F 陈洪凯,唐红梅,鲜学福,张玉萍.泥石流冲击脉动荷载概率分布特征.振动与冲击.2009年第12期【EI收录】F CHEN Hongkai, TANG Hongmei. Method to calculate fatigue fracture life of control fissure in perilous rock. APPLIED MATHEMATICS AND (5): 643-649 /SCI169HD EI080311036650F CHEN Hongkai,TANG Hongmei,YE Siqiao. Research on damage model of control fissure in perilous rock. APPLIED MATHEMATICS AND (7): 967-974 / SCI067FV EI063810123282F CHEN Hongkai,TANG Hongmei,CHEN Yeying. Research on method to calculate velocities of solid phase and liquid phase in debris flow. APPLIED MATHEMATICS AND (3):399-408/ SCI027GV EI06239925302F Chen Hongkai, et al. Research on abrasion of debris flow to high-speed drainage structure. APPLIED MATHEMATICS AND (11):1257-1264 / SCI876NG EI05058821728F Chen Hongkai et al,Research on equivalent processes of rock mass parameters with anchor piles. APPLIED MATHEMATICS AND (8):965-971 / SCI485JV EI02056843868F Chen Hongkai et al. Global composite element iteration for analysis of seepage free surface. APPLIED MATHEMATICS AND (10 )/ EI00045122273F 陈洪凯,鲜学福,唐红梅,王林峰.危岩稳定性分析方法.应用力学学报.2009,26(2):278-282F 陈洪凯,唐红梅,鲜学福.美姑河流域牛牛坝公路泥石流灾害防治研究.兰州大学学报.2008,45(3):18-22F 陈洪凯,鲜学福,唐红梅.危岩稳定性断裂力学计算方法.重庆大学学报. 2009,32(4): 434-437 / EI20092812177648F 陈洪凯,唐红梅,鲜学福,王全才.川藏公路四川段泥石流灾害研究与治理.防灾减灾工程学报.2009,29(2):126-132F 陈洪凯,鲜学福,唐红梅.基于断裂力学的危岩支撑-锚固联合计算方法.金属矿山.2009,总393期(3):10-13F 陈洪凯,唐红梅,鲜学福.缓倾角层状岩体边坡链式演化规律.兰州大学学报.2009,45(1): 20-25F 陈洪凯,易丽云,鲜学福,唐红梅.酸-应力耦合作用下抗滑桩性能试验.重庆大学学报. 2009,32(1):61-66 /EI20092312116655F 陈洪凯,张祎.考虑渗透力作用的危岩主控结构面断裂力学求解.重庆建筑大学学报.2008,30(5):77-80 /EI 20085011775752F 陈洪凯,鲜学福,唐红梅,王全才,张玉萍.坡面泥石流形成过程模型试验.湖南大学学报.2008,35(11):130-134 /EI20091812064456F 陈洪凯,杜榕桓,唐红梅,王全才.泥石流龙头压胀机理探析.重庆交通大学学报.2008,27(5): 790-793F 陈洪凯,鲜学福,唐红梅,封全宏.三峡库区危岩群发性机理与防治.重庆大学学报.2008,31(10):1178-1184F 陈洪凯,唐红梅.危岩主控结构面强度参数计算方法.工程地质学报.2008,16(1):37-41F 陈洪凯,唐红梅,叶四桥.中国公路泥石流研究.中国地质灾害与防治学报. 2008,19(1):1-5F 陈洪凯.三峡库区危岩链式规律的地貌学解译.重庆交通大学学报.2008,27(1):91-95F 陈洪凯,舒小红.泥石流固相在浆体中沉降规律研究.重庆建筑大学学报.2007,29(4):99 -103 / EI073910835440F 155.陈洪凯,李明.隧道与地下工程健康研究及防治理念.地下空间与工程学报.(2): 213-217F 陈洪凯,胡明,唐红梅.危岩锚固机理的断裂力学分析.重庆建筑大学学报. 2006, 28(5):101-105 / EI070110349792F 陈洪凯,唐红梅.泥石流两相冲击力及冲击时间计算方法.中国公路学报.2006,19(3): 19-23 / EI06249939075F 陈洪凯,唐红梅.拉剪型危岩发育过程的模型试验.重庆大学学报. 2006,29(6):115-119F 陈洪凯,唐红梅,王蓉,等.危岩锚固计算方法研究.岩石力学与工程学报.2005,24(8):1121-1327 / EI05229136772F CHEN Hongkai, et al. Research and control of giant debris flow along highway. The PROCEEDINGS OF THE CHINA ASSOCIATION FOR SCIENCE AND TECHNOLOGY. York: Science / BBQ32F 陈洪凯,唐红梅,刘光华,等.危岩支撑及支撑-锚固联合计算方法研究.岩土工程学报.2004,26(3): 383-388 / EI2005088854299F 陈洪凯,唐红梅.速流结构防治泥石流的理论及应用.中国地质灾害与防治学报.2004,15(1):11-16F 陈洪凯,唐红梅,王蓉.三峡库区危岩稳定性计算方法及应用.岩石力学与工程学报.2004,23(4):614-619 /EI04238201724F 陈洪凯等.散体滑坡室内启动模型试验.山地学报.2002,20(1)F 陈洪凯,等.墙后路基填土分层碾压打桩侧向压实技术.中国公路学报.2000,13(2) / EI00095315421F 陈洪凯,等.三峡工程永久船闸边坡岩体渗透张量.山地学报. 2000,18(1)F 陈洪凯,朱可善.施工期岩体等效渗透张量求解法.岩石力学与工程学报.1999,18(2) / EI99104839726F 陈洪凯.塑性泥石流的沉积学特征初探.沉积学报.1993,11(4)F 陈洪凯,李吉均.白龙江流域的古喀斯特地貌及形成时代探讨.科学通报.1992,37(15)
力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。下文是我为大家整理的关于物理学力学论文的范文,欢迎大家阅读参考!
浅析物理力学的产生及其发展
摘 要:物理力学主要是研究宏观力学的微观理论学科。研究物理力学的主要目的是通过理解微观粒子性质的相互作用,找出介质的力学性质计算方法,进而使解决力学问题建立在微观分析的基础上。本文主要探讨了物理力学的产生和发展,为有关物理力学问题的解决提供理论基础。
关键词:物理力学;产生;发展
一、物理力学发展需要解决的问题分析
在物理力学的发展过程中,我们需要解决两方面的问题,一个是关于物性的问题,另一个是有关运动规律的问题。物理力学主要通过物性及其运动规律这两个方面的微观化而成为解决问题、建立微观分析的基础。关于物性的参数主要表现为运动方程组中的系数,例如弹性系数、热导率、粘性系数、声速、比热等。为了求解运动的方程组,需要知道它们相关的数值。
在传统力学中,物性参数的数值是需要试验测定的。而在我们研究的物理力学中,是通过微观的分析以及对宏观数据分析相结合的方法计算参数的数值。我们研究物理力学,不仅是为了能够找出物质性质的微观规律,而且还需要找能够预见新物质性质的方法。
针对物理力学发展中的相关问题,先了解一下有关激波结构问题的例子。物态在激波前后会有很大的变化,在波阵面一定的厚度之内,物质是处在远离平衡的状态的。这时,对于宏观物态的参数已经不适用了。因此,我们需要从分子运用的这一个角度进行描述。像从波尔兹曼方程的角度出发,进而直接进行求解。
在上世纪60年代,一对无内部自由度的影响激波结构的问题得到了进一步发展。其发展主要得力于计算机技术的发展,从而能够使波尔兹曼方程进而得到模型数学方程,求精确解。另外,还能够实现激波管与稀薄气体风洞在较高区域的分辨率的相关方面的测量。虽然对于这些问题的处理都是初步的,但是从物理力学微观运动规律上看,确是一个非常大的进步。
还有一个相似的例子就是对爆震波反应区结构方面的研究。对于这方面的研究是比激波结构更加复杂的,解决问题的困难在于理论的复杂性,也有实验经验的不足等原因。分子气体的动力激光器中非平衡流方面的问题,主要是因为分子内部自由度性质在不断膨胀的气流中产生的自身不平衡现象。在这种迅速膨胀的气流中,分子振动的自由度两方面是不平衡的,不能够采用统一的温度对其进行描述。因此,这也是一个远离平衡的问题。
二、新技术不断推动物理力学的发展
物理力学的产生及其发展即是力学学科发展的重要趋势,也是促进现代工程技术发展的重要手段。自上世纪40年代至今,由于尖端的技术以及基础科学的不断发展与进步,力学面临着大量的超高温和超高压等特殊条件下的问题。我国著名的力学家钱学森在上世纪50年代初提出应该建立物理力学这门学科,其真知灼见把握了力学发展的大趋势,并且预见了今后突飞猛进的结果。
人类社会科学技术的不断发展,给物理力学的研究提供了更多的条件。纵观近五十年间的物理力学的发展,值得一提的是液体理论的重大进步。1972年,麦克唐纳等人计算出等压线结果和多种液体实测数据等,促进了对液体理论的研究。1997年,威尔逊提出了采用重正化群理论解决临界现象,取得了重大的进展。近20年来,对于耗散结构理论是非平衡系统的研究也取得了突破性的进展。上世纪50年代之后,原子分子物理学才重新被重视,尤其是计算机的不断应用大大地促进了这门学科的发展。其他的像分子束技术、光散射技术、中子衍射技术等都成为了研究固体以及液体微观结构的有效手段。另外,高压技术能够产生千万大气压以上的高压条件,高倍电子显微镜能够用来观测原子尺的现象等。新技术以及新发明都为进一步研究物理力学提供了有利的条件。
本文对物理力学的产生及其发展进行了相关的探讨。通过本文的研究,我们了解到,在对物理力学进行研究时,我们应该明确物理力学研究的目的,还应该充分采用新技术、新发明,将其不断应用到研究中。只要我们不断探索和实践,一定能够进一步促进物理力学的发展。
参考文献:
[1]范继美.理论力学与普通物理力学的关系[J].云南师范大学学报(自然科学版),2009,(02).
