看我公司的除尘器技术文章吧hbepbcom
Experimental study of electrostatic precipitatorperformance and comparison with existingtheoretical prediction . Kim, . Lee*Kwangju Institute of Science and Technology, Department of Environmental Science and Engineering,1 Oryong-dong, Puk-gu, Kwangju 500-712, South KoreaReceived 1 February 1999; received in revised form 21 May 1999; accepted 2 June 1999AbstractA laboratory-scale single-stage electrostatic precipitator (ESP) was designed, built andoperated in a wind tunnel. As a "rst step, a series of experiments were conducted to seek theoperating conditions for increasing the particle collection e$ciency by varying basic operatingparameters including the wire-to-plate spacing, the wire radius, the air velocity, the turbulenceintensity and the applied voltage. As the diameter of the discharging wires and the wire-toplatespacing are set smaller, the higher collection e$ciency has been obtained. In thesingle-stage multiwire ESP, there exists an optimum wire-to-wire spacing which providesmaximum particle collection e$ciency. As the air velocity increases, the particle collectione$ciency decreases. The turbulent #ow is found to play an important role in the relatively lowelectric "eld region. In the high electric "eld region, however, particles can be deposited on thecollection plates readily regardless of the turbulence intensity. The experimental results werecompared with existing theories and Zhibin and Guoquan (Aerosol Sci. Technol. 20 (1994)169}176) was identi"ed to be the best model for predicting the ESP performance. As the secondstep, the in#uence of particle contamination at the discharging electrode and at the collectionplates were experimentally measured. The methods were sought for keeping the high collectione$ciency of ESP over elapsed time by varying the magnitude of rapping acceleration, the timeinterval between raps, the types of rapping system (hammer/vibrator) and the particle rapping e$ciency and the particle re-entrainment were increased withincreasing magnitude of rapping acceleration and time interval between raps. However, whenthe thickness of deposited #y ash layer is su$ciently high, the concentration of re-entrainedparticles starts decreasing abruptly due to the agglomeration force which can interact among0304-3886/99/$ - see front matter ( 1999 Elsevier Science . All rights : S 0 3 0 4 - 3 8 8 6 ( 9 9 ) 0 0 0 4 4 - 3deposited particles. The combined rapping system is found more e!ective for removingdeposited particles than the hammer rapping system only. ( 1999 Elsevier Science . Allrights : Electrostatic precipitation; Turbulent #ow; Rapping; Particle re-entrainment; Collection e$-ciency; Negative