本刊记者/彭丹妮 李明子
通过将人类干细胞植入其他动物的胚胎,我们有一天可能会为心脏或肾脏衰竭的病人在动物身上培育出新的。在向着这个终极目标迈进的过程中,中美科学家首次成功地培育了存活率较高的“人-猴混合胚胎”。
4月15日,昆明理工大学灵长类转化医学研究院和省部共建非人灵长类生物医学重点实验室季维智、牛昱宇、谭韬、代绍兴课题组及美国索尔克研究所研究人员在《细胞》上发表 ,评估了人扩展多能性干细胞(hEPS)在食蟹猴中的嵌合能力,它在大众当中引起了讨论与担忧:这是“人-猴杂交”吗?生物物理所研究员王晓群向《中国新闻周刊》解释说,与这种骇人听闻的说法不同,这个实验探究的是,少数的人胚胎干细胞,融合了猴子的早期胚胎以后能不能随着胚胎一块分化,这其实只是一个概念验证。
异种嵌合体研究:从小鼠到猴子
自1970年代以来,世界各国的科学家们一直在以异种嵌合体,如绵羊-山羊嵌合体、大鼠-小鼠嵌合体等,来回答基础发育生物学的问题,也有了一些令人兴奋的成果。2022 年,科学家们将小鼠干细胞发育成的胰脏,移植到了大鼠的胚胎中,治好了后者的糖尿病。含有不同物种 细胞的胚胎,被称为“嵌合体胚胎”。
目前小鼠是主要的混合胚胎宿主,但由于啮齿动物和人之间的胚胎大小和区别过大,需要寻找其他更为合适的嵌合宿主。首次在大型动物中开展嵌合研究的,是美国索尔克生物研究所的教授贝尔蒙特,他也是此次论文的 之一。
2012年,日本研究人员山中伸弥凭借其在诱导多能干细胞(iPSCs)方面的研究了。他的研究显示,在成熟细胞中表达四种转录因子,能够将成熟细胞转化为具有胚胎形态的诱导多能干细胞。这给了贝尔蒙特一个启示,如果将这些人类诱导多能干细胞移植到动物体内,是不是就可以在动物身上复制人类胚胎的发育过程?
2022 年,贝尔蒙特和他的同事吴军等人向猪胚胎中注人类干细胞,论文刊登于《细胞》。当时,贝尔蒙特说,该研究的最终目标是在动物体内培育出可供移植的人类细胞、和。但是因为二者亲缘关系远,有很大的进化差异,胚胎在母猪体内发育3至4周后,大约每10万个细胞里,只有1个细胞属于人类,因此距离这一目标还很遥远。
如果将人的干细胞放在与人亲缘关系更近的猴子胚胎中,会发生什么?该论文 之一、美国得克斯大学西南医学中心分子生物学系助理教授吴军告诉《中国新闻周刊》,发现人-猪嵌合的研究效果不好后,他们考虑转向猴子,因而找到大洋彼岸的昆明理工大学的季维智、谭韬等教授。
院士、昆明理工大学灵长类转化医学研究院院长季维智团队有较多的猴子,也做过猴和人胚胎发育的基础研究工作。与此次研究相关的是,2022 年10月,他们与贝尔蒙特合作,在《科学》上发表论文称,建立了一个培养系统,能够在长达20天的时间内在体外培养食蟹猴的胚胎。
在这项最新的研究中,研究人员先从食蟹猴体内分离出了,在培养皿里生长,体外、发育到第6天时,他们又给132个猴子胚胎注25 枚人类的扩展多能干细胞。随后,研究人员观察这些胚胎的发育情况、了解两类细胞能否共存。
10天后,有103个嵌合胚胎还在继续发育,将近八成,但之后,胚胎的生存率迅速下降:11天后,数量剩下91个;17天后,数量变成了12个;到了第19天,只有3个嵌合胚胎依旧存活,这也是目前体外培养食蟹猴胚胎技术的极限。第20天,所有胚胎死亡,胚胎体外培养结束。
英国剑桥大学的发育生物学家阿里亚斯认为,这项研究的数据不够有说服力,胚胎的存活率在 15 天后迅速下降,说明这些嵌合体胚胎的状况并不好。吴军对此解释说,没有注射人类细胞的猴子胚胎,在体外也是15天之后不能发育,不是因为嵌合胚胎,而是因为胚胎培养系统本身还不是很成熟。
尽管存活率并不高,但是在人-猴嵌合体囊胚持续生长的过程中,人类细胞所占百分比高达4%。“这个结果证明,人-猴嵌合体胚胎比人干细胞与其他物种嵌合有很高的效率”。该论文的通讯 季维智在接受媒体采访时表示,此前学术界报道的人-猪、人-鼠嵌合胚中,人干细胞占比只有千分之一到万分之一左右。
不过,王晓群说,这些胚胎不可能继续发育,因为细胞数量非常少,慢慢就被稀释掉了;而且灵长类动物的免疫系统建立起来以后,识别到这不是它自己的细胞,就会把人类细胞。
违反规范吗?