[2]钱学森.从原子分子物理出发,经由物理力学的思路和方法搞发明创造[J].原子与分子物理学报,2007,(02).
[3]干洪.力学学科的发展现状与21世纪展望[J].安徽建筑工业学院学报(自然科学版),2001,(02)。
[4]陈卫平.现代力学发展趋势及研究课题[J].台州师专学报,2007,(06).
浅析力学在机械中的应用
[摘 要]力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。本文立足于力学,简要论述了力学的内涵及其发展历程,并对力学在机械中的应用进行了较为深入的探讨与分析。
[关键词]力学 弹性力学 断裂力学 工程力学 机械
力学是力与运动的科学,它的研究对象主要是物质的宏观机械运动,它既是一门基础科学,又是一门应用众多且广泛的科学。力学与天文学和微积分学几乎同时诞生,在经典物理的发展中起关键作用,推动了地球科学的发展进步,如大气物理、海洋科学等,同时力学也在机械中起着越来越重要的作用,且应用广泛。
一、力学
力学是一门独立的基础学科,主要研究能量和力以及它们与固体、液体及气体的平衡、变形或运动的关系,可粗分为静力学、运动学和动力学三部分。
力学的发展历史悠久,古希腊时代力学附属于自然哲学,后来成为物理学的一个大分支,1687年,牛顿三大定律的提出标志着力学作为一门独立的学科开始形成。此后,随着资本主义生产的发展,到18世纪末,以动力学和运动学为主要特征的经典力学日益完善。19世纪,大机器生产促进了力学在工程技术和应用方面的发展,推动了结构力学、弹性固体力学和流体力学等主要分支的建立。19世纪末,力学已是一门相当发展并自成体系的独立学科。
二、力学在机械中的应用
力学在机械中的应用广泛,其典型应用主要有以下几种:
1.弹性力学在机械设计中的应用
弹性力学也称弹性理论,是固体力学的重要分支,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。机械运动当中,许多机械运转速度较高、承载很大,机械的弹性变形对系统的影响不容忽视,必须将机械系统按弹性系统进行分析和设计。由此可见,弹性力学在机械设计中应用广泛。一般情况下,弹性力学在凸轮机构设计、齿轮机构设计、轴设计中应用较为广泛。
齿轮机构在设计时运用了弹性力学的知识,渐开线作为齿廓曲线存在诸多优点,但用弹性力学知识加以分析便可得出它存在的一些固有缺陷,即当两齿轮啮合传动时,根据弹性力学中的赫兹公式分析可得,在其它条件相同的情况下,要想降低两齿轮在接触处的最大接触力,就必须增大两轮齿廓在接触点处的综合曲率半径,对于渐开线齿轮传动来说,由于要增大两轮齿廓在接触点处的综合曲率半径,就需要增大齿轮机构的尺寸,而两轮齿廓在接触点处的综合曲率半径增大的范围是有限的,所以难以进一步达到齿轮机构尺寸小、而承载能力大幅度提高的目的。同时,弹性力学在轴设计中也有众多应用。为避免共振现象,对高转速的轴,如汽轮机主轴、发动机曲轴等设计时振动计算尤其重要,此时必须运用弹性力学知识。
2.断裂力学在机械工程中的应用
断裂力学,是固体力学的一门新分支,主要研究含裂纹构件的强度与寿命,是结构损伤容限设计的理论基础。断裂力学主要可分为线弹性断裂力学与弹塑性断裂力学两大类,前者适用于裂纹尖端附近小范围屈服的情况;而后者适用于裂纹尖端附近大范围屈服的情况。断裂力学发展迅速,在机械工程中应用广泛,并占据重要地位。断裂力学在机械工程中的有效应用,不仅可以提高机械的性能与功效,更能防止工程设备发生灾难性的断裂事故,以确保机械、设备的安全可靠与良好运行。
首先,我国在采用断裂力学方法制订结构缺陷评定标准及安全设计规范方面已取得了较好的成绩,如压力容器、小型但用量大的液化石油气钢瓶及汽轮一发电机组等。
其次,概率断裂力学在可靠性设计中应用较多。概率断裂力学在可靠性设计中的广泛应用推动了可靠性设计的快速发展。运用参量的分布及安全余度来反映常规设计中不能准确反映的客观实际和常规设计安全评定中用安全系数不能准确反映的真实安全性。由于安全余度考虑了应力和强度的二阶矩,较好地反映了结构可靠度的实质,既考虑了变异特性又考虑了平均值,因而与失效分布有较直接的关系,使安全设计更可靠。国外已较完整地应用于飞机结构,如概率损伤容限分析、飞机结构可靠性和事故分析、飞机结构的耐久性分析等方面。我国在这方面开展的典型性研究则是海洋石油平台导管架焊接管节点的疲劳强度分析。
再者,可用断裂力学方法进行机械产品的失效分析。失效分析是指事故或故障发生后所进行的检侧和分析,目的在于找到失效的部位、失效原因和机理,从而掌握产品应当改进的方向及修复的方法,防止同类问题再次发生,以推进技术不断前进。因此,失效分析技术受到了社会各界的重视。断裂力学在机械产品失效分析中具有着重要作用。机械产品的主要失效模式有: 断裂、蠕变、疲劳、腐蚀、磨损及热损伤等,它们都可以借助断裂力学方法及断裂分析技术予以解决,断裂力学方法是失效分析的有力工具。
最后,运用断裂力学可以指导改进工艺及合理选材,如模具、焊接工艺等方面,可以减少工人的劳动量。
3.工程力学在机械修理中的应用
工程力学涉及众多的力学学科分支与广泛的工程技术领域,是一门理论性较强、与工程技术联系极为密切的技术基础学科,工程力学的定理、定律和结论广泛应用于各行各业的工程技术中,是解决工程实际问题的重要基础。处理机械工程出现的大量破坏问题,绝大多数是根据力学方面的知识作出判断和分析的。例如,汽车修理中汽车零部件的破坏分析与修理也是如此,其中,判断汽车半轴套管断裂的原因与确定修复方案等,全部流程无一不体现着工程力学知识在汽修中的应用。
三、结语
当今社会,科学技术迅猛发展,作为一门基础学科,力学也一定会得到进一步的发展与进步,且在机械中获得更广更深的应用。
参考文献
[1]林同骥,浦群.现代力学的发展[J].力学进展,1990,(1).
[2]李彦军.工程力学在汽修中的应用与对策[J].科技向导,2012,(32).
[3]侯岩滨.弹性力学在机械设计中的应用[J].辽宁师专学报,2005,(1).
[4]吴清可,刘元杰,张毓槐.断裂力学在机械工程中的应用[J].机械强度,1988,(6).
