Increased Blood Sugar on hemorrhagic stroke (hemorrhagic apoplexy) the occurrence and development are very important influence, not only as an important risk factor involved in the beginning of HA, resulting in increased incidence of disease, but also to HA after the occurrence of pathological process has a catalytic role to enable hematoma volume expansion, increased edema, increased impairment, affect the blood sugar involved in the mechanism of HA, are manifold, including: lipid metabolic abnormalities, carotid artery remodeling, endothelial dysfunction, platelet dysfunction, hypercoagulability, insulin resistance. Expansion of infarct size and high blood sugar and promoting the development of HA mainly caused by acid poisoning, ischemic injury in areas of apoptosis and other endothelial growth factor (VEGF) and cyclooxygenase (COX-2) and cerebral vascular disease, has attracted people's attention. Vascular endothelial growth factor induced by the prominent role of angiogenesis in vivo and improve vascular permeability; discovered in recent years it also has to stimulate the neurons, glial cells, axonal growth and survival role. COX (cyclooxygenase, COX), is catalyzed arachidonic acid (arachidonic acid, AA) synthesis of prostaglandins (prostgalandin, PG) and thromboxane (thromboxan, TX) of the rate-limiting enzyme. One COX-1 for structural type, exist in most organizations, the catalyst is generated to maintain the normal structure of the PG; COX-2 is induced in physiological conditions, COX-2 in most tissues at very low copy number expression. However, IL-1, TNF and many other inflammation-stimulating factor can induce COX-2 expression. However, current vascular endothelial growth factor and cyclooxygenase Most studies focused on the relationship between cerebral ischemia and brain edema after intracerebral hemorrhage on the dynamic changes of VEGF, COX-2 expression in correlation among recognition of hyperglycemia on cerebral hemorrhage injury in danger at the same time, control, treatment of blood glucose levels become a means of treating cerebrovascular disease, in particular, is used to reduce blood sugar levels of insulin into the acute stroke treatment guidelines. Has been found that insulin on acute cerebral hemorrhage around the brain tissue has a protective effect of ischemic injury. Possible mechanisms are: the brain has been found that the existence of insulin receptors, insulin and insulin receptor binding may reduce the brain cells of glucose uptake, thereby reducing the storage of sugar within the brain cells, reduce lactic acid produced by the substrate, fundamentally correct cellular acidosis; the same time, can also lower blood sugar, insulin concentration, increased bleeding surrounding edema and effective blood supply, resulting in relatively low perfusion state of high blood sugar, thereby improving effect of brain damage was the order to understand these two cytokines and diabetes mellitus the relationship between cerebral hemorrhage injury, this study of diabetes on the basis of the model to be adopted by autologous blood injection method to establish a stable animal model of cerebral hemorrhage in this dynamic observation of cerebral hemorrhage on the basis of After the behavioral and brain water content trends, analysis VEGF and COX-2 in the hemorrhagic brain tissue distribution and expression changes, and then explore the VEGF and COX-2 in brain tissue damage in cerebral hemorrhage the role and significance, compared to diabetes rats and normal blood sugar difference between the volume of brain edema in rats with an initial observation of the two factors in diabetic rats and normal blood sugar difference between the expression of rat brain hemorrhage, with a view to the treatment of cerebral hemorrhage provide new ways and and methods1. Experimental animals and groupingHealthy adult male Wistar rats, a total of 96, weighing 250 to 280 grams from the Experimental Animal Center of Zhengzhou University. In accordance with the principles of randomized experimental animals were divided into four groups, namely sham operation group, normal blood glucose group, high glucose group and the insulin intervention group. Prizes will be awarded 4 points each time: 6h, 24h, 72h, 7d. At each time points are located at 6 . High blood sugar and insulin production in rat model of intervention methodsPrepared by the light of STZ-induced hyperglycemia in rats. With STZ 60mg/kg, high blood sugar and insulin in the intervention group rats a single intraperitoneal injection. Value for four rats with normal blood sugar a 6mmol / L, a week after injection, blood glucose ≥ / L for a successful model for alternative use. Model of high blood sugar after the success of the intervention group I rats were normal insulin, abdominal subcutaneous injection, 3 times / d, 4U / times qd for 3 days, the measured blood sugar value of the normal range.