围绕人-动物混合胚胎研究的争议一直没有停止。
日本在2022 年解禁了“人-动物嵌合体”管制。此前,日本规定,含有人细胞的动物胚胎不能培养超过14天,但新规则允许,在科学合理且必要的条件下,嵌合体胚胎不仅可以在14天后继续培育,而且允许被移植到动物体内,但不能与人的进行任何结合。
目前,嵌合体胚胎的实验在中国国内没有被,但需要得到审批。据《报》2022 年8月报道,贝尔蒙特一直在与中国的研究人员合作。最新的这项研究资金 是自然基金、云南地方基础科研项目经费、一所大学和一家美国基金会。
美国国立卫生研究院规定,联邦资金不能用于创造人-猴混合胚胎,不过,吴军说,在美国是可以做人-猴嵌体的,但需要通过会一层层审批才可以;资金方面,美国不给予经费支持,但还有其他基金、个人捐款等其他 。
论文另一位通讯 、昆明理工大学生物学教授牛昱宇在接受媒体采访时也表示:“我们的整个实验是在体外进行的,没有进入体内。体外培养就像培养细胞一样,不会产生个体。对我们的工作来说,这是一个重要的界限。”在论文中,研究者也附上了接受的过程。
王晓群说,此前,有日本科学家用猴子来研究胚胎早期发育,用来提供卵、做母亲的猴子有上百只之多,可见这个问题之重要。而昆明理工大学季维智、牛昱宇等人建立的食蟹猴的胚胎体外培养系统,恰好可以解决这个问题。
此次论文发表后,美国斯坦福大学亨利·格里利和杜克大学的妮塔·法拉尼发表评论 《推进有关猴子/人类嵌合胚胎的对话》指出,嵌合囊胚里的人细胞,可能会发育为胚胎的各个部分,然后分化为争议更大的细胞,不过,这些都是后话,前提是含人细胞的嵌合体胚胎能够且被允许发育。
解决移植数量缺口的方式包括:3D 打印、在体外培养类、直接从其他动物身上移植,或是让嵌合体动物“长出”人的。尽管这项研究或许有助于促成嵌合体有朝一日的实现,但目前,它还承担不了这么高的期待。
脑科学与智能技术卓越创新中心研究员仇子龙告诉《中国新闻周刊》,这项研究完全合的科研共识,不涉及人类的基因编辑、改造。而且该研究不是要将人和动物的混合胚胎生出来,是要把早期胚胎的发育原理搞清楚,为人类打下研究基础。就他所知,著名华人科学家、哈大学教授也做过类似研究。
王晓群说,这项研究不是简单将人的胚胎发育过程观察从14天推到了21天,而是观察人的细胞在环境下的部分发育。就拿心肌细胞的发育过程来说,过去用培养皿也可以在体外分化出心肌细胞,但毕竟和体内环境下还是不一样的。此外,有了这个模型以后,如果能够规模化,其实是可以帮助进行小分子药物筛选的。
虽然人猴嵌合了较高的效率,但是,要真正培育出异体还有很长的路要走。以现在科学和技术发展的速度,最终实现这一目标,季维智估计,可能还要10年左右。
以上就是与92女猴95猪结婚好不好相关内容,是关于嵌合体的分享。看完生辰八字五行查询后,希望这对大家有所帮助!
2013 年《Science》杂志评选的当年十大科学突破中,癌症免疫治疗研究成果位列其首!2018 年的诺贝尔生理医学奖授予了开启肿瘤免疫治疗新航向的美国免疫学家詹姆斯 · 艾利森(James P. Allision)和日本教授本庶佑(Tasuku Honjo)!自此,人类与癌症的斗争进入肿瘤 – 免疫(immuno-oncology,IO)时代!
以免疫检查点(immune checkpoint)抑制剂和 CAR-T 细胞治疗为代表的新的免疫疗法在临床实践中创造的许多奇迹!这些研究让人们相信癌症不再是不治之症!