篮球运动员的弹跳、速度、爆发力非常重要,而这一切,都离不开跟腱。篮球运动员遭遇跟腱断裂,在之前几乎就是可以宣布职业生涯结束了,现在,随着医学水平的提高,这样的大伤,也有可能在手术治疗后重回赛场,但是状态就会大不如之前。
跟腱,英文名称是Achilles Tendon,其中Tendon是肌腱的意思,而Achilles是希腊神话中的一位勇士的名字,跟腱之所以称为Achilles Tendon,这其中还有一个典故。“ 据The Iliad记载,特洛伊战争中,希腊联军阵营最骁勇善战的一支军队是Achilles率领的Myrmidons。 Achilles之所以如此骁勇,是因为出生时,他的母亲海洋女神Thetis为了让他刀枪不入,捏着他的脚踝在Styx河边泡水,但遗憾的是Styx河水流湍急,被母亲捏住的脚后跟却不慎露在水外。 长大的Achilles强壮而又聪慧,是一个战无不胜的勇士,是所有英雄中最耀眼的一位,他虽然号称刀枪不入,却有一个致命之处———自己的脚后跟。后来在特洛伊战争中,Achilles杀死了特洛伊王子Hector,因而惹怒了Hector的保护神太阳神Apollo,于是太阳神用箭射中了Achilles的脚后跟,希腊人的第一勇士因此而死去。后来,解剖学家就将脚踝位置的肌腱(即Achilles被射中的位置)命名为 Achilles Tendon 。 虽然传说未必完全可信,但至少说明了跟腱是人体比较脆弱的部位,尤其对于一些运动员和体育爱好者来说,跟腱的损伤尤其多发,比如:科比、刘翔、贝克汉姆……他们都是因为跟腱损伤而影响了运动生涯。那么对跟腱损伤,我们应该如何预防和治疗呢?今天我们就来讲讲这方面的问题。一、跟腱最容易发生损伤的部位跟腱是人体最大的肌腱,主要功能是在站立时固定踝关节,在走、跑、跳时提脚后跟。其一端是腓肠肌及比目鱼肌的肌腹,另外一端固定在跟骨结节上。在跟骨结节上方2—6cm的地方血液供应极差,而跟腱损伤就多发生在这个部位。二、最容易发生跟腱断裂的动作当脚向下踩时,有小腿三头肌、胫后肌、腓骨长短肌、屈趾肌群在发挥作用。但在整个过程中,各个肌群所负职责不同,当脚在背伸20°-30°角再发力向下踩时,小腿三头肌主要发力。此时跟腱处于极度紧张状态,其他肌群相对松弛,若突然发力,跟腱最容易断裂。三、导致跟腱断裂的因素1 经常进行强度很大的跳跃、蹬腿等动作,超过耐受能力,使跟腱劳损,导致其营养障碍,发生变性、强度降低。当动作不协调,或用力过猛时,跟腱就容易发生断裂; 2 疲劳会使肌张力异常增加,弹性下降,协调性破坏; 3 长时间不运动,不但身体素质下降,协调性,灵活性不好,还会导致跟腱组织中的血管开放数目减少,供血不足,组织变异,跟腱的抗拉强度降低,一旦冒然做剧烈运动,易致损伤; 4 年龄越轻,跟腱血供越丰富,随着年龄的增长,跟腱内的血管数逐渐减少,血管变细出现供血不足等情况,导致跟腱发生损伤; 5 鞋后跟过尖、后帮过窄、鞋系带过紧等因素都可挤压、磨擦跟腱,或者鞋底过硬,在过硬场地运动,都延长了从踝到足的杠杆力臂,增加跟腱的牵拉力,引起劳损; 6 封闭治疗中常用的类固醇药,有缓解症状的近期效果,但类固醇对胶原纤维具有损害作用,可导致跟腱张力强度减退,甚至引起永久性损伤。四、跟腱断裂时的症状一般在跟腱断裂时,可以感觉到跟腱部明显疼痛,甚至能听到“啪”的响声,就像有人从后面踢了你一脚,或被石块击中的感觉。五、跟腱断裂后的治疗方法跟腱损伤后,一般分为有保守治疗和手术治疗两种。1 保守治疗 一般在创伤后48小时内采用踝关节跖屈位石膏固定。根据跟腱撕裂程度确定石膏固定时间的长短,一般为8周左右。2 手术治疗 手术治疗则是将跟腱断端直接缝合,缝合后加用筋膜和肌腱缝补,或用其他生物材料替代加强。术后也要进行石膏固定,根据手术方式确定石膏固定时间的长短,一般为6周左右。跟腱断裂术后的康复跟腱断裂术后的康复可以分为以下几个阶段:第一阶段:长石膏固定期(1-4周)第二阶段:短石膏固定期(5-6周)第三阶段:跟腱靴保护期(7-12周)第四阶段:进阶体能及模拟运动期(13周-6个月)第五阶段:重返运动场(6-12个月后)以上的时间阶段仅为临床上的大量案例康复过程参照,因为每个患者的跟腱撕裂程度不同,手术医生不同,手术方式不同,自身的身体素质不同,所以恢复的过程肯定会有很大差异。希望在术后康复的每个阶段内,患者都能够由专业的康复师进行康复评定,根据当时肌肉的力量大小、踝关节角度、跟腱的愈合情况、踝关节的肿胀程度等因素,制定个体化的康复方案。高队医提示: 在怀疑自己跟腱受伤时,最好能马上到医院进行检查,寻找专业的康复治疗中心,避免出现病情加重,跟腱断裂早期治疗,伤口小、并发症少,术后恢复效果好。
因为篮球为竞技类运动,在激烈的比赛中最容易受伤的就是脚踝,跟腱断裂对于篮球运动员来说是很严重的,因为一旦断裂基本上恢复不到之前的水平。
陈旧性断裂一般需要延长,如果延长还不行的话就会植入类似跟腱物体进行连接! 小腿全部切开应该是进行延长手术,把上面的跟腱延长下来。 你能想得办法不多,听从医生的,或者转院!尽量配合医生的治疗,手术完成后的康复才是最重要的!
水泥混凝土结构裂缝的影响、成因及防治策略论文
在平时的学习、工作中,大家都不可避免地会接触到论文吧,论文是进行各个学术领域研究和描述学术研究成果的一种说理文章。写起论文来就毫无头绪?以下是我精心整理的水泥混凝土结构裂缝的影响、成因及防治策略论文,欢迎大家借鉴与参考,希望对大家有所帮助。
摘要: 水泥混凝土,也称水泥砼,由水、水泥以及多种的混合材料组成,广泛地运用于工程施工。由于水泥混凝土结构施工会受到温度、水分、技术条件等多种因素的影响,所以在使用过程中非常容易出现裂缝。结合工程实际,简要分析了水泥混凝土结构工程施工中出现裂缝的原因,并提出了相关防治措施。
关键词: 工程施工;水泥混凝土结构;裂缝;结构病害;
水泥混凝土结构裂缝,是水泥混凝土施工过程中常见的结构病害。如果处理不及时,会使水泥混凝土出现严重结构性损坏,不仅增加了水泥混凝土结构的施工造价成本,同时也缩短了水泥混凝土结构的使用年限。由于部分水泥混凝土结构施工工期较紧,对水泥混凝土结构裂缝处理不够及时,导致水泥混凝土结构建筑物在使用过程中达不到预定要求。在实际施工过程中,应在分析水泥混凝土结构产生裂缝原因的基础上,及时制订施工防治技术方案,保证水泥混凝土结构施工的持续、有效开展。
1、工程施工中常见裂缝类型
由水泥混凝土集配问题引起的裂缝
现场施工人员经验主义作祟,未能及时掌握和调整施工现场水泥混凝土配比,一味地使用实验室配比,没有根据施工现场条件及时调整水泥混凝土结构配合比例,或者使用的原材料不合格,都极易造成水泥混凝土结构的裂缝。例如在水泥混凝土结构配比中,对各类原材料、水、外加剂等因素控制不当,结构物的强度达不到设计要求,就会产生裂缝[1]。
由环境原因引起的裂缝
水泥混凝土结构环境原因引起的裂缝,主要指的是由于水泥混凝土结构施工过程中温度、湿度等环境因素的变化对结构物引起的裂缝。施工过程中出现了较大的温、湿度等环境因素变化时,会导致水泥混凝土结构物理性能发生变化,进而出现裂缝。
由基础原因引起的裂缝
水泥混凝土结构基础原因引起的裂缝,主要是指在施工过程中没有对回填土进行挤密夯实而进行水泥混凝土结构施工所产生的裂缝;如果地基土质过于松软,在水泥混凝土结构施工前未进行夯实处理,同样也会出现水泥混凝土结构裂缝。如果水泥混凝土结构物长期被基础中的渗水浸泡,也会出现不均匀裂缝[2]。
由后期养护不当引起的裂缝
水泥混凝土施工过程中,应及时进行水泥混凝土养护。如果养护不及时,水泥混凝土面层将会出现干缩性裂缝,出现水泥混凝土表面“起皮”现象;或因温度不够达不到水泥混凝土终凝条件,水泥混凝土整体出现“断板”现象。
2、水泥混凝土结构裂缝带来的影响
容易埋下安全隐患,由于水泥混凝土结构裂缝的出现会影响到水泥混凝土建筑物原有的承载能力,进而缩短了水泥混凝土结构物的正常使用时间。在建筑施工过程中,裂缝的存在可能会造成大量的返修,浪费材料,延误工期,最终造成巨大的`经济和名誉损失。水泥混凝土结构裂缝会对建筑的外观质量造成极大的影响,影响工程的质量验收和后续款项的结算。
3、工程施工过程中,水泥混凝土结构裂缝产生的原因
在水泥混凝土结构施工过程中,受到温度、湿度、原材料本身以及施工技术等多方面因素的影响,会导致水泥混凝土结构出现裂缝。
原材料的影响
水泥混凝土中的原材料对水泥混凝土结构的质量起着至关重要的作用,一旦在施工过程中采用了不合格的原材料,就容易引起水泥混凝土裂缝现象:粗细集料含泥量过大会导致与水泥的黏合度不足;粗集料针片状比例过大、粗细集料配比不均会导致水泥混凝土密实度不足;水泥的最佳用水量及初、终凝时间等会对水泥混凝土结构的整体强度和水泥混凝土结构后期养护产生影响。
施工技术的影响
在水泥混凝土结构施工过程中,要采用科学的施工技术,加强对工程管理制度、施工组织设计的时间节点等关键要素的管理。在对水泥混凝土地面施工时,要对原地面进行找平、填土、分层夯实施工,不然会使水泥混凝土路面因受力不均而产生裂缝和“断板”现象。在水泥混凝土路面施工中,要将水泥混凝土路面振捣密实,切勿出现空洞而影响水泥混凝土路面的使用年限。在水泥混凝土施工养护的过程中,要及时观察和监测水分和温度变化情况,及时掌握水泥混凝土的初、终凝时间,实施喷水、覆盖保温设施。要保证水泥混凝土结构终凝后,才可以拆除模具,以免因水泥混凝土结构未达到强度而产生裂缝,影响水泥混凝土结构的正常使用。
物理性能的影响
由于水泥混凝土属于脆性材料,环境中温度、湿度对其影响较大。在温度、湿度数值出现较大变动时,水泥混凝土结构的应力也会出现相应的变化,导致水泥混凝土结构裂缝的产生。
4、工程施工中水泥混凝土结构裂缝的预防措施
水泥混凝土结构裂缝会对建筑物整体结构埋下隐患,有可能影响到人民群众的生命财产安全。通过对水泥混凝土结构裂缝产生原因的分析,需要对其做出积极的事前、事中、事后预防。
设计过程中的预防措施
科学制订水泥混凝土的配置比例。在水泥混凝土结构配比方案制订时,要合理控制水灰比,各类外加剂的添加要符合施工现场的实际情况。在实验室水泥混凝土配比符合施工要求的情况下,要在现场及时调整配比,不能一贯地依赖于实验室的配比结果。要根据水泥混凝土结构的高度、宽度、长度及时调整钢筋分布,使水泥混凝土结构应力分布均匀。加大对水泥混凝土原材料的质量监测力度,杜绝使用不合格的原材料。要根据实际情况,适时对水泥混凝土配比进行合理调整。
施工过程中的预防措施
水泥混凝土结构的施工过程是影响工程质量的关键步骤,科学的施工工序是决定水泥混凝土结构是否产生裂缝的重要因素。在施工前要注意水泥混凝土结构原基层的平整度;施工中要严格根据设计和工艺进行施工,保证水泥混凝土结构合理的施工配合比例,满足水泥混凝土结构设计强度与材料和易性的质量要求;在水泥混凝土运输过程中时,要对水泥混凝土采取保水、保温等相关的防护措施;在水泥混凝土浇筑过程中,要适时控制水泥混凝土的出料速度,并保证水泥混凝土结构浇筑过程中要振捣密实、均匀。要注重二次抹压在水泥混凝土施工工程中的重要作用,二次抹压能够减少水泥混凝土结构裂缝的出现。二次抹压时,要适时掌握水泥混凝土结构的初、终凝时间,如果抹压时间过晚,水泥混凝土结构已经逐渐凝固,即使抹压也不能使水泥混凝土结构物理外观形态变化;如果抹压时间过早,二次抹压后水泥混凝土结构才会产生裂缝,不会对水泥混凝土结构物理外观产生影响。所以,工程施工人员需对抹压的时机进行控制,介于水泥混凝土结构初凝和终凝之间的时间段进行抹压,方能减少裂缝的产生,提高水泥混凝土结构的质量[3]。
养护过程中的预防措施
水泥混凝土结构的养护要严格按照水泥混凝土结构养护国家标准来实施,使水泥混凝土结构的裂缝降到最低。要加强温、湿度监控,严格按照水泥混凝土结构设计要求,对水泥混凝土养护的温度、湿度和技术条件进行把控;要采取措施,合理控制温度、湿度数值的变化范围,在施工中可采用水泥混凝土结构表面覆盖塑料薄膜、草席的方法,保证水泥混凝土结构物的温度,适时人工洒水来保证水泥混凝土所需的湿度。另外,在工程施工过程中,要保证水泥混凝土结构养护工作周期满足规范要求,通常情况下水泥混凝土结构养护周期为7~15d,工程施工过程中的具体养护时间应根据施工现场的实际风力、温湿度等情况而决定[4]。
5、结束语
目前,水泥混凝土结构施工已经普遍使用到了各类工程中,水泥混凝土结构的质量直接影响着工程质量。本文简要分析了水泥混凝土结构工程施工中出现裂缝的原因,并提出了防治水泥混凝土结构裂缝的措施。但是,水泥混凝土结构裂缝牵扯的因素较多,在实际工程施工中很难避免。要在水泥混凝土结构工程项目施工过程中,从施工的各个环节进行水泥混凝土结构裂缝的预防控制,使工程施工的质量和效率得到有效的保障,使建设物的使用年限得到有力的保证。
6、参考文献
[1]冯树合.工程施工中水泥混凝土结构出现裂缝的原因及预防[J].江西建材,2014(3):74.