corona1. IntroductionElectrostatic precipitators (ESPs) are one of the most commonly employedparticulate control devices for collecting #y ash emissions from boilers, incineratorsand from many other industrial processes. They can operate in a wide range ofgas temperatures achieving high particle collection e$ciency compared with mechanicaldevices such as cyclones and bag "lters. The electrostatic precipitation processinvolves several complicated and interrelated physical mechanisms: creationof a non-uniform electric "eld and ionic current in a corona discharge, ionicand electronic charging of particles moving in combined electro- and hydrodynamic"elds, and turbulent transport of charged particles to a , the collection e$ciency of ESP decreases as the discharging electrodeand collection plates are contaminated with particulates. Thus, a rapping system isneeded for removing the collected particulates periodically. While there have beennumerous theoretical and experimental studies on particle collection characteristics ofelectrostatic precipitators, a relatively small number of the studies addressed thee!ects of particle accumulation both at the discharging electrodes and at the collectionplates. Both phenomena are known to in#uence adversely the performance ofelectrostatic precipitators. Many researchers, such as Deutsch [1], Cooperman [2],Leonard et al. [3], Khim et al. [4], Zhibin and Guoquan [5], and Kallio and Stock[6], conducted particle collection measurements of ESP. However, they concentratedmostly on the e!ects of both turbulent mixing and secondary wind in multiwiresingle-stage electrostatic precipitators. Speci"cally, Cooperman [2] considered reentrainmentand longitudinal turbulent mixing e!ects, Leonard et al. [3] the "nitedi!usivity, and Zhibin and Guoquan [7] the non-uniform air velocity pro"le. Amongthem, only Zhibin and Guoquan [7] measured the collection e$ciency of a singlestageESP covering a wide particle size range. Even though their experimental dataare considered to be practical and useful, their experimental conditions were notidenti"ed the present study, well-de"ned collection e$ciency data for an ESP are presentedcovering the particle size range of }100 lm. The particles used in the present studycame from the Bo-Ryung power plant in Korea. In addition, the ESP performancewas evaluated in terms of optimum operating conditions. Finally, the optimumrapping conditions were sought under which the rapping e$ciency increases and theparticle re-entrainment . Kim, . Lee / Journal of Electrostatics 48 (1999) 3}25Fig. 1. Schematic diagram of the wind tunnel for the eight wired single-stage ESP performance . Review of theoretical . Particle chargingFig. 