧发酵技术的基础上,成功地引进了通气搅拌和一整套无菌技术,建立了深层通气发酵技术。这使有机酸、维生素、激素等都可以用发酵法大规模生产。1957年,日本用微生物生产谷氨酸成功,如今20种氨基酸都可以用发酵法生产。氨基酸发酵工业的发展,是建立在代谢控制发酵技术的基础上的。90年代,代谢控制发酵技术已经用于核苷酸、有机酸和部分抗生素的生产中。20世纪70年代以后,基因工程、细胞工程等生物工程技术的开发,使发酵工程进入了定向育种的阶段。20世纪80年代以来,随着学科之间的渗透和交叉,数学、动力学、化学工程原理和计算机技术开始被用于发酵过程的研究。90年代以来,自动记录和自动控制发酵过程的全部参数已经被应用于生产。【应用领域】1,在医药工业上的应用传统发酵产品包括抗生素、维生素、动物激素、药用氨基酸、核苷酸(如肌苷)等。90年代以来,常用的抗生素已达100多种,如青霉素类、头孢菌素类、红霉素类和四环素类。另应用发酵工程大量生产的基因工程药品有人生长激素、重组乙肝疫苗、某些种类的单克隆抗体、白细胞介素-2、抗血友病因子等。2,在食品工业上的应用主要包括:第一、生产传统的发酵产品,如白酒、啤酒、黄酒、果酒、食醋、酱油等,第二、生产食品添加剂,防腐剂,色素,香料,营养强化剂。如L-苹果酸、柠檬酸、谷氨酸、红曲素、高果糖浆,黄原胶,结冷胶,赤藓糖醇等。第三、单细胞蛋白的生产。3,在环境科学领域的应用:污水处理用微生物 。4,在化工能源领域的应用,包括各种有机酸,长链二元酸,聚合有机物,生物材料,生物塑料,生物多糖,生物氢,燃料乙醇,酒精,丙酮,丁醇,总溶剂。5,在农业领域的应用:各种农用,兽用抗生素,维生素,激素,氨基酸,食用菌,酶制剂,微生态制剂,微生物肥料,发酵床,发酵豆粕等6,主要的酶制剂产品均为发酵工业生产,包括糖化酶,淀粉酶,蛋白酶,纤维素酶,脂肪酶,植酸酶,葡萄糖异构酶,葡聚糖酶,转苷酶等。

氨基酸发酵生产以发酵为主,发酵的好坏是整个生产的关键,但后处理提纯操作和提纯设备选用当否,也会大大影响总的得率。氨基酸发酵工艺学研究的对象应该包括从投入原料到最终产品获得的整个过程,探求新工艺、新设备,以提高产率和收得率。研究发酵机制等问题,以便能更好地控制氨基酸这样微生物中间代谢产物的发酵。

这不是正大老师布置的论文作业们 哈哈哈啊哈哈

关于氨基酸发酵的毕业论文

氨基酸发酵是典型的代谢控制发酵 ,由发酵所生成的产物 ——氨基酸,都 是微生物的中间代谢产物,它的积累是建立于对微生物正常代谢的抑制。在 脱氧核糖核酸(DNA)的分子水平上改变、控制微生物的代谢,使有用产物大 量生成、积累。 以探讨氨基酸发酵工厂的生产技术为主要目的。氨基酸发酵生产以发 酵为主,发酵的好坏是整个生产的关键,但后处理提纯操作和提纯设备选用当 否,也会大大影响总的得率。氨基酸发酵工艺学研究的对象应该包括从投入 原料到最终产品获得的整个过程,其中有微生物生化问题、生化工程问题,也 有分析与设备问题。 今后的发展是采用诱变、细胞工程、基因工程的手段选育出从遗传角 度解除了反馈调节和遗传性稳定的更理想菌种,提高产酸;采用过程控制,进 行最优化控制,连续化、自动化,稳产、高产;探求新工艺、新设备,以提高产 率和收得率;研究发酵机制等问题,以便能更好地控制氨基酸这样微生物中间 代谢产物的发酵。

氨基酸发酵生产以发酵为主,发酵的好坏是整个生产的关键,但后处理提纯操作和提纯设备选用当否,也会大大影响总的得率。氨基酸发酵工艺学研究的对象应该包括从投入原料到最终产品获得的整个过程,探求新工艺、新设备,以提高产率和收得率。研究发酵机制等问题,以便能更好地控制氨基酸这样微生物中间代谢产物的发酵。

药剂学的毕业论文

一段充实而忙碌的大学生活即将结束,我们都知道毕业前要通过毕业论文,毕业论文是一种有准备、有计划的检验大学学习成果的形式,写毕业论文需要注意哪些格式呢?下面是我收集整理的药剂学的毕业论文,仅供参考,大家一起来看看吧。

[摘要]