虽然癌症的免疫治疗研究方兴未艾,但其实人们很早就认识到免疫与肿瘤的密切关系:
1. 某些肿瘤的发生由慢性炎症而起; 2. 肿瘤的发展、转移需要逃脱免疫系统的严密监视; 3. 免疫细胞是构成肿瘤生长微环境的重要组分,某些免疫反应会被肿瘤细胞利用而成为促进肿瘤生长、扩散的因素,有可能在肿瘤治疗,尤其是免疫治疗当中发挥负面影响。
因此免疫与肿瘤的关系研究,特别是肿瘤微环境中的免疫调节机制的研究也成为当今 IO 时代的重要内涵。不管是癌症免疫治疗还是肿瘤发生发展、肿瘤微环境的机理研究,这些复杂的、系统性的研究当然都离不开动物模型的应用。在此就一一细数 IO 研究中用到的小鼠模型。
1. 自发、诱导的小鼠肿瘤及其移植瘤模型
正常的小鼠在大约一年半的生命周期里也有可能罹患癌症,不同品系的小鼠自发肿瘤的机率和类型不同,体现出遗传因素与癌症易感性的关联。为了更有效地获得小鼠肿瘤模型,也可以采用人为的物理(如紫外线、放射线照射)、化学(天然致癌物质和致癌化合物)和生物(病毒等)的方法诱导小鼠产生肿瘤。可以诱导小鼠肿瘤的致癌物有多环芳烃类、亚硝胺类、偶氮染料类、黄曲霉毒素等。实验室常用的诱导化合物包括MNU(N – 甲基- 亚硝基脲)、DEN(二乙基亚硝胺)、4NQO(4 – 硝基喹啉- 1 – 氧化物)等,可诱导小鼠发生肝癌、食管癌、肺癌、膀胱癌等多种肿瘤,为癌症发生的机理研究提供了有用模型。
研究者也从小鼠的肿瘤建立起很多可在体外培养传代的肿瘤细胞系,如结肠癌细胞CT26-WT、黑色素瘤细胞B16,肝细胞癌细胞H22,淋巴瘤细胞A20 等,这些肿瘤细胞系不仅为癌细胞的体外生物学研究提供了工具,而且可以移植到遗传背景相同、不会发生免疫排斥的其它小鼠体内,建立移植瘤小鼠模型。小鼠自发或诱发的肿瘤也可以剖取下来,分割为小组织块,移植到其它小鼠体内,制作成异体移植瘤模型(allograft)。对于近交系小鼠品系建立的异体肿瘤移植模型,由于小鼠之间的遗传背景相同,其实相当于自体移植(autograft),又可称为同基因型(syngeneic)肿瘤移植模型。移植瘤模型由于可以大量制备,荷瘤鼠之间均一性好,因而非常适合抗肿瘤药物筛选和评价的体内实验。因为荷瘤鼠体内有着正常的免疫系统,这种模型可以用来研究肿瘤和免疫系统的相互作用,也可以进行一些肿瘤免疫治疗的概念性(proof of concept)、机理性(mechani *** )研究。
2. 基因工程小鼠肿瘤模型
自发或诱导肿瘤模型都带有相当的随机性、不确定性,产生的肿瘤类型、特征也经常不能满足研究的需要。随着基因工程技术的发展成熟,对小鼠进行遗传修饰—包括转入新基因、删除基因、基因替换等成为可能。
研究发现,在小鼠上过表达某些致癌基因或者敲除某些抑癌基因可以导致小鼠易发肿瘤。于是利用基因工程手段来研发各类小鼠肿瘤模型的工作越来越多。比如 p53 基因敲除的小鼠,纯合体一般在 3、4 个月内发生各类肿瘤,杂合体在 6 个月之后也多发肿瘤。组织特异性地敲除 Pten 基因,则导致这种特定的组织中高发肿瘤。过表达 Ras、Myc 等这些癌基因的转基因鼠也易发各种肿瘤。人们可以把在临床研究中发现的与肿瘤相关的基因突变通过基因工程手段,如转基因、基因编辑等方法复现在小鼠基因组上,验证这种突变的致癌作用,以及探寻该种基因突变驱动的肿瘤的生物标志物(Biomarker)、诊断和治疗方法等。
基因修饰小鼠模型(geically engineered mouse model, GEMM)产生的肿瘤也可以移植到相同遗传背景的其它小鼠体内,建立异体移植瘤模型,这被称为 GDA( GEM-derived allograft)模型。
这里有个非常好的例子:
GEM 肿瘤模型的例子即 KPC(LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre)小鼠。 KrasG12D 是人类肿瘤中常见的 Kras 基因的活化突变体,Trp53R172H 则是 p53 基因的突变体。在这两个基因编码区和启动子之间插入 loxp-Stop-loxp 序列,然后将这两个基因构件转入小鼠基因组,制作出双转基因小鼠。由于「Stop」序列的存在,这两个基因并不会被转录。当双转基因小鼠再与Pdx-Cre 小鼠配在一起,Pdx 驱动表达元件使Cre 重组酶得以在胰腺组织特异表达,切除一对loxp 之间的「Stop」序列,KrasG12D 和Trp53G12D 基因开始表达,其结果是小鼠在2、3 个月内几乎都有胰腺肿瘤发生,并有肿瘤转移现象。 KPC 小鼠为胰腺癌这一癌症之王的研究提供了绝好的研究工具。