[2]吴巍.基于工程施工中水泥混凝土结构出现裂缝的原因及预防措施的分析[J].中华民居(下旬刊),2014(6):333-334.
[3]赵晓春.工程施工中水泥混凝土结构出现裂缝的原因及预防[J].科技致富向导,2014(29):262.
[4]沈亚萍.房建施工中混凝土结构出现裂缝的原因及预防[J].四川水泥,2015(6):225.
预应力箱梁裂缝原因及处理措施论文
摘要: 通过对预应力箱梁裂缝产生原因进行分析,针对不同裂缝采取相应处理措施,在水灰比控制、钢筋配置、施工管理等方面分别提出了控制要点,经过工程实践证明裂缝处理效果良好。
关键词: 预应力箱梁;裂缝;处理
Abstract: Though the analysis of the causes of cracks in prestressed box-girder, the author gives control points respectively to solve problems which arise in the water-cement ratio control, reinforcement configuration, construction management. It has got good results in engineering practice.
Key words: prestressed box girder; cracks; solving
在预应力箱梁施工过程中,有时可见混凝土表面有裂缝产生,表现形式比较复杂,常见裂缝有沿箱梁腹板两侧竖向或斜45°方向的,有沿翼缘板底部或悬臂板端部纵向的,有沿顶、底板预应力方向的或发生在腹板与顶、底板交接处以及齿板或横隔板(孔洞周围)某些局部位置的裂缝等。裂缝是混凝土结构普遍会遇到的现象,遇到裂缝应先查找原因,再采取相应处理措施。
1裂缝产生的原因
一类是由外荷载引起的裂缝,也称结构性裂缝或受力裂缝,表示结构承载力可能不足或存在严重问题。对设计荷载进行全面考虑可以防止裂缝的产生;另一类裂缝是由变形引起的,也称非结构性裂缝,指变形得不到满足,在构件内部产生自应力,当该自应力超过混凝土允许应力时,引起混凝土开裂。引起该类裂缝的原因主要有:
(1)混凝土浇筑后处于塑性阶段,由于混凝土骨料沉落及混凝土表面水分蒸发而产生裂缝。
(2)混凝土凝固过程中因收缩而产生裂缝。
(3)由于温度变化产生的裂缝。结构随着温度的变化受到约束时,在混凝土内部产生应力,当此应力超过混凝土抗裂强度,混凝土便开裂,即产生温度裂缝。
(4)施工不当产生裂缝。如果施工方案合理,施工工艺符合质量控制要求,混凝土配合比、坍落度满足要求,而现场地施工温度高达25℃以上,那么裂缝的.主要原因是因温度应力引起的。
(5)模板、支架、移动模架等设备构件结构不合理,构件强度、刚度及稳定性不符合要求而引起结构的变形;基础发生不均匀沉降或水平方向位移;支架预压不符合规定等都会加大结构的主应力及附加应力,从而产生裂缝。
(6)如预应力张拉时间过早,张拉时虽然强度满足要求,但因混凝土龄期短、弹性模量未同步增长而影响后期变形。另外结构浇筑、构件的制作、拆模的时间、运输、堆放、拼装及吊装过程中施工工艺不合理也会降低施工质量而产生纵、横、斜方向的裂缝。
(7)混凝土是一种脆性材料,抗拉强度较低,混凝土浇注后若没有采取有效的措施,降低混凝土内外部温差或采取养护措施不当,使混凝土产生温度收缩裂缝;养护不周,时干时湿,表面干缩变形也会导致裂缝的发生,因此施工中要最大限度的降低温差和减少收缩。
2防止裂缝产生的措施
对于发现的裂缝,应进行观测、分析,找出裂缝发生的原因,选择合适的材料及施工工艺,对裂缝进行必要的整治,整治裂缝应以“治本为主,治表为辅,表本结合,综合治理”为原则,才能达到良好的效果。
控制及改善水灰比
减少砂率,增加骨料用量,严格控制坍落度,混凝土凝固时间不宜过短,下料不宜过快,高温季节注意采取缓凝措施,避免水分剧烈蒸发,混凝土振捣密实,改善现场混凝土的施工工艺,同时注意混凝土的施工防雨、养护及保温工作。
布置防裂钢筋
通过在结构内部增设防裂钢筋,以提高混凝土的抗裂性能;一旦裂缝出现,先将混凝土表面清理,沿缝凿宽8 mm~10 mm,深度大于10 mm,用钢丝刷沿缝槽将灰尘、浮渣及松散层彻底清除,用丙酮将其油垢擦洗干净、晾晒,其含水率不大于6%。然后在清洁的混凝土槽内,薄而均匀地涂刷环氧底胶料,不得有漏涂和留坠现象。涂完底胶料后,自然固化12 h后,然后用玻璃布或嵌刀将环氧砂浆分层封堵,每层厚度不大于5 mm,用沟缝条压平压实。环氧砂浆自然固化24 h后,用环氧底胶料封闭,封闭宽度应大于环氧砂浆缝宽,且每边要超出2 mm~3 mm。封堵后要保持干燥,用碘钨灯烘烤。通过配置足够的温度应力钢筋、增加结构的安全储备等措施来防止裂缝的产生(比如在腹板加一倍的纵向钢筋);同时在施工时,应尽量选择温度低的时间浇筑混凝土(利用早、晚进行施工)。热天浇筑混凝土时,应降低水温拌制,选用水化热小和收缩小的水泥灰比,合理使用减水剂,加强振捣以减少水化热,提高混凝土的抗拉强度,并注意混凝土湿润,同时可以在腹板留通气孔,达到张拉强度及时张拉压浆。
3结束语
预应力混凝土箱形结构产生裂缝很常见,但可避免或减少,关键在以下两点:
(1)设计时,认真验算,合理布置构造钢筋或预应力筋,对易出现裂缝的部位,通过施工过程的严格控制,尽可能地避免开裂或减少裂缝的数量,减少裂缝的长度和宽度,通过对裂缝的妥善处理,控制裂缝的发展,使裂缝不至于对结构产生危害,保证结构的正常使用。
(2)加强施工管理,严格按技术规范要求的施工程序和方法施工,是保证工程质量的关键,防止人为因素引起的不合理的施工工艺和方法,以及超越客观现实的盲目施工等不良现象发生至关重要。
颜志丰1 琚宜文1 侯泉林1 唐书恒2
基金项目:国家自然科学基金项目(;40972131);国家重点基础研究发展规划(973)课题();国家科技重大专项课题(2009ZX05039-003);中国科学院战略性先导科技专项课题(XDA05030100);河北工程大学博士基金课题。
作者简介:颜志丰,1969年生,男,河北邯郸人,博士后,长期从事能源地质和构造地质研究。Email:。
(1.中国科学院研究生院地球科学学院 北京 1000492.中国地质大学(北京)能源学院 北京 100083)
摘要:为模拟研究煤储层水力压裂效果,对煤样进行了饱水条件下的常规单轴压缩试验和声发射测试。对结果进行分析表明:在常规单轴压缩条件下,煤在平行层面上其力学性质具有方向性差异,平行面割理方向的单轴极限抗压强度要比垂直面割理方向的单轴极限抗压强度大得多,其弹性模量也大得多。煤样在垂直面割理方向弹性模量E随着单轴极限抗压强度σc的增加而增加,相关性较高,平行面割理方向弹性模量E随着抗压强度的增高而增高,但离散性较大。在单轴压缩条件下煤样变形破坏表现出的全应力—应变曲线形态大体可以概括为3种类型。
关键词:单轴压缩试验力学性质各向异性饱和含水率割理
Uniaxial Mechanical Test of Water-saturated Coal Samples in Order to Simulate Coal Seam Fracturing
YAN Zhifeng1 JU Yiwen1 HOU Quanlin1 TANG Shuheng2
( of Earth Science, Graduate University of Chinese Academy of Sciences, Beijing 100049 of Energy Resources, China University of Geosciences (Beijing), Beijing 100083 China)
Abstract: In order to simulate effect of hydraulic fracturing in coal reservoir,conventional uniaxial compres- sion test and acoustic emission test on the water-saturated coal samples were hold. The results showed that the me- chanical properties in parallel to the level of coal have directional difference. Under the conditions of conventional uniaxial compression. The uniaxial limit compressive strength in direction parallel to the face cleat is much larger than it in the vertical, so is the elastic modulus. The elastic modulus of coal increased with the increasing of com- pressive strength, however it is higher correlation in the direction of vertical face cleat, but a larger dispersion in parallel. The complete stress-strain curve shape showed by deformation of coal samples under uniaxial compression can be roughly summarized as 3 types.
