23、 在Plot(绘图)部分选择SubCont01:Sub_Debutanizer变量列表以显示所有与子控制器问题相关的变量的图。
24、 运行200步仿真,并放大到250步我们将获得:
此图显示了在抗干扰方面令人满意的行为。然而在图的右半边需要更快的优化,因为Duty(能源)最小化响应较为缓慢。 25、 返回到方案编辑器中并将Economic Function Tracking Filter(经济函数跟踪滤波)(在General选项卡中)修改为。这使得经济优化跟踪速度大大加快。
原文:
案例2:反应器(加氢装置)质量控制 (\Program Files\ShellGlobalSolutions\PCTP\Tutorial\SMOCPro\) (\Program Files\ShellGlobalSolutions\PCTP\Tutorial\SMOCPro\) 下图所示为反应器控制的简化工艺流程图。流程的进料在炉中进行加热,并输送进发生反应的反应器。反应通过反应器进料入口温度(TC1)和急冷气体流(FC)来控制。该流程的目的是获得一定质量的产物,在反应器出口流股中进行检测(QI)。同时反应器温度(Temperature)不应超过一个特定的最大值。
原文: **Case 2: Reactor (Hydrotreater Type) Quality Control ** (\Program Files\ShellGlobalSolutions\PCTP\Tutorial\SMOCPro\) (\Program Files\ShellGlobalSolutions\PCTP\Tutorial\SMOCPro\) The figure below shows a simplified process flow scheme for reactor control. The process feed is heated in a furnace and passed on to a reactor where a reaction takes place. The reaction is controlled by the feed inlet temperature of the reactor (TC1) and by a quench gas flow (FC). The objective of the process is to obtain a product of a certain quality, measured at the reactor outlet stream (QI). Also, the temperature in the reactor (Temperature) should not exceed a certain maximum value. Because of variations in the properties of the fuel gas and the settings of the pressure controller, the furnace outlet temperature can have some non-negligible variations. The temperature controller ultimately rejects these; but the transient effect of the variations needs to be properly identified to perform tight reaction control.
补