3. 分子嵌合小鼠肿瘤模型
小鼠模型虽然可以为人类肿瘤的研究提供有用工具,但有时并不理想,因为毕竟人和小鼠在遗传、生理 / 病理方面存在着巨大差异。对于 IO 研究,肿瘤和免疫系统都可能存在种属差异,生物标志物、抗肿瘤药物靶点、药物反应性、治疗有效性都有不同之处。
通过基因工程的方法,包括经典的转基因技术、基于胚胎干细胞基因打靶的基因敲出/ 敲入技术以及新兴的基因编辑技术将人源基因导入小鼠基因组,可以建立基因「人源化」小鼠。这种小鼠体内表达某种研究者感兴趣的人特有的蛋白,成为在分子水平上的人鼠嵌合体。这种人源化可以遗传给后代,使其成为有特殊用途的新品系小鼠。基因人源化小鼠在许多领域得到应用,包括肿瘤免疫治疗研究。
免疫检查点(immune checkpoint)是近年来发现的利用自身免疫功能抗肿瘤的重要药物靶点。针对 PD1/PDL1 这一对 「免疫刹车」信号分子的单抗药物已被证明具有强大的抗肿瘤效用。由于这些抗体药物都是针对人的靶点设计和筛选的,它可能只识别、结合人的 PD1、PDL1,就无法用动物做临床前体内评估实验。
为了解决这个问题,可以通过基因编辑技术将小鼠的PD1、PDL1 基因替换为人的基因,这样小鼠的细胞上就表达人的PD1、PDL1,可以用来试验抗人PD1、PDL1 抗体药的作用。在做基因编辑的设计时,为了保证这些信号分子与小鼠细胞内信号转导分子之间的相互作用正常进行,一般只替换蛋白分子的胞外区基因片段,使其表达人的抗原靶位,而保持小鼠源的胞内区。
以人源化PD1 小鼠的应用为例,评价抗PD1 抗体药的抗肿瘤效果时,先在这种小鼠上接种一个表达PDL-1(这个分子在人鼠之间同源性较高)的同背景肿瘤细胞(如小鼠结肠癌细胞系MC38),然后就可以用荷瘤模型给药来评估有无抑制肿瘤的效果。如果药物可以阻断 PD1/PDL1 之间的结合,解除免疫抑制,免疫系统活化,重新开始攻击肿瘤,就可以观察到小鼠肿瘤的生长抑制或消退。
基因人源化小鼠应用于肿瘤免疫治疗研究的另一个例子是在双特异性抗体(bispecific antibodies)的体内筛选、评估试验中。有一大类抗肿瘤双特异性抗体药的设计原理是它既可以结合一种人的肿瘤抗原,又可以结合人的T 淋巴细胞上的CD3 分子,这样双特异性抗体可以把T 细胞连接到肿瘤细胞上,同时激活T 细胞,从而来攻击杀伤肿瘤。由于肿瘤抗原、CD3 分子这两个靶点都是人的,在普通小鼠模型上无法评价这类双特异性抗体。一般CD3 上的靶点在其ε亚基上,因此可以将CD3E 基因人源化,然后在其T 细胞上表达人CD3E 的小鼠上接种表达有人的特定肿瘤抗原的小鼠肿瘤细胞,这个体系就可以用来测试评估双特异性抗体的抗肿瘤效果。
4. 人源肿瘤小鼠移植模型
将人的肿瘤移植给小鼠,可以建立人源化肿瘤小鼠模型,前提是小鼠受体必须是免疫缺陷的,否则将被免疫排斥。最早的人源肿瘤模型在裸鼠上建立成功。裸鼠为先天性无胸腺的小鼠品系,体内缺乏 T 淋巴细胞。这说明 T 细胞在异种排斥中起著至关重要的作用。后来发现在免疫缺陷程度更高的小鼠上人源肿瘤更易生长,如 T、B 淋巴细胞联合缺失的 scid 小鼠、Rag1/Rag2 敲除小鼠等。
目前,最为广泛使用的作为人源化受体的高度免疫缺陷小鼠品系是NOD prkdcscidIl2rgnull 小鼠,即非肥胖型糖尿病小鼠NOD 遗传背景,SCID 基因突变,Il2 受体的gamma 链亚基敲除的小鼠,由日本的CIEA 研发的被称为NOG,由美国Jackson Laboratory 研发的被称为NSG,由北京维通达公司生物技术公司研发的被称为NPG。此类小鼠之所以被选择,是因为:
(1)NOD 背景的小鼠存在许多先天性免疫功能的缺陷,如巨噬细胞对人源细胞吞噬能力弱(由于其不同于其它品系小鼠和更接近人的Sirpα分子的结构);补体系统缺失;树突状细胞功能弱等。
(2)prkdc 基因在B 细胞抗体基因重排及T 细胞受体基因重排过程中均发挥不可替代作用,这个基因突变导致T 细胞、B 细胞发育阻滞,使机体细胞免疫、体液免疫功能联合缺失。
(3)Il2rg 基因是多种白介素受体的共同亚基,它缺失后多种免疫功能受损,尤其是 NK 细胞活性完全丧失。这些特点结合在一起,使 NPG 类小鼠成为迄今为止免疫功能缺失最严重,最适合接受人源细胞移植的小鼠品系。