近年来,微生物在药学研究中被广泛应用,展现出良好的发展前景。通过查阅相关的医学文献资料,了解到微生物与药学之间有密切的关系,通过对微生物进行转化和发酵,将其应用到药学研究及生产工作中,展现出微生物在药学中的应用价值及广阔的发展前景。

[关键词]

微生物;药学;发酵

一、微生物与药学的关系

(1)微生物与药学存在着密切的关系,许多抗生素是微生物的代谢产物或合成的类似物,在小剂量情况下,能够有效抑制微生物的存活及生长,不会对宿主产生严重的毒性。在临床应用过程中,抗生素起到了抑制病原菌生长的目的,被广泛应用于细菌感染性疾病的治疗中。除了具备抗感染作用外,一些抗生素自身还具备较强的抗肿瘤活性,被应用于肿瘤化学治疗中。

(2)微生物在医药卫生方面被广泛应用,维生素及辅酶被大量应用。

(3)近年来,人们在微生物学检验的.基础上加大了对药品卫生行业的

关注力量,加大对药品卫生质量进行控制。

(4)药品及生物制剂被广泛应用于生物工程技术生产中,采用工程菌生产胰岛素、生长因子及干扰素等[1]。

二、微生物在药学中的应用

(一)微生物转化在药学中的应用

1、在手性药物合成中的应用

不同的化合物光学活性不同,自身展现出了不同的生物学活性。现阶段,手性药物拥有广阔的发展前景,拆分及不对称合成手性药物成为热点研究问题。在生物体系中,酶展现出了高度的立体选择性,通过利用及筛选微生物或酶的过程,能够产生活性较高及立体结构专一的化合物,是一种可行性和有效性较高的方法。例如,将氯—酮丁酸甲酯及乙酯作为底物,将酮基还原为羟基时,展现出较高的立体选择性。通过生物转化的过程,不仅能够得到立体结构专一的手性化合物,同时也完成了对手性化合物的拆分。微生物转化中的合成手性化合物被广泛应用于制药工业中。

2、在药物代谢中的应用

药物在动物体内代谢是较为复杂的过程,展现出生物学活性功能,会生成有毒性的气体和不良反应的产物,在药学中占有重要位置。现阶段,微生物转化主要是利用产生的代谢产物,将其作为制备代谢产物的标准样品,应用在鉴别哺乳动物代谢产物中,完成对毒理学及药理学的研究。甾体羟基化在哺乳动物体内展现出了较强的生理学特性,是引发外源性甾体药物中毒的主要原因,转化成的相关模型是哺乳动物代谢有用信息的来源,产生的代谢产物对人类的孕激素受体具有较强的亲和能力,对人的糖皮质激素及盐皮质激素受体产生了一定的亲和性,对雄性激素产生了较弱的亲和性。黄腐酚作为一种化合物,被广泛应用于骨质疏松治疗中,通过利用真菌模型来寻找哺乳动物产生的代谢产物,为代谢产物及黄腐酚在哺乳动物体内的生物学活性研究提供了方向。

3、在天然药物中的应用

天然活性药物自身具有资源有限、含量低、结构复杂等特点,增加了药物的开发难度,利用生物转化方法合成有活性的天然产物,为开发新药提供了有效途径。羟基喜树碱是从自然植物中分离和提取出来的,毒性较低,拥有良好的治疗效果,被广泛应用于抗癌治疗中。主要是利用微生物对喜树碱来完成转化。青蒿素具有溶解度低、复燃性高等特点,是一种有效的抗疟药物。加大对其结构的改造,寻找合适的青蒿素衍生物,成为现阶段的重点研究课题。通过微生物转化方法,能够快速寻找到新的青蒿素衍生物[2]。

(二)微生物发酵在药学中的应用

近年来,微生物学基础理论及实验技术发现迅速,微生物学的应用范围越来越广阔。主要是利用微生物发酵来制备各种药物,在医药领域形成了一门独立的微生物药物学科。目前,医学上常见的微生物发酵制品有维生素、抗生素、氨基酸及酶抑制剂等。

生物发酵工艺多种多样,包括菌种的选育、培养及培植。培植出合适的菌种,是发酵工程的前提,菌种需要从自然界中找,但是该种方法寻找到的菌种产量相对较低。到了20世纪40年代,微生物学家开始使用激光、紫外线及化学诱变剂等处理方法来寻找菌种,使筛选出来的菌种更加优良,科学家通过构建工程菌,对其进行发酵,生产出一般微生物不能生产出来的产品。医用抗生素自身的特点包括:

(1)差异独立较大。差异毒力由抗生素的作用机制所决定,被广泛应用于临床抗感染中,抗生素的差异毒力越大,临床应用效果越好。

(2)抗菌活性强。抗生素自身展现出了杀灭微生物及药物抑制等能力,极微量的抗生素就能够展现出抗菌活性作用,抗生素的抗菌活性强弱主要是运用最低抑菌浓度来衡量,最低抑菌浓度是指抗生素能抑制微生物生长的最低浓度,值越小,说明抗生素作用越强。

