一 选择工具
可选择的数据分析工具有很多,常见的图表类利用excel即可完成,如果想炫酷一点可利用HubSpot、Xplenty等数据可视化工具完成
二 如何使用
以excel为例,可以生成柱状图、饼状图、折线图、散点图,数据分析图表等,
常见的6种数据分析图表及应用方式:
2.折线图:看数据变化的趋势折线图一般基于时间维度看数据量的变化趋势,发现整体走向和单体突出数据,比如通过折线图可以看出全年的新增用户变化情况,找出数据变化的高点和低点,而柱状图则用来对比不同高点之间的变化,进而找原因。折线图可以将不同纬度的数据放在一起比较,比如新增用户、活跃用户、流失用户三条用户变化曲线放在一起,就可以观察三者之间的彼此影响,例如新增用户量大时有没有对活跃用户带来提升,流失情况是否严重,进而得出活动效果的综合评价。
3.饼状图:用来看各部分的占比饼状图和柱状图在应用上有一定的重合,例如不同渠道带来的新增用户量,饼状图和柱状图都可以表现,但饼状图看的是单一渠道转化用户的占比,柱状图更容易发现不同渠道转化用户的差距。饼状图的应用重点在于发现单体因素在整体因素中的占比,例如活跃用户在整体用户中的占比,但如果用多个单体因素做饼状图,可能导致数据特征不明显。
4.散点图:用于2维数据的比较散点图可以用于3维数据的表现,同时可以进行2维数据的比较。例如将不同活动带来的新增用户和留存用户进行比较时,横轴为留存用户,纵轴为新增用户,而点则表示不同的活动主题。
从而可以看出不同活动主题的用户转化和留存情况,一般我们将数据大的维度作为纵轴,更有利于屏幕的展示。
5.气泡图:用户3维数据的比较气泡图是对散点图的升级,通过散点图中点的大小来表现第三维数据,例如将上文案例中,横轴为留存用户,纵轴为新增用户,点为活动主题,而点的大小为活跃用户数量,活跃用户越高的活动点越大,可以看出不同活动在新增、留存和活跃3个维度的数据差异。
6.雷达图:思维以上数据的对比雷达图可以应用于多维度数据对比,比如在分析不同用户的行为特征时,我们可以从启动次数、使用时长、购物次数、浏览商品数量、下单金额等多个维度进行分析,那么反映到图表上就可以看出不同用户群组特征在不同维度的差异。
雷达图一方面可以发现不同群组用户的特征对比,另一方面可以总结不同用户的特征,例如还是以上几个维度,我们可以以1个指标为关键指标,如下单金额指标,观察出下单金额高的用户在浏览商品数量、使用时长等方面的表现,进而找到提升下单金额的方法,如提高用户的商品浏览数量。