1 shows the laboratory-scale electrostatic precipitator. The particle chargingsystem consists of discharge wires with diameter (D8) and two grounded parallelplates of length (¸). A high negative voltage (<8) is applied to the corona dischargewires, and suspended particles of diameter (d1) #ow with air between the plates ata velocity (;) in the y-direction. In the whole range of particle sizes, both "eldcharging and di!usion charging mechanisms contribute to signi"cant charges [8,9].In these theoretical analyses, it is nearly correct to sum the rates of charging from thetwo mechanisms and then solve for the particle charging as follows:dq1dt"q4q A1!qq4B2#d21eN04 S8k¹pmexpA! 2qed1k¹B (1)where q1 is the particle charge, q4 is the saturation charge,N0 is the average number ofmolecules per unit volume, e is the electronic charge ("]10~19 C), b is the ionmobility ("]10~4 m2/V s), e0 is the permittivity of free space ("]10~12 F/m), d1 is the diameter of particle, k is the Boltzmann constant ("]10~23 J/K), ¹ is the absolute temperature ("293 K), m is the mass of a particle("(p/6)d31o1), and o1 is the particle density ("]103 kg/m3).. Theoretical models of particle collection ezciencyTheoretical models of ESPs were provided by Deutsch [1], Cooperman [2],Leonard et al. [3], Zhibin and Guoquan [7] and others. The Deutsch model . Kim, . Lee / Journal of Electrostatics 48 (1999) 3}25 5calculating the particle collection in an ESP assumes complete mixing by turbulent#ow and thereby uniform concentration pro"les. In order to improve the drasticassumption of in"nite di!usivity in the Deutsch model, many researchers tried todevelop "nite di!usivity models by dealing with the convective-di!usion equationwith various boundary [2] developed a theory which modi"es the Deutsch model to accountfor the e!ects of turbulence and particle turbulent di!usion. The major limitations ofthe Cooperman model lie absence of a general method to estimate the re-entrainmentfactor and the particle di!usivity. Leonard et al. [3] developed a more complicatedtwo-dimensional model using the method of the separation of variables from theconvective-di!usion equation. He assumed uniformity of velocity components ofcharged particles and particle di!usivity. This assumption fails to adequately describethe particle di!usivity near the collection plates, where it is governed mainly by themolecular transport and, therefore, the di!usivity near the wall is signi"cantly lowerthan the di!usivity in the turbulent core. Zhibin and Guoquan [7] suggested a newmodel for the single-stage ESP which takes into account the e!ect of turbulencemixing by electric wind. Predicted collection e$ciencies of the above theoreticalmodels are summarized as follows:gDe"1!exp(!De), (2)gCoo"1!expC;¸2D!SG A;¸2DB2#(1!R)PeA¸=B2HD, (3)gLeo"1!P10PA m!DeJ2De/PeBdm, (4)gZhi"1!S Pe4pDeP10expC!Pe4De(m!De)2Ddm, (5)where