Keyword: uniaxial compression test; mechanical properties; Anisotropy; saturated water content; cleat
1 前言
煤层气是储存于煤层内的一种非常规天然气,其中CH4含量多数大于90%,是一种优质洁净的气体能源(单学军,2005)。我国煤层气资源十分丰富,根据新一轮全国煤层气资源评价结果,在全国19个主要含煤盆地,适合煤层气勘探的埋深300~2000m范围内,预测煤层气远景资源量为万亿m3。煤层气主要是以吸附状态存在于煤层内,也有少量以游离状态存在于孔隙与裂缝中(Smith D M,1984)。就孔隙结构而言,煤的孔隙结构可分为裂缝性孔隙和基岩孔隙。人们又习惯地把煤岩中的内生裂缝系统称为割理。其中面割理连续性较好,是煤中的主要裂隙,端割理是基本上垂直于面割理的裂缝,只发育在两条面割理之间,把基岩分割成一些长斜方形的岩块体(李安启,2004)。
渗透率高的煤层产气量往往较高,而低渗透率的煤层产气量较低。水力压裂改造措施是国内外煤层气井增产的主要手段。而我国的煤层气储层普遍属于低渗透煤储层,研究表明:我国煤层渗透率大多小于50×10-3μm2(张群,2001)。因此,目前国内的煤层气井采用最广泛的完井方法是压裂完井,煤层和砂岩的岩性特征有很大的区别,压裂施工中裂缝在煤层中的扩展规律与在砂岩中的扩展规律也不相同,为了解煤层的压裂特征和压裂效果就需要对煤层压裂进行模拟研究,要进行模拟研究就需要研究煤岩的力学性质。
通过试验研究煤岩的力学性质,发现煤岩具有尺寸效应——即煤岩的尺寸对试验结果具有影响,Daniel和Moor在1907年就指出(Daniels J,1907):小立方体的屈服强度高于大立方体,而且当底面积保持常数时,随着试块高度的增加,其屈服强度降低。研究过煤岩尺寸效应的还有Bunting(Bunting )。Hirt和Shakoor(Hirt A M,1992),Med-hurst和Brown(Medhurst T P,Brown E ),吴立新(1997),刘宝琛(1998),靳钟铭(1999)等。
由于单轴力学性质试验结果受尺寸、形状等因素制约,因此进行单轴岩石压缩试验时,对试验样品的加工有一定的要求,通常试件做成圆柱体,一般要求圆柱体直径48~54mm,高径比宜为,试件端面光洁平整,两端面平行且垂直于轴线。
2 试验方法说明
在单轴压缩应力下,煤块产生纵向压缩和横向扩张,当应力达到某一量级时,岩块体积开始膨胀出现初裂,然后裂隙继续发展,最后导致破坏(闫立宏,2001)。为避免其他因素的影响,采用同一试样,粘贴应变片,在测试强度过程中同时用电阻应变仪测定变形值。
煤样制备和试验方法
实验煤样采自沁水盆地南部晋煤集团寺河煤矿3#煤层。煤样制备和试验方法参照中华人民共和国行业标准《水利水电工程岩石试验规程(SL264-2001)》(中华人民共和国水利部.2001),以及国际岩石力学学会实验室和现场试验标准化委员会提供的《岩石力学试验建议方法》(郑雨天,1981)进行的。沿层面方向在大煤块上钻取直径为50mm,高为100mm的圆柱样,煤样轴向均平行煤岩层面。为研究平行面割理和垂直面割理方向煤岩力学性质的差异,制备了两组煤样。一组煤样平行面割理方向,样品数10个,编号DP1-DP10;另一组煤样垂直面割理方向,样品数10个,编号DC1-DC10。试验前对煤样进行了饱水处理(48h以上)。单轴实验设备为WEP-600微机控制屏显万能试验机。记录设备为30吨压力传感器,7V14程序控制记录仪。数据处理设备为联想杨天E4800计算机及相应的绘图机、打印机。试验工作进行前测试了煤样的物理性质,对试件进行了饱水处理。进行单轴压缩试验的煤样条件见表1。
表1 煤样条件
计算公式
单轴抗压强度计算公式
中国煤层气技术进展:2011年煤层气学术研讨会论文集
式中:σc为煤岩单轴抗压强度,MPa;Pmax为煤岩试件最大破坏载荷,N;A为试件受压面积,mm2。
弹性模量E、泊松比μ计算公式:
中国煤层气技术进展:2011年煤层气学术研讨会论文集
式中:E为试件弹性模量,GPa;σc(50)为试件单轴抗压强度的50%,MPa;εh(50)为σc(50)处对应的轴向压缩应变;εd(50)为σc(50)处对应的径向拉伸应变;μ为泊松比。
3 试验结果与分析
加载轴线方向对煤块的抗压强度σc和弹性模量有显著的影响。
试验结果数据见表2。从表中可以看出,平行面割理方向的单轴极限抗压强度要比垂直面割理方向的单轴极限抗压强度大得多,其弹性模量也大得多,抗拉强度平均值高出2/3,而弹性模量更是高出一倍。这说明即使在平行煤的层面上其力学性质也具有方向性,不同方向上其值大小有显著差异。
表2 煤样单轴抗压强度试验结果
注:DP9沿裂隙面破裂,没有参与力学性质分析。
煤是沉积岩,小范围内同一煤分层在形成环境、形成时代上都是相同的,可以认为小范围内在平行煤的层面上,煤的组分、煤质等是均匀的,变化非常小,所以沿平面上力学性质的差异与煤质、组分等关系不大。推测其原因是由于在地史上受到构造应力的影响,构造应力具有方向性,在不同的方向上其大小不同,使煤在不同的方向上受到地应力作用的大小程度也不同,导致煤在不同方向上结构有所不同,从而表现出来在不同方向上力学性质的差异,在受力较大的方向上可能会表现出较大的强度。由于在构造力作用下沿最大主应力方向裂隙最容易发育,发育程度也应该较好,沿最小主应力方向上裂隙发育程度要差些。发育好的裂隙往往形成面割理,因而在平行面割理的方向上抗压强度和弹性模量都高,而在垂直面割理的方向上其值相对就会小些。
煤岩单轴极限抗压强度与其他性质之间的关系
由表2可知煤样的抗压强度离散性较大,影响因素是什么?煤的密度与含水状态对单轴抗压强度有什么影响?现分析如下:
图1-a表示了极限抗压强度σc与饱和密度ρw之间的关系。从图中可以看出,无论是C组、P组还是全部样品,随着饱和密度的增加,煤块的极限抗压强度都有增加的趋势,说明随着饱和密度的增加,抗压强度有增加的趋势。
图1 σc与其他性质之间的关系
图1-b表示极限抗压强度σc与饱和吸水率ωs之间的关系。从图中可以看出,C组样品随饱和吸水率的增加抗压强度有减少的趋势,而P组样品单轴抗压强度和饱和吸水率的相关性非常低,可以认为饱和吸水率对P组样品没有影响。由此可见,饱和吸水率的增高使垂直面割理方向的抗压强度降低,而对平行面割理方向的单轴极限抗压强度影响很小。
图1-c表示单轴极限抗压强度σc与弹性模量E之间的关系。从图中可以看出C组样品单轴极限抗压强度σc与弹性模量E之间具有明显的正相关性,即垂直于面割理方向的单轴极限抗压强度随着弹性模量的增加而增加,P组样品具有不明显的线性正相关,即平行于面割理方向的单轴极限抗压强度σc与弹性模量E的增加而增加,但离散性较大。
图1-d表示单轴极限抗压强度σc与泊松比μ之间的关系。从图中可以看出C组样品单轴抗压强度与泊松比之间具有较明显的负相关关系,也就是说垂直于面割理的单轴抗压强度随着泊松比的增高而降低;但是P组样品的相关性很低,即平行于面割理方向的单轴极限抗压强度σc与泊松比的变化无关。
弹性模量和其他性质之间的关系
图2-a表示弹性模量E与泊松比μ之间的关系。从图中可以看出C组样品、P组样品及全部样品相关性均不明显。说明弹性模量与泊松比之间的变化互不影响。
图2 弹性模量E与其他性质之间的关系
图2-b表示弹性模量E与饱和密度ρw之间的关系。从图中可以看出无论C组还是P组,样品弹性模量与饱和密度相关性非常弱,可以认为不相关。由此可见弹性模量不受饱和密度变化的影响。
图2-c表示弹性模量E与饱和吸水率ωs之间的关系。从图中可以看出C组样品弹性模量与饱和吸水率相关性较高,呈明显的负相关关系;但是P组样品的相关性却很低,几乎不相关。由于C组样品以垂直轴向的裂隙为主,在压力作用下煤样的变形等于煤岩本身的变形再加上水的变形,水是液体,在压力作用下很容易变形,在压力不变的情况下随着水含量的增加变形随之增大,而产生较大的轴向变形,导致C组的煤样随着含水量的增加弹性模量变小。而P组样品裂隙以平行轴向为主,尽管在饱水的情况下裂隙中完全充填了水,但由于水含量很少,承载压力的主要是煤岩本身,变形量也是由煤岩本身决定的,因此它与含水量关系不明显。
泊松比和其他性质之间的关系
由图3-a中可以看出C组样品、P组样品和全部样品的泊松比与饱和密度之间散点图均比较离散,相关性很低,也可以说它们不相关。
由图3-b中可以看出C组样品、P组样品和全部样品的泊松比与饱和吸水率之间相关性很低,可以认为它们不相关。
煤岩单轴压缩全应力—应变曲线类型
岩石试件从开始受压一直到完全丧失其强度的整个应力应变曲线称为岩石的全应力应变曲线(重庆建筑工程学院,1979)。大量岩石单轴压缩实验表明,岩石在破坏以前的应力应变曲线的形状大体上是类似的,一般可分为压密、弹性变形和向塑性过渡直到破坏这三个阶段。
煤是一种固体可燃有机岩石,由于成煤物质的不同及聚煤环境的多样化,煤的岩石组分、结构特征比较复杂。因此,在单轴压缩条件下煤样变形破坏机制及表现出的全应力—应变曲线形态多种多样,大体可以概括为3种类型。
迸裂型
应力—应变曲线压密阶段不明显,加速非弹性变形阶段很短,曲线主要呈现表观线弹性变形阶段直线,直到发生破坏,见图4-a。具有迸裂型全应力—应变曲线特征的煤样,通常均质性较好、强度较大、脆性较强,其抗压强度通常很高。煤样在整个压缩变形过程中,积聚了大量弹性应变能,而由于发生塑性变形而耗散的永久变形能相对较小。因此,当外部应力接近其极限强度而将要发生破坏时,煤岩内积聚的大量弹性应变能突然、猛烈地释放出来并发出较大声响,形成一个很高的声发射峰值。
图3 泊松比μ与饱和吸水率ωs之间的关系
图4 煤岩样品应力—应变关系曲线图
破裂型
应力较低时,出现曲折的压密阶段,当应力增加到一定值时,应力—应变曲线逐渐过渡为表观线弹性变形阶段;最后变为加速非弹性变形阶段,直到发生破坏,见图4-b。试件随荷载的增加,煤样受力结构逐渐发生变化,同时出现局部张性破坏,但整体仍保持完整,并在变形过程中也积聚了一定的弹性应变能。当外部应力接近其抗压强度,即煤岩发生加速变形时,煤岩中积聚的弹性应变能就突然释放,产生较高的声发射值,破坏时声发射强度又变得非常低。