人源肿瘤移植模型可以分为CDX(cell line derived xenograft)模型和PDX(patient derived xenograft)模型,前者是由已经建立的各种肿瘤细胞系接种小鼠,后者是由临床获得的病人的肿瘤组织直接移植给小鼠建立肿瘤模型。 PDX 模型因为更多的保留着病人肿瘤的「原生态」,包括肿瘤细胞的异质性、肿瘤的微环境,因而更具有临床相关性。 CDX 模型的特点则是容易获得,永久传代,每个细胞系都有较多数据积累,一致性较高,便于多地点比较研究……。
肿瘤模型一般为皮下接种,因皮下瘤便于观察和测量。也可作腹腔内、肾包膜下以及「原位」接种,如肝癌组织细胞接种于肝,血液瘤注射入血液,乳腺癌接种于乳腺管等。原位接种使肿瘤微环境更接近真实,更易发生转移现象。 PDX、CDX 肿瘤模型都广泛应用于肿瘤学研究和抗癌药物的体内筛选、评估实验。然而,由于使用免疫缺陷动物建立肿瘤模型,体内没有正常免疫系统,使得这种模型「先天不足」。免疫细胞是肿瘤微环境中的重要成分,对肿瘤的发生、发展、治疗效果都扮演着至关重要的作用。建立既具有人的免疫系统又有人的肿瘤的动物模型是研究者长久以来的一个追求。
5. 人源免疫系统 – 肿瘤小鼠模型
人源化动物模型(humanized animal model)指携带有人的功能性基因的动物或移植了人的细胞、组织、器官的动物,后者也称嵌合体动物。即人源化包括基因水平的人源化以及组织细胞水平的人源化。导入人源成分之后,就使某些原来只能在人体上进行的体内实验可以在动物上进行,解决了人体实验的伦理诘难。
在IO 研究当中,如前面讲到,个别或少数基因的人源化小鼠可以在某些方面获得应用,但总体而言实验仍然建立在小鼠的肿瘤和小鼠的免疫系统之上,依然无法反映人体系统的情况和反应。
NPG 这类高度免疫缺陷小鼠的出现,使向小鼠移植人的造血 / 免疫系统成为可能。目前,人源化造血/ 免疫系统小鼠可以归为三大类:移植成体外周血单个核细胞(PBMC)或分离的免疫细胞的模型;移植来自人的脐带血、胎肝的造血干细胞( HSC)的模型;联合移植来自同一供体的胸腺、胎肝、骨髓造血干细胞(Bone、Liver、Thymus-BLT)模型。这些模型各有自身的特点,也各自存在一些不尽人意的缺点(见下表)。
PBMC 移植 NPG 类小鼠建立的模型,因为含有成熟的免疫细胞,因而可以进行某些要求人的免疫功能的体内实验。移植之后这些成熟的免疫细胞中的 T 淋巴细胞会受到小鼠异种抗原 *** 而增殖,其它种类细胞则维持较低含量,有的细胞寿命有限而从体内消失。所以 PBMC 移植模型的人源细胞以 T 细胞为主。移植的人源免疫细胞,主要是T 细胞,还会对受体小鼠产生免疫攻击,发生发生移植物抗宿主反应(GvHD),并在大约数周之后引起小鼠死亡,所以PBMC 模型可供实验的窗口期较短,只适合于短期性研究。
造血干细胞是所有造血和免疫细胞的共同祖细胞。 HSC 移植 NPG 类小鼠之后可以定植于小鼠骨髓,并不断产生各类造血、免疫细胞,如 T 细胞、B 细胞、NK 细胞、髓系细胞等。由于其免疫细胞是在小鼠体内「从头」发育出的,对小鼠宿主产生耐受,所以不出现 GvHD 现象,模型存活一年还可以在血中检测到人源细胞稳定存在。这种模型的缺点是发育出的 T 细胞功能较弱。这是因为 T 细胞需要在胸腺中完成「education」过程,T 细胞受体形成 MHC 限制性。人源T 细胞的前体在小鼠胸腺内完成发育,可能既表现小鼠MHC 限制性,也表现HLA 限制性,造成与人源细胞相互作用类似于异体(allo-)或异种(xeno-)排斥反应。
为了解决T 细胞在人源化小鼠体内不能正常发育的问题,又发明了BLT 模型,就是将胎胸腺和胎肝小组织块合并移植到小鼠肾包膜下,再移植分离自同一个体的胎肝或骨髓的造血干细胞。这样人源前体细胞可以迁移到肾包膜下生长的胸腺类器官中发育出自身 MHC 限制性的功能性 T 细胞。 BLT 模型被认为是人的免疫功能最完善的人源化小鼠模型。但是,由于 BLT 模型的人源组织材料取自流产胎儿,来源非常有限,且面临很大的伦理争议,因而应用受到限制。
将 PDX/CDX 肿瘤移植模型跟人源化免疫系统模型结合起来可以用于人类肿瘤免疫方面的研究,如 PBMC 模型加肿瘤模型、HSC 模型加肿瘤模型。这些模型已经在肿瘤与免疫系统的相互作用研究以及肿瘤免疫治疗研究当中获得应用,但是也有一些问题未能解决。