(3)不良反应及副作用小。抗生素在使用过程中,对人体的毒性较小,对病原菌具有较强的杀伤力,这主要是针对理想的抗生素,一般的抗生素都或多或少会对人体产生一些不良反应及副作用。

综上所述,本文通过对微生物与药学的关系,微生物转化及发酵在药学中的应用进行分析,印证了微生物在药学中的应用可行性及应用价值。因此,制药行业在未来的发展中,需要进一步对微生物进行研究和分析,了解微生物内存在的药学价值,促使其在药学中的价值最大化,提升药物工业生产效果。

参考文献:

[1]张孝林,马世堂,俞浩.浅谈药学专业《微生物学》教学中创新型应用人才培养[J].中国科技信息,2012(7):229.

[2]任春萍.抗微生物药物的临床应用调查结果分析与药学研究[J].中国医药指南,2015,13(18):143-145.

“氨基酸工艺学”是一门新型发酵的技术科学,以探讨氨基酸发酵工厂的生产技术为主要目的。 学习“氨基酸工艺学”的目的是使学生能运用已学过的微生物学、生物化学、化工原理和分析化学等基础知识,进一步深化与提高,来认识与解决氨基酸发酵工业生产中的具体问题;

薏米酒发酵工艺研究论文

原料:薏苡仁(薏米),糯米,生熟两用高产酒曲。 一、预处理。薏苡仁、糯米,清洗后分别浸泡在不同容器的清水中,其中,浸泡20小时至36小时,薏苡仁和糯米的浸米度均为42~45%,浸泡后,再分别将薏苡仁和糯米在常压下蒸煮至熟而不烂为止,备用;​ 二、发酵。将蒸煮后的薏苡仁和糯米摊凉后,加入酒曲发充分拌匀后,移入容器中,在在28℃发酵,形成酒醪。三、蒸馏。将发酵好之后的薏苡仁和糯米的酒醪进行蒸馏,蒸酒期间要控制好火候。四、调配。用蒸馏出的薏仁酒为基酒,调制得39°--55°的饮用薏仁酒。这种酿造薏苡仁酒(薏米酒薏苡仁酒(薏米酒)的方法,混合添加了对人体有益的健康元素,能够满足消费者对酒类的色、香、味等官能性的需要,工艺简单、酒香纯正、口感好,该酒还具有增强薏仁功效、调节血脂的作用。

薏米又叫:薏苡仁、苡仁、六谷子,为禾本科植物薏苡的种仁。其性凉,味甘、淡,入脾、肺、肾经,具有利水、健脾、除痹、清热排脓的功效。 薏米生于温暖潮湿的十边地和山谷溪沟,海拔2000米以下较普遍。

由于薏米的营养价值很高,被誉为“世界禾本科植物之王”;在欧洲,它被称为“生命健康之禾”;在日本,最近又被列为防癌食品,因此身价倍增。薏米具有容易被消化吸收的特点,不论用于滋补还是用于医疗,作用都很缓和。

下面就详细的介绍薏苡仁酒(薏米酒)的酿酒方法,具体步骤如下:

原料:薏苡仁(薏米),糯米,新工艺生熟两用高产酒曲。(薏苡仁和糯米的比例为一比二,例如10公斤薏苡仁配以20公斤糯米,酒曲的用量比较小,1斤粮食4克酒曲。

一、预处理。取一份薏苡仁,二份糯米,清洗后分别浸泡在不同容器的清水中,其中,浸泡20小时至36小时,薏苡仁和糯米的浸米度均为42~45%,浸泡后,再分别将薏苡仁和糯米在常压下蒸煮至熟而不烂为止,备用;

二、发酵。将蒸煮后的薏苡仁和糯米摊凉后,加入酒曲发充分拌匀后,放入容器中,在20~30度的温度中发酵,形成酒醪;

三、蒸馏。将发酵好之后的薏苡仁和糯米的酒醪放入唐三镜酿酒设备中进行蒸馏,蒸酒期间要控制好火候。

四、调配。用蒸馏出的薏仁酒为基酒,调制得39°—55°的饮用薏仁酒。这种糯米薏米混合发酵的方法发酵,混合添加了对人体有益的健康元素,能够满足消费者对酒类的色、香、味等官能性的需要,工艺简单、酒香纯正、口感好,该酒还具有增强薏仁功效、调节血脂的作用。

更多酿酒技术可百度搜索“唐三镜黄丽娜”了解更多酿酒资讯。

薏米→浸泡(加入糯米)→蒸煮→淋冷→落缸搭窝(加入酒药)→窝曲发酵(加入麦曲)→糟烧↓←蒸 馏←发 酵←酒 糟投 酒→静置后发酵→压榨↑→原酒→静置→煎酒→存放→装瓶→成品

相关百科

热门百科

首页
发表服务