稳定型
应力—应变曲线压密阶段不明显,表观线弹性变形阶段呈略微上凸的直线,加速非弹性变形阶段较长,见图4-c。试件随荷载的增加,煤样受力结构逐渐发生变化,同时出现局部张性破坏,并在变形过程积聚的弹性应变能释放,形成振铃计数率峰值,随后振铃计数率迅速降低,并在加速非弹性变形阶段开始时出现新的振铃计数率峰值,接近破坏时又出现一次振铃计数率峰值。破坏时声发射强度又变得非常低。
4 结论
通过上面对沁水盆地寺河煤矿3号煤力学试验,可以得出如下结论:
(1)煤岩单轴抗压强度和弹性模量等力学性质在平行煤层的平面上具有方向性差异,平行面割理方向的单轴极限抗压强度要比垂直面割理方向的单轴极限抗压强度大得多,其弹性模量也大得多。
(2)煤的极限抗压强度σc随着饱和密度ρw的增加而增加;极限抗压强度σc在垂直于面割理方向上随饱和吸水率ωs的增加而减少,而在平行面割理方向上与饱和吸水率无关;单轴极限抗压强度σc随着弹性模量E的增加而增加,在垂直面割理方向上相关程度较高,在平行面割理方向上离散性较大。单轴极限抗压强度σc在垂直面割理方向上随着泊松比μ增加而减小,而在平行面割方向上与泊松比无关。
(3)弹性模量E的变化不受泊松比变化的影响,同时也不受饱和密度的影响;垂直面割理方向弹性模量随着饱和吸水率ωs的增加而减小,而平行面割理方向弹性模量与饱和吸水率无关。
(4)泊松比μ的变化既不受饱和密度变化的影响,也不受饱和吸水率ωs变化的影响。
(5)在单轴压缩条件下煤样变形破坏表现出的全应力—应变曲线形态大体可以概括为3种类型:(1)迸裂型;(2)破裂型;(3)稳定型。
参考文献
单学军,张士诚,李安启等.2005.煤层气井压裂裂缝扩展规律分析.天然气工业,25(1),130~132
靳钟铭,宋选民,薛亚东等.1999.顶煤压裂的实验研究.煤炭学报,24(1),29~33
李安启,姜海,陈彩虹.2004.我国煤层气井水力压裂的实践及煤层裂缝模型选择分析.天然气工业,24(5),91~94
刘宝琛,张家生,杜奇中等.1998.岩石抗压强度的尺寸效应.岩石力学与工程学报,17(6),611~614
吴立新.1997.煤岩强度机制及矿压红外探测基础实验研究.北京:中国矿业大学.
闫立宏,吴基文.2001.煤岩单轴压缩试验研究.矿业安全与环保,28(2),14-16
张群,冯三利,杨锡禄.2001.试论我国煤层气的基本储层特点及开发策略.煤炭学报,26(3),230~235
郑雨天等译.1981.国际岩石力学学会实验室和现场标准化委员会:岩石力学试验建议方法.北京:煤炭工业出版社
中华人民共和国水利部.2001.水利水电工程岩石试验规程(SL264~2001).北京:地质出版社
重庆建筑工程学院,同济大学编.1979.岩体力学.北京:中国建筑工业出版社
Bunting D. 1911. Pillars in Deep Anthracite Mine. Trams. AIME,(42), 236~245
Daniels J, Moore L D. 1907. The Ultimate Strength of Coal. The Eng. and Mining,(10), 263~268
Hirt A M,Shakoor A. 1992. Determination of Unconfined Compressive strength of Coal for pillar Design. Mining Engineer- ing, (8), 1037 ~1041
Medhurst T P, Brown E T. 1998. A study of the Mechanical Behavior of Coal for Pillar Design. Int. J. Rock. Min. (8), 1087~1104
Smith D M, Williams F effects in the recovery of methane from coalbeds. SPE, 1984: 529~~535
杨焦生 王一兵 王宪花 陈艳鹏 王 勃
( 中石油廊坊分院 河北廊坊 065007)
摘 要: 长期导流能力评价实验可以反映油气藏条件下裂缝真实的导流能力,为压裂设计和施工提供可靠参考。运用 FCES -100 长期裂缝导流仪,测试了不同条件下煤岩水力裂缝的长期导流能力,并分析了嵌入、煤粉、胍胶液残渣及复杂裂缝等因素对导流能力的影响。测试结果表明,煤岩强度低,嵌入伤害严重,在较低的闭合应力 ( 15 MPa) 下就表现明显的伤害,而砂岩当闭合压力大于 25 MPa 时,嵌入伤害才比较明显; 煤粉为疏水性,易聚集堵塞裂缝,大大降低导流能力。为克服嵌入和煤粉的伤害,施工中可采取增加铺砂浓度、加大支撑剂粒径、加入分散剂悬浮煤粉等方法。胍胶压裂液由于破胶难,残渣对裂缝渗透率伤害高达70% ~80%,可使导流能力下降30% ~50%,应加强对超低温破胶技术的研究; 裂缝形态对导流能力也有很大的影响,复杂裂缝与单一裂缝相比,等效导流能力降低。研究成果对煤层压裂材料优选、现场施工控制及压后产能评价具有积极的指导意义。
关键词: 长期导流能力 煤粉 支撑剂 裂缝形态 压裂液残渣
基金项目: 国家 973 课题 “提高煤层气开采效率的储层改造基础研究”( 2009CB219607) 资助。
作者简介: 杨焦生,男,工程师,中国石油勘探开发研究院廊坊分院工作,从事煤层气开发及增产措施研究。地址: 河北省廊坊市万庄石油分院 44#信箱煤层气所,邮编: 065007; 电话:。E mail: yangjiaosheng@ 126. com
Experimental Study and Influence Factors Analysis on Long- term Conductivity of Hydraulic Fractures in Coal Seams
YANG Jiaosheng WANG Yibing WANG Xianhua CHEN Yanpeng WANG Bo
( Langfang Branch,Research Institute of Petroleum Exploration and Development, PetroChina,Langfang 065007,China)
Abstract: The long-term conductivity of hydraulic fractures under different situation in medium-and high-rank coal bed are tested by using FCES-100 fracture long-term flow conductometer. The influence of proppant embed- ment,coal powder,guar gum residue and complex fractures to conductivity are also analyzed. Experiment results show that proppant embedment can cause seriously damage to conductivity for low-intensity of coalbed. Under low closure stress ( < 15 MPa) ,the damage in coal seam displays obviously,however,for sand only when closure stress was higher than 25 MPa,the damage can be observed. Moreover,coal powder is hydrophobic and is in- clined to gather to chink fracture,decreasing conductivity sharply. Increasing the sand concentration,enlarging the proppant diameter and adding dispersant into the fracturing fluid appropriately can decrease the damage caused by proppant embedment and coal powder. According to test results,for gelout's difficulty,mass guar gum residue in hydraulic fracture can reduce permeability by 70-80% ,and conductivity decrease by 30-50% . So it is necessa- ry to strengthen the research on gelout technology under ultra-low temperature. Fracture morphology also plays an important role on the conductivity. Related to single fractures,complex fractures’equivalent conductivity is lower usually. This paper’ s outcomes are beneficial to fracturing materials optimization,field treatment controlling and productivity evaluation post fracturing.