PBMC 移植再加肿瘤的模型,因为模型的稳定期短,肿瘤接种时机需要精确把握。更关键的,因为很难获得相同 HLA 配型的 PBMC 和肿瘤,所以 PBMC 对肿瘤存在异体排斥。排斥作用太强则肿瘤不能在模型上生长。所以需要筛选、匹配合适的 PBMC 和肿瘤供体来建立共移植模型。
HSC 移植加肿瘤的模型出现肿瘤被排斥的情况较少,但也需要对 HSC 供者跟肿瘤做一定筛选匹配。 HSC 移植加肿瘤的模型作为肿瘤免疫模型有几点必须考虑:
(1)人 T 细胞在小鼠胸腺完成发育,大部分表现小鼠 MHC 限制性,视人 MHC 为异己;
(2)APC 细胞对 T 细胞的「Prime」作用存疑;
(3)T 细胞对人肿瘤的反应类似一种异体 / 异种排斥反应,反应有可能强有可能弱,不能以 HLA 配型与否预测;
(4)T 细胞对肿瘤的反应可能以 CD8 + 细胞毒反应为主。
虽然因为MHC 匹配问题,HSC 移植模型发育出的T 细胞功能不太正常,但因为其免疫调控机制很多还是存在的,可以被激活和发挥功能,所以这类模型有可能应用于肿瘤免疫微环境研究、immune checkpoint inhibitor 抗癌药物评价、双特异性抗体抗癌药物评价(不依赖MHC 识别)、CAR-T 治疗肿瘤的研究(也不依赖MHC 识别)以及作为因子释放综合征(cytokine release syndrome)模型,等等。
不可否认的是现有人源化免疫系统小鼠模型仍然存在诸多缺陷,不能满足肿瘤免疫研究中的需要。为此正在研发下一代的人源化小鼠,包括MHC 基因人源化小鼠(表达HLA 的小鼠),转入人源细胞因子如IL-2、IL-3、GM-CSF、SCF 等以能更好支持功能性免疫细胞发育的小鼠。使用自身 MHC 分子敲除的 NPG 类小鼠制作 PBMC 人源化小鼠则可以延缓 GvHD 的发生,拓展了此类模型应用的窗口期。
文章来源:维通达
题图来源:站酷海洛
基因敲除在肾素-血管紧张素系统研究中的应用关键词: 基因 肾素-血管紧张素系统 高血压 肾素-血管紧张素系统(RASA)在维持正常血压和电解质平衡中起着十分重要的作用[1],也是高血压防治研究的中心环节[2]。80年代以来对RAS的研究已深入到基因和分子水平,如RAS基因多态性与高血压发病的研究等[3]。近年来应用基因打靶(gene targeting)则为 RAS研究提供了一个全新的手段,本文着重介绍其中的基因敲除(gene kockout)在这方面的应用。 1基因敲除的基本原理和步骤 1.1 基本原理 基因敲除是利用基因同源重组(gene homologous recombination)又称基因打靶的原理,用外源片断整合到活体细胞DNA的同源序列中,使某个基因被取代或破坏而失活,由于同源重组具有高度特异性和方向性,外源片断也具有可操作性,故该技术可使细胞的基因定点和定量改变[4,5]。 1.2 基本步骤 为了改变某个动物的基因型且能稳定遗传,科学家们经过长期探索建立了将胚胎干细胞(embryo stem cell ESC)基因打靶及胚胎移植结合起来的一套新技术[6,7]。ESC取自小鼠胚泡的内细胞层细胞,具有能在体外培养保存又能在一定条件下发育成个体的性能。在体外进行基因操作后植回小鼠胚泡发育成嵌合体。嵌合体是含有突变基因的性腺细胞,通过杂交便获得突变基因的纯合子和杂合子。基因敲除过程:先克隆ESC靶基因的同源片断。用限制性内切酶切开其外显子两端,插入一个标志/选择基因(常用Neo-新霉磷酸转移酶基因,作为阳性选择基因和阳性同源重组的标志),另在载体同源序列外围接上另一个阴性选择基因(常用单纯疱疹病毒胸腺嘧啶激酶基因,作为非同源重组的标志和筛选基因)。将载体导入ESC,用含G418/GANC的培养液作正负选择系统PNS)筛选出已发生同源重组的ESC,将后者植入另一怀孕小鼠的胚泡后发育娩出嵌合体小鼠。用Southem杂交来鉴定已携带敲除基因(即含Neo基因)的雄鼠,再用后者与同系雌鼠交配娩出基因敲除的杂合子即F1,F1近交便产生基因敲除的纯合子和杂合子(F2),经多次交配繁殖出数量众多的新品系小鼠且保持基因性状稳定遗传和供研究之用。 2 RAS基因敲除近况 rAS基因敲除只是近几年才出现的方法,但它极大促进了人们对RAS的认识。 2.1 血管紧张原基因敲除 tanimotok等[8]用基因敲除术建立了血管紧张素原(Agt)基因失活的纯合子和杂合子小鼠,并进行了一系列的研究,15个杂合子有4个幼鼠死亡,但成年鼠与纯合子和野生型小鼠的行为和主要脏器解剖学均无差异。