布袋除尘器作为一种高效除尘设备,目前已广泛应于各工业部门。近年来,随着国民经济的发展以及愈来愈严格的环境保护要求,布袋除尘器在产量上有了相当大的增长,品种也日渐增多。因此,在设计工作中合理地选定布袋除尘器的基本参数,正确地进行除尘系统设计,不仅对于控制污染、保护环境有重要作用,而且对于提高设备处理含尘气体的能力,降低设备投资从而减少工程造价,也具有极重要的经济意义。本文就布袋除尘系统设计实践中常遇到的两个问题,试图从设计的角度并结合笔者的工作实践作一探讨。1过滤风速问题过滤风速的选取,对保证除尘效果,确定除尘器规格及占地面积,乃至系统的总投资,具有关键性的作用。近年来,在工程项目除尘系统设计中,对过滤风速的选取有越来越偏低的现象究其原因可能是:(1)有些设计者认为过滤风速取低一些,可以提高除尘效率,增强清灰能力,延长清灰周期,从而延长滤袋使用寿命;(2)过去有些文献或专著特别强调过滤风速不能取得太高,以免阻力增大,运行费用提高;(3)目前国产的布袋除尘(小型布袋除尘机组除外)产品样本规定的过滤风速,大都在 m/min以下,较为普遍的是在 m/min范围,对于大布袋则在 m/min以下,即使是采用压缩空气喷吹清灰的脉冲袋式除尘器,其过滤风速最高也只是在 m/min左右,超过4 m/min的较为少见。于是,设计者往往易于在产品样本推荐的过滤风速下,再降低一定的数值来确定过滤面积,从而导致过滤风速取值偏低。基于上述原因,设计工作中过滤风速取低 m/min的现象大量存在。应该说,上述理由并非毫无道理。但是,如果轻易地降低过滤风速,即使降低的绝对值较小,如 m/min,由此将使过滤面积增加约10%,设备投资也将增加近10%,处理的风量越大,增加的投资必然越多,设备的占地面积亦相应加大。显然,这是不经济的;此外,孤立地看待上述理由,也是不合适的。那么,如何正确地选定过滤风速呢?实际上这是一项较复杂的工作,它与粉尘性质、含尘气体的初始浓度、滤料种类、清灰方式有密切的关系。然而,从设计角度讲,应该也可以抓住主要问题进行分析。这是因为,目前国内产品中可供选择的滤料种类及其清灰方式相对讲不是很多,滤料及其清灰方式相应地易于确定;至于初始尘浓,除了工艺提供资料外,或经实测取得一手数据,或按设计者的经验确定。这就是说,影响过滤风速的尘浓、滤料及清灰方式三个因素相对的说较易合理地确定。所以,笔者认为,正确选择过滤风速的关键,首先在于弄清粉尘及含尘气体的性质,其次要正确理解和认识过滤风速与除尘效率、过滤阻力、清灰性能三者之间的关系。对于粉尘及含尘气体的性质,应最大限度地掌握以下几点。第一,要弄清粉尘的粒径分布。粉尘的粒径是它的基础特性,它是由各种不同粒径的粒子组成的集合体,单纯用平均粒径来表征这种集合体是不够的。第二,要弄清粉尘的粘性。粘性是粉尘之间或粉尘与物体表面分子之间相互吸引的一种特性。对布袋除尘器,粘性的影响更为突出,因为除尘效率及过滤阻力在很大程度上取决于从滤料上清除粉尘的能力。第三,应弄清粉尘的容重或堆积比重,即单位体积的粉尘重量。其中的单位体积包括尘粒本身体积、尘粒表面吸附的空气体积、尘粒本身的微孔、尘粒之间的空隙。弄清粉尘的容重,对通风除尘具有重要意义,因为它与粉尘的清灰性能有密切的联系。第四,应弄清含尘气体的物理、化学性质,如温度、含湿量、化学成份及性质。这些参数的确定与除尘附加处理措施、过滤风速的选择有着直接间接的关系。如有的含尘气体含有氯化物等化学成份,一般氯化物易于“吸潮”,如不采取附加的措施,可能导致“糊袋”。应该承认,要全面准确地收集上述四方面的数据,从我国目前的设计实践看,客观上还有一定的困难。但是,作为设计师,至少应对其有定性的了解。对于过滤风速与除尘效率、过滤阻力、清灰性能三者之间的关系,可以从下述三方面来进行分析。第一,除尘效率方面。我们知道,从除尘机理上说,有惯性效应(包括碰撞、拦截)和扩散效应。对粉尘粒径而言,按Friediander的理论,对滤料单一纤维的除尘效率为 式中KD、KI———由烟气温度、粘度、密度确定的常数;dF———单一纤维直径;dp———粉尘粒径;VS———过滤风速。由上式可知,若dp为1μm以下的微尘,借助扩散效应能有效地捕集,适当降低VS可以提高除尘效率η;若dp为5~15μm以内的粉尘,借助惯性效应能有效地捕集,提高VS可以提高η。实践证明,对一般性烟尘,提高过滤风速VS对除尘效率η影响甚微。第二,过滤阻力方面。过滤阻力随滤料上粉尘量的增大而增大,滤料不同,单位滤料面积上容尘量也不同,但从工程角度讲,其差异必竟较小,一般仅从粉尘粒度来考虑滤料的容尘负荷,对粒径大的即粗粉尘取300~1000 g/m2,对微细粉尘取100~300g/m2。国内在80年代初就有专著介绍过对水泥粉尘的滤尘量、过滤风速、过滤阻力三者关系的实测数据,见表1。 从上表数据可以看出:当滤尘量一定时,过滤风速增加1倍,阻力增加25%~50%;即使过滤风速增加2倍,阻力增加亦不到80%,而且过滤风速越低,阻力增加的百分比越小;反过来说,当滤尘量一定,过滤风速降低1倍时,阻力降低不到30%。可见,过滤风速的增减与过滤阻力的增减并不成正比,如果简单地用降低过滤风速的办法来达到降低过滤阻力从而降低运行费用的目的是欠妥的。第三,清灰性能方面。粉尘的清灰性能与粉尘的性质,即粘性、粒度、容重有极大的关系。粉尘的粘性大、粒度小、容重小,清灰困难,过滤风速应取低一些,反之可取高一些。国内有人做过实验,对于滑石粉类中细滑爽尘,在所有工况条件下,仅需一次反吹清灰,滤袋阻力即可恢复原值,二次积尘几乎全被吹落,滤袋再生较好,反吹风量比率仅需25%~30%;而对于氧化铁类超细粘性尘,通常需要连续多次反吹清灰,才能有效降低滤袋阻力,还难以复回原值,反吹风量比率高达50%~70%。这就证明,对某一确定的布袋除尘器,粉尘的清灰性能主要取决于粉尘及其含尘气体的性质,并不是所有的粉尘,只要过滤风速取低些,就可增强清灰能力。此外,在滤料确定的情况下,降低过滤风速可以延长清灰周期,但是滤袋的寿命并不完全取决于清灰周期。