Keywords: long-term conductivity; coal powder; proppant; fracture morphology; guar gum residue
煤储层渗透率很低,一般都小于1mD,压裂裂缝导流能力对压后产气效果影响很大,是实现压后高产的基础。与常规砂岩地层相比,煤储层埋藏浅、弹性模量低、强度低、天然割理及裂缝发育(琚宜文等,2005;申卫兵等,2000),压裂过程中多形成复杂裂缝,支撑剂嵌入严重,产生大量煤粉堵塞裂缝,裂缝长期导流能力变化具有自身特点(邹雨时等,2011;郭建春等,2008;王春鹏等,2006),其评价方法和内容不能简单照搬砂岩地层中裂缝导流能力的评价,而应该具有特殊性。本文针对这些问题采用实验室长期导流能力评价方法,系统研究了煤岩压裂裂缝导流能力的影响因素及其作用机理,并形成了一套适合煤储层的裂缝导流能力评价方法。
1 实验原理和设备
实验使用的是美国公司生产的裂缝导流仪,使用API标准导流室,并严格按照API的程序操作,实验原理主要是达西定律,支撑剂导流能力计算公式可以表达为下面形式:
中国煤层气技术进展: 2011 年煤层气学术研讨会论文集
式中:kWf为充填裂缝导流能力,dc·cm;Q为裂缝内流量,cm3/min;μ为流体粘度,mPa·s;Δp为测试段两端的压力差,atm。
因此,实验中只需测得压差及流量即可求得支撑剂的导流能力。图1为API支撑剂导流室解剖图,可以模拟地层条件,对不同类型支撑剂进行短期或长期导流能力评价。
2 实验条件和煤样制备
为了真实地反映支撑剂在地下裂缝的实际情况,模拟温度取40℃,选用长期导流能力测试,每个测试压力点都测量50小时,闭合压力分别为10,15,20,25和30MPa。支撑剂选用现在普遍采用的石英砂(兰州砂),选择20/40目和10/20目两种进行试验。实验中的流体选择为2%KCl水溶液和胍胶液,流体速度2~5ml/min。实验使用晋城(高煤阶)和韩城(中煤阶)两地的天然煤岩,实验试件的尺寸为长,宽,厚1~2cm,端部成半圆形(图2)。
3 实验方法
在导流室中夹持煤片模拟煤层裂缝,将实验流体以稳定的流速通过两片煤板之间的支撑剂填充层,逐渐增大闭合压力得到裂缝导流能力随闭合压力变化的曲线。通过改变煤岩类型、煤粉浓度、铺砂浓度、胍胶液浓度和用量、支撑剂粒径及组合、裂缝形态等实验条件得出不同闭合压力与导流能力的关系曲线,然后将不同的曲线进行比较分析,评价不同因素对煤岩裂缝导流能力的影响。
图1 API支撑剂导流室解剖图
图2 不同煤阶煤岩板
4 实验结果与分析
支撑剂嵌入及煤粉对导流能力的影响
(1)支撑剂嵌入影响
实验选用20/40目兰州砂,铺砂浓度分别为5kg/m2和10kg/m2,用钢板、砂岩和煤岩板(高、中煤阶两种)分别进行实验,实验结果见图3,4。
图3 钢板、砂岩、煤岩导流能力对比图(铺砂浓度5kg/m2)
图4 钢板与煤岩导流能力对比图(铺砂浓度10kg/m2)
可以看出,使用钢板(无嵌入)测得的导流能力明显大于使用煤岩测得的导流能力,说明支撑剂在煤岩中的嵌入伤害程度很大。实验证实煤层嵌入比砂岩严重,在闭合压力大于10~15MPa时,导流能力就急剧降低,而砂岩闭合压力大于20~25MPa时才下降较快。
由于中煤阶煤岩的强度更低,同样条件下,中煤阶嵌入伤害更严重,中煤阶明显嵌入时的闭合压力比高煤阶更低,嵌入程度约为高煤阶的倍,造成导流能力下降幅度更大。嵌入伤害越严重,裂缝壁面嵌入部分产生的煤粉碎屑越多,对支撑裂缝内的流体流动阻碍更大,使得导流能力进一步下降。
(2)煤粉产出对导流能力的影响
实验选用20/40目石英砂,采用10kg/m2铺砂浓度,分别混入2%和5%的煤粉(100目),采用高阶煤煤岩片进行实验,实验结果见图5。
由图5可以看出,煤粉对裂缝导流能力伤害很大,随着闭合压力的增大,煤粉浓度的增高,导流能力迅速下降。闭合压力10~30MPa,2%煤粉可以使导流能力下降10%~35%,5%煤粉可使导流下降20%~60%。煤粉是疏水性的,不易分散于水或水基压裂液,从而极易聚集起来阻塞裂缝孔隙喉道,随着时间的延长,煤粉微粒不断运移,可以使得堵塞更为严重。如在压裂液中加入润湿剂和分散剂则能使煤粉由疏水性转为亲水性,有助于分散与悬浮煤粉于压裂液中,阻止煤粉的聚集,有利于煤粉的返排。如图6显示,加入两种不同分散剂FSJ01,FSJ02后裂缝导流能力有所改善。
图5 不同煤粉浓度下导流能力对比图
图6 加入分散剂对导流能力的影响结果(铺砂浓度5kg/m2)
支撑剂粒径对导流能力的影响
实验应用晋城高阶煤岩,选择10/20目和20/40目两种粒径支撑剂按照不同比例(1∶1,1∶2,1∶3)混合,测试其导流能力变化,铺砂浓度为10kg/m2。
由图7可以看出,当闭合压力低于20MPa时,单一粒径10/20目的石英砂的导流能力比20/40目的大30~50%,且大粒径支撑剂所占比例越大,其导流能力也越大。而当闭合压力高于20MPa时,各比例组合导流能力相差不大。因此,压裂施工过程中,考虑造缝和携砂效果,前期应用较小粒径支撑剂(20/40目),低排量施工,可较好支撑多裂缝的支缝系统,使裂缝延伸更长;后期尾追较大粒径支撑剂(10/20目)提高近井地带的导流能力。
图7 不同粒径支撑剂组合导流能力对比图
铺砂浓度对导流能力的影响
实验选用20/40目兰州砂,分别选取5kg/m2和10kg/m2两种铺砂浓度进行实验,实验结果见图8。
图8 不同煤岩、不同铺砂浓度导流能力对比图
由图8可知,无论何种煤阶煤岩,提高支撑剂的铺砂浓度导流能力都有明显的提高,铺砂浓度从5kg/m2提高到10kg/m2,支撑剂的导流能力可以提高50%~100%。而低铺砂浓度下一旦发生嵌入现象,其影响要比高铺砂浓度大。闭合压力越大,铺砂浓度越低,地层岩石越软,嵌入越严重。因此,较软的中阶煤层中为了降低嵌入和煤粉对导流能力的伤害,施工过程中应该增大砂比,提高填充裂缝的铺砂浓度显得更为必要。因此为了提高支撑裂缝的导流能力可在施工条件许可的条件内适当增加支撑剂的铺砂浓度。
压裂液残渣对导流能力的影响
煤层温度低,胍胶压裂液破胶难,造成残渣吸附在煤基质或堵赛支撑剂孔隙,导致基质、裂缝内渗透率下降,导流能力减小,因此这一部分主要考察压裂残渣对支撑剂导流能力的影响。在这里选用20/40目石英砂,10kg/m2铺砂浓度,煤样为晋城高煤阶,分别做了不加压裂液、加入浓度的150ml胍胶液、加入浓度的150ml胍胶液和浓度的100ml胍胶液情况下的导流能力测试,评价胍胶压裂液导流能力的伤害,并进行对比分析,如图9。
图9 压裂液残渣伤害综合对比图
压裂液残渣的伤害,导致了支撑剂导流能力明显的降低,不同的闭合压力下及伤害程度平均在30%以上。相同闭合压力下,同一样品注入瓜胶压裂液越多,浓度越高,导流能力伤害越大,的瓜胶液比相同量的瓜胶压裂液导流能力下降10%以上,的150ml胍胶量比的100ml量导流能力降低20%。
因此煤层压裂液体系在选用冻胶时,需要充分研究其在煤层低温条件下的高效破胶技术,同时也可以尝试加入化学物质来降解、氧化冻胶残渣,减少残渣对水力裂缝的堵塞,从而达到增加裂缝渗透性,提高单井产量的目的。
复杂裂缝对导流能力的影响
为了描述煤层水力压裂中形成的“T”形、“I”形等复杂裂缝对导流能力的影响,本次实验中模拟研究多条裂缝(两条)导流能力的变化情况。实验选用20/40目兰州砂,将一定量的石英砂平均分成两份,分别充填于两条相邻裂缝内(铺砂浓度5kg/m2),测试其综合导流能力,并与单一支撑裂缝(铺砂量与两条裂缝相同,铺砂浓度10kg/m2)的导流能力进行对比,如图10所示。
图11实验结果显示,等量的支撑剂,多条(两条)裂缝的导流能力小于单一裂缝的导流能力,平均可以降低。主要是由于裂缝条数的增多,造成支撑剂较为分散,铺砂浓度降低,增加支撑剂嵌入和煤粉堵塞;另一方面,缝间流体流动发生转向,产生附加渗流阻力,压裂后的煤岩裂缝形态和表面极其不规则,这种渗流阻力会更大,致使导流能力进一步降低。由于煤岩强度差异,裂缝形态对中阶煤岩的导流能力影响程度更大,闭合压力为20MPa时,中煤阶煤岩导流能力降低,高煤阶煤岩降低。
图10 复杂支撑裂缝(浓度5kg/m2)和单一支撑裂缝(浓度10kg/m2)示意图
图11 不同裂缝形态下的导流能力对比图
5 结论