纯合子血浆Agt和血管紧张素Ⅰ(AngⅠ)为阴性,杂合子为野生型42%,但纯合子肾组织mRNA表达增高6~8倍。与此同时纯合子鼠血压与野生型和杂合子相比,SBP、DBP和MAP分别下降33.5mmHg、14.3mmHg、20.8mmHg,而杂合子与野生型鼠的血压并无差别。为进一步研究Agt基因与血压之间的关系,Smithies等[9]通过精心设计的基因打靶(gap-repair gene targeting)培养出含不同野生型 Agt基因拷贝数量的小鼠(分别含有0~4个拷贝)。结果Agt基因缺失型小鼠、幼鼠大部分死亡,少数成活的成年鼠却有肾小球小动脉壁增厚,肾皮质变薄和肾小球萎缩,但繁殖力正常。含1~4个Agt基因小鼠生长发育及肾组织结构正常无异,最明显的变化是随着基因拷贝增多,血中Agt水平几乎呈线性水平增高,从35%(单拷贝)到124%(3拷贝)和145%(4拷贝),同时血压升高程度达到8mmHg/每拷贝,该模型说明了Agt基因与血压水平之间的数量依存关系。最近该作者又将转基因技术与基因打靶结合起来,将含人肾素和Agt基因的小鼠与Agt缺失型小鼠交配,使后者重新携带人肾素及Agt基因,结果纠正了纯合子的低生存率及肾病变,同时血压升至正常。该模型表明,Agt对小鼠特别是肾的生长发育非常重要,且人类Agt基因也能取代小鼠Agt基因的功能[10,11]。 2.2 血管紧张素Ⅱ受体基因敲除 血管紧张素Ⅱ(AgtⅡ)受体目前分为Ⅰ型(AT1)和Ⅱ型(AT2),AgtⅡ主要通过AT1起作用。AT1又可细分为AT1a和 aT1b两个亚型,它们高度同源但组织分布不同,由于缺乏有效的方法来分别两者生理分工[12],Masaki等[13]用基因敲除培养出缺乏AT1a受体基因小鼠纯合子和杂合子与野生型相比,两种基因型小鼠的生长发育及心、脑、肾、血管组织结构正常,肾组织Ang-AT1受体结合为阴性,杂合子为野生型50%,杂合子及纯合子基础血压分别比野生型降低了12mmHg和24mmHg。他们还观察到几种基因型对 angⅡ反应,纯合子几无反应,杂合子升压幅度低且血压回降速度快,结果证明AT1a是AngⅡ调控血压所必需的。Taskeshi等[14]建立的小鼠已证实了上述结论,且发现纯合子肾组织mRNA和血中肾素水平明显升高,他们还进一步研究了该模型小鼠肾小球AT1a分布及对AngⅡ(激动剂)和CV-11974(拮抗剂)作用,证实 aT1a分布主要入球、出球小动脉和系膜细胞,AngⅡ主要通过AT1a起作用[15]。Lutz等[16]培养出AT2受体基因缺失型杂合子和纯合子小鼠,两者幼鼠成活率相同,重要脏器结构均正常,基础血压也无改变,仅纯合子小鼠对AngⅡ反应超常及对脱水试验反应迟钝,主动活动减少,作者认为AT2对生长发育并不重要但参与RAS系统的心血管功能和中枢神经系统功能的调节。但Lchiki等[17]建立的同样模型却发现突变型小鼠基础血压比野生型高,作者还进行了系列药理试验,给野生型和缺失型小鼠以AngⅡ、losartan、captopril,结果AngⅡ升压作用在缺失型强于野生型,lostartan降压作用也是如此,但 captopril效果两组之间相同,作者认为在AT2功能上有直接对抗AT1作用。对于两种AT2基因缺失型小鼠血压变化不同的现象,Lutz认为与小鼠品种稍有不同而遗传背景相差有关。 2.3 ACE基因敲除 业已证明,ACE基因编码体细胞型和睾丸型两种同功酶,但后者功能仍不清楚,为了研究它们在血压调控和生育调控方面的作用,Krege等[18]用插入法敲除了ACE基因中对两种ACE编码必需的第14个外显子。结果表明杂合子和纯合子幼鼠成活率降低,雌鼠繁殖能力正常而雄鼠下降,两种基因型鼠肾脏发生退行性改变,值得注意的是尽管雌雄鼠两种纯合子和杂合子血ACE活性减低,但仅雄鼠的血压下降15~20mmHg。作者认为,ACE对肾脏发育是必需的,在调节血压方面存在性别差异,人类是否有这种情况需进一步研究[19]。此后该作者又用所谓双基因打靶术(double gene targeting)培养出含1、2、3、4个功能性ACE基因的小鼠,结果随着基因数量增加,心脏重量亦增加,肾脏mRNA表达增强,但血压始终末见有差别。作者认为,ACE活性变化只有足以超过体内平衡机制方会导致血压改变[20]。最近Charles等[21]用基因敲除培养出ACE基因突变小鼠。后者ACE基因不能编码含羧基末端氨基酸残基的ACE肽链。