因为当确定了某个过滤风速时,滤袋的不同地方过滤风速也不同,国外做过的实验发现,在一条滤袋上的局部过滤速度相差可达4倍,甚至超过4倍!综上所述,可以得出这样的结论:盲目地降低过滤风速并不完全能保证提高除尘效率,也不一定能相应地降低过滤阻力,还可能造成不必要的经济损失。只有在充分了解粉尘性质及系统特性,正确理解过滤风速与除尘效率、过滤阻力、清灰性能之间的关系,并在这两者的结合上有一个清晰的认识后,才可能合理地确定过滤风速。2大气反吹布袋除尘器的反吹风压问题大气反吹布袋除尘器国内生产厂家、型号比较多,国外引进工程中采用这种设备的也不少。反吹风清灰的空气可以取自大气,也可以取自经过本设备净化后的“烟气”。这种除尘器以其维护管理简便,在处理大流量含尘气体时占地面积小的优点而被广泛采用。但是,近年来我们通过一些实地调查和测定,发现有些设计者对反吹风清灰的风压考虑不周,有的甚至在设计大气反吹布袋除尘系统时,还没意识到必须认真考虑反吹风压这个问题,因而投入运行后不久,由于滤袋积灰得不到有效清理而使滤袋阻力上升,当积灰达到某一厚度时,反吹效果几乎为零,导致除尘器不能正常工作,吸尘点粉尘大量外逸。更有甚者,有的设计者在现场处理这样的问题时,不去认真找出系统设计中的问题,而是简单地采取加大风机电机功率以增加风压的办法,以致白白地增加能耗及噪声污染。笔者曾对西安某厂抛丸除尘系统进行了现场测定。该厂在系统中选用HBF-XⅣ/Ⅱ型横扁袋反吹式除尘器,过滤面积420 m2,系统的简图如图1。 该系统中,设计者从尽可能减少除尘系统管路阻力的原则出发,除尘器入口前管路计算阻力为800 Pa,初始尘浓度计算值为30 g/m3,实测为,采用沉降室加布袋两级除尘,选用风机G4-73-11No10D,风量61 600~33 100 m3/h,风压为2296~3 237 Pa,从粉尘及含尘气体性质看,系统配置尚属合理,测定结果见表2。 从图1及表2的测定值可以看出,对本系统而言,清灰后滤袋阻力下降较小,除尘器反吹清灰时,反吹风压仅为736~834 Pa时,它实际上等于除尘器入口处的全压。按一般的理解,除尘器前管路的阻力应该越小越好,但对于选用大气反吹除尘器的系统,这种理解就不全面了。如图2,反吹风布袋除尘器清灰时,首先关闭滤袋室的出口阀门M,并打开反吹风管阀门N,由于其它各室内部都处于负压,大气通过反吹风管路进入滤袋室进行反吹清灰,清灰后的气体与含尘气体一起进入邻室净化后排出。因此,含尘气体和反吹风汇合处(图2中的A点)的压力与除尘器前管路系统的起始点C(即吸尘罩口)的压差在数值上应该等于A点的压力与反吹风管路进口处(图2中B点)的压差,而A点与B点的压差基本上就是反吹风压。所以,如果除尘器入口前管路总阻力小于反吹风管路(包括反吹风管道、阀门、一层滤袋)的总阻力,这时要么反吹风量降低而使反吹风压减小,要么反吹风根本不能穿透需清灰的滤袋。显然,反吹风量减小意味着反吹风透过滤袋的强度减小。 现场实测时发现,该系统由于反吹风压太小,清灰次数又不可能过于频繁,因此运行不久,滤袋积灰越来越厚,反吹效果越来越差,以致系统阻力上升,吸尘点风量减小,粉尘大量外逸,不仅岗位尘浓大大超过卫生标准,刮压时还造成严重的环境污染。同样的负压反吹风布袋除尘器,当反吹风压满足要求时,则系统清灰顺利,运行正常,除尘效果就相当好。笔者在贵阳某厂沥青干燥系统、贮仓出料系统的实测数据充分说明了这点。这两个除尘系统,根据粉尘性质及系统特性,设备选型大体恰当。详见表3。 由表3数据可见,对沥青干燥系统,反吹风压在数值上约为3000 Pa;对贮仓出料系统约为2 140 Pa。显然,这个数值是够高的,故两个系统的清灰效果十分突出。通过以上的实测数据及其分析,可见选用反吹风布袋除尘器的除尘系统,设计时必须保证除尘器前管路阻力达到一定值,这个值必须大于反吹风管路(包括阀门)的阻力与一层滤袋的阻力之和。当然,为了加大反吹风压而人为地加大除尘系统中除尘器前的管路阻力,或有意地加大系统风机的风压,从而增加不必要的能耗,这是极不可取的,这也就失去了选用反吹风布袋除尘器的本来意义。
中国的经济规模庞大,钢铁产量、水泥产量、煤炭产量都是世界第一,发电量世界第二,并且大部分是燃煤的火电厂。这些重化工、原材料、能源工业不少企业还是粗放型生产,生产工艺及设备相对落后,资源、能源耗费大,污染严重,产生的粉尘、烟尘数量巨大。因此,中国的袋式除尘器潜在市场非常巨大。目前,不少大中型企业都加大了技术改造力度。例如上海宝钢投资300亿元上三期后工程,上钢一厂投资100亿元进行技改,准备上100吨电炉,两台150吨转炉,尾部都采用大型袋式除尘器。我国100多家采用60~70kA自焙阳极电解铝厂都在进行技术改造,到2005年我国铝产量将达到600万吨,比1999年的284万吨增加了316万吨。铝电解工业中袋式除尘技术应用的需求更为广泛。我国在七十年代中后期大力开展消烟除尘工作,当时上的除尘设备已经老化,或者技术已落后,需要普遍的更新换代。水泥工业关闭立窑小水泥厂后,产量将减少2亿吨,需要上一部分大、中型生产流水线来填补这2亿吨的减产。这样更便于集中治理产生的粉尘和烟尘,将大量采用袋式除尘器。垃圾焚烧炉在我国方兴未艾,从2000年6月1日开始国家颁布的垃圾焚烧标准中明确规定:“垃圾焚烧炉的除尘装置必须采用袋式除尘器,以减少焚烧过程中有害物质的产生和排放”。我国有600多座城市,再加上近郊的城镇,今后袋式除尘器在垃圾焚烧炉除尘方面的市场潜力巨大。我国的火电厂大型燃煤锅炉除尘,是高效除尘设备的巨大市场。由于种种原因,我国的袋式除尘器在这个市场还未打开局面,而国外发达国家火电厂除尘、脱硫,袋式除尘器占有相当的份额,特别是澳大利亚火电厂除尘,绝大多数都采用袋式除尘器,运行稳定,效果良好。目前我国对烟气中的SO2加强控制,粉尘比电阻上升,使得电除尘器的应用变得困难和不经济,袋式除尘器成为合理的选择。在此基础上,预测将来我国袋式除尘行业总产值会超过20亿元大关,保持一种向上发展、欣欣向荣的良好势头。
122 浏览 4 回答
215 浏览 3 回答
270 浏览 4 回答
206 浏览 10 回答
354 浏览 4 回答
202 浏览 7 回答
352 浏览 5 回答
234 浏览 4 回答
277 浏览 4 回答
107 浏览 4 回答
262 浏览 4 回答
155 浏览 3 回答
154 浏览 4 回答
183 浏览 2 回答
169 浏览 6 回答