(1)煤岩强度低,支撑剂嵌入造成的导流能力伤害非常严重(伤害率50%以上)。煤层嵌入比砂岩严重,在闭合压力大于10~15MPa时,导流能力就急剧降低,而砂岩闭合压力大于20~25MPa时导流能力明显下降。中煤阶嵌入伤害更严重,中煤阶明显嵌入时的闭合压力比高煤阶更低,嵌入程度约为高煤阶的倍,
(2)闭合压力10~30MPa,2%的煤粉可以使导流能力下降~,5%煤粉可下降~,在压裂液中加入分散剂可以使煤粉不易聚集,有利于返排,降低伤害。
(3)提高支撑剂的铺砂浓度和增大支撑剂的粒径可以明显提高裂缝的导流能力,地层闭合压力增大时应相应增加铺砂浓度,在软煤层中显得尤为必要。
(4)压裂液残渣伤害对支撑剂导流能力有很大影响,由于压裂液残渣的伤害,导致了支撑剂导流能力下降了30%左右,而降低压裂液的用量或减小压裂液的胍胶浓度都可以减小残渣伤害的影响,提高支撑剂的导流能力。
(5)同等量的支撑剂,复杂裂缝的导流能力小于单一裂缝的导流能力。与高阶煤岩相比,裂缝形态对中阶煤岩的导流能力影响程度更大。闭合压力为20MPa时,中煤阶煤岩导流能力降低,高煤阶煤岩降低。
参考文献
郭建春,卢聪,赵金洲等.2008.支撑剂嵌入程度的实验研究[J],煤炭学报,33(6):661~664
琚宜文,姜波,侯泉林,王桂梁,方爱民.2005.华北南部构造煤纳米级孔隙结构演化特征及作用机理[J],地质学报,79(2):269~285
申卫兵,张保平.2000.不同煤阶煤岩力学参数测试[J],岩石力学与工程学报,19(S1):860~862
王春鹏,张士诚,王雷等.2006.煤层气井水力压裂裂缝导流能力实验评价[J],中国煤层气,3(1):17~20
邹雨时,马新仿,王雷,林鑫.2011.中、高煤阶煤岩压裂裂缝导流能力实验研究[J],煤炭学报,36(3):473~476
把单相电,转为两相 三相,或更多的电路称裂相电路。可以用阻容裂相,也可以用计算机加辅助电路裂相(如变频器)作用:获得旋转磁场增加整流滤波效果有些裂相元件存在设备(主要为电机)中,一般称移相电路。可用电容、电感获得。变频器,可以把单相或三相电路,转换为频率,电压不同的单相或三相电路单独的裂相电路非常少见。
电工技师技术论文范文篇二 电工技术实验装置常见故障维修 摘 要 文章总结了电工技术实验装置常见的故障现象、故障原因及维修方法,包括可调直流稳压电源、三相电源、IGBT元器件等常见故障,总结了诊断故障和处理故障问题的一般步骤和方法。并分析了设备维护的若干原则,对日常电工设备的日常维护有较好的借鉴意义。 【关键词】电工技术实验装置 故障分析 维修方法 1 常用的故障排除方法 常见故障 在进行电工技术实验时,经常会碰到一些故障情况。如果对这些故障形式及原因不熟悉,就无法判定故障原因顺利解决故障,从而影响实验的进行和实验结果的准确性。通过对大量的电工技术实验中出现的故障情况进行分析总结,我们发现了以下一些常见的、典型的故障形式:①电源故障。这主要表现为电源给电工技术实验装置提供的电压不稳定,偏高或偏低,同时交流电源电流相位不符合要求。②线路故障。在电工技术实验中线路故障比较常见,主要表现在导线连接错误造成的短路和线路接触点接触不良造成的断路。此外,线路故障还有可能形成局部漏电等不良影响。③元器件故障。元器件本身的故障也是造成电工技术实验失败的一个主要原因。有些比较敏感、对实验条件要求比较严格的元器件,一旦其试验方式不符合要求或实验环境达不到标准,就有可能造成元器件出现故障,影响实验进程。 故障的排除步骤 通过长期对实验故障形式的分析和研究,并结合实际故障维修中的经验,我们总结出了以下分析、判断和处理电工技术实验中常见故障的方式和步骤: 调查研究 当我们在电工技术实验中遇到故障时,首先就是要仔细观察出现故障的部位、故障的形式及相应的异常现象状况。例如,如实验装置出现发热、散发刺鼻气味、振动异常剧烈、噪音较大等异常现象时,我们就可以通过自身的感觉器官对故障现象、位置及性质做个大致的分析判定,为后续的分析处理提供参考。 故障分析判断 在以上对实验故障的情况做了初步判断后,我们就要根据已有的知识和经验对故障原因、位置进行进一步的分析和判断。为此,我们可以运用故障排除法来进行。例如在切断或短接故障电路的某一回路或元器件时,测量该回路或元器件的电流、电压值是否符合理论值,进而一步步分析确定回路故障位置。同时,为了判定某一元器件是否出现故障或异常,可以将其用正常元件代替检测,比较前后回路电压、电流参数是否一致来判断。 故障维修 通过上述步骤探明故障原因及位置后,就要对故障进行维修处理。如果是由于实验元器件出现故障,必要时就要更换正常元件代替实验。如果是回路短路或断路故障,就要重新连接电路并测试正常后才能继续实验。为了不影响实验的进程和结果,在对实验故障进行维修时要尽量采取直接有效、方便快捷的方式进行。必要时要重新设计电路结构和使用可靠度高的元器件,并在排除的所有故障后才可以重新开始实验。 2 直流稳压电源 电工技术实验装置包含两种可调电源,可调电流源和可调电压源,前者能够向电路输出稳定电流信号,后者可以给外负载两端加上稳定电压。以直流稳压电源为例,常发生的故障包括以下几种: (1)直流电流源无法输出电流,或者提供的电流数值很小,趋近于零。究其原因,一般是电流源开关在打开状态,但是外部负载未接入,导致电流源过载,内部保护装置启动,不再输出电流,防止电路过热烧毁。 解决方法是先切断总电源,让系统冷却一段时间,使得内存器的记忆全部消失,再重新打开电源,仔细检查外电路,保证外部负载顺利接入,最后打开电流源开关,即可排除故障。 (2)直流稳压电源不输出电压信号。一般出现这种情况时,很有可能使连接电路时将电压源两个端子短接,造成过大电流,内部保护机制起作用,电压信号中断。与(1)类似,先要切断总电源,冷却后重新打开电源,调整外部电路配置,再打开电压源,可恢复正常工作。 (3)电压源输出电压的调整比减小。按照一般情况,电压源输出电压可在0V~30V之间顺利调节,在出故障的情况下,电源调整范围会大幅减小。经过仔细排查,上面一路电压源一切正常,只是下面的电路有故障。第一,检测上下两路电压对应的电路板,先确认电路板无故障,再检测电位器与电路板的连接线,确认没有短路、断线等故障后,最后检查电位器,发现电位器电阻值异常。判定故障原因后,更换电位器,故障得以排除。 3 可调电阻 实验装置公共基座上分布有大量可调电阻,阻值范围在0~900欧姆,这些部位也比较容易发生故障。 常见故障 一般情况下都是两个接线端子间的电阻无限大,有可能是电流过大,可调电阻保险管烧毁,只要更换新型保险管即可;还一种原因是,可调电阻的电阻丝长期磨损,电阻丝的某一部分断裂,致使电路断开,这需要更换整个可调电阻配件。 解决方案 检修故障时,先将可调电阻保险管取出,检查是否开路,若开路,更换即可;如果排除了开路故障,则检查可调电阻本身的通断情况,如果确认可调电阻配件已经断路,则需要更换新型配件。 4 故障维修注意事项 在对故障进行检测分析和维修的过程中,为了确保实验者的人身安全及检测维修的合理有效性,还需要注意以下几个方面的要求:一是在检测维护过程中,一定要严格遵守相关的实验操作流程和步骤。同时要确保实验仪器设备的使用条件和使用方式满足要求。二是在电工技术实验故障的维修过程中,要始终高度重视操作人员的人身安全。不仅要注重维修技能的提高,还要注重对安全操作意识的教育。三是要注重对故障维修过程中出现的新情况和新问题进行总结和分析,要不断学习新技术、新知识,扩展自己的维修技能,并在实践中加以检验。只有加强学习、积极实践,才能在电工技术实验装置的故障维修中从容不迫,游刃有余。 参考文献 [1]蓝晓威.论电气设备维修检查的原则与方法[J].民营科技,2010(04). [2]胡龙滨.电气设备常用维修方法与实践[J].黑龙江科技信息,2007(14). [3]张健.电气设备的常见维修方法及实践细则[J].黑龙江科技信息,2009(10). [4]徐鹏.电气设备常见故障问题分析与解决途径[J].黑龙江科技信息,2011(21).看了“电工技师技术论文范文”的人还看: 1. 电工技师自我鉴定范文6篇 2. 电工技师职称论文 3. 电工职称论文范文 4. 维修电工高级技师职称论文 5. 电力电气职称论文
裂相电路是指将单相交流电源分裂成两相或三相电源。方法:(没法画,只好说)假设单相交流电源A点,B点;A点--C1--X点--R1--B点A点--R2--Y点--C2--B点取X点,Y点,B点作为三相电源,接三相全桥整流用此法,可使整流输出波纹减小。裂相电路,效率低,容量小,很少实际应用