结果小鼠血浆ACE活性虽然很高,但组织细胞中却未测到ACE结合。同时伴低血压、肾脏病变和尿浓缩功能损害,其表型与完全缺乏ACE基因小鼠相同,证明ACE羟基末端含有膜结合点,如果缺乏则ACE只能全部释放出细胞而不能发挥对组织结合和调节功能。 2.4 肾素基因敲除 肾素是RAS中的限速酶,Mattew等[22]建立了缺失肾素基因-2(Ren-2)的小鼠,结果小鼠外观和组织学检查均未见异常,血压亦无变化,只是血浆肾素活性高于野生型。但该小鼠是含两个肾素基因(Ren-1和Ren-2)的为数不多的动物之一,作者认为正常机体发挥作用主要靠Ren-1基因。 3 展望 利用同源重组技术建立新的动物模型是分子生物学和遗传学中具有里程碑意义的突破。人们可以在此基础上更多、更快、更准确地培养出基因缺失、基因突变、转基因动物对基因表达及调控和其功能进行细致的研究。过去由于方法限制,对高血压相关基因研究难于突破,而利用该项技术可以定点定量研究有关基因对心血管结构和功能的影响,从而为研究高血压的发病机制和防治开辟了广阔深入的途径。参考文献 1 kathy K et al.Circulation,1993;87:1816~828 2 laragh JH.Kidney int,1993;44:1163~1175 3 lifton RP.Proc Natl acad Sci USA,1995;92:8545~8551 4 Capeechi RP .Scientifie america,1994;270(3):34~38 5 Becker KD et al.Hypertension,1996;27:499~501 6 evans MJ.Nature,1981;292:154~156 7 te Riele H et al.Proc Natl Acad Sci USA,1992;89:5138~5132 8 tANIMOTOK SF et al.J biol Chem,1994;269:31334~31337 9 smithies O et al.Proc Natl Acad Sci USA,1995;91:3612~3615 10 Robin d et al.J Clin Invest,1997;99:1258~1264 11 Kim hS et al.Proc Natl Acad Sci USA,1995;92:2735~2739 12 Theodoree O et al.N Engl J Med,1996;334:1649~1655 13 Masaki I et al.Proc Natl Acad Sci USA,1995;92:3521~3525 14 Taskeshi S et al.J Biol Chem,1995;270(32):18719~18722 15 Kenjiro K et al.Kidney Int,1997;52:S201~S204 16 Lutz h et al.Nature,1995;377(26):744~747 17 Lchiki T et al.Nature,1995;377:748~750 18 Krege jH et al.Nature,1995;375;146~148 19 Hilgers KF et al.Hypertension,1997;29:216~221 20 Krege jH et al.Hypertension,1997;29:150~157 21 Charles R E et al.J Clin Invest,1997;99:2375~2385 22 Mattew GF et al.Hypertension,1996;28:1126~1131
这是科学的进步,但作为一个普通人来看,我认为这种技术非常的没有“人性”,并且认为这是对与雌性动物生育的挑战,科学家们一直致力于研究体外培育哺乳动物,这次实验的成功,应该会是科学史上的一次里程碑,但我也不否定这门研究带来的益处。
最近几日,国内媒体报道,《自然》杂志发布了以色列魏茨曼科学研究所带来的最新研究,该研究所称其利用“人造子宫”,已成功培育出了大约数百只的小老鼠,并且小老鼠的所有器官发育指标都十分正常。其实大家都知道,在过去的数十年里,医学界和科学界一直都在尝试着体外培育哺乳动物的研究,与此类似的克隆技术也一直被研究着,尤其是近两年科学技术的进步导致这些研究突飞猛进的速度在进步。
如果这样可以持续研究,我觉得或许可以解决一些生育问题,具体的培育方法不过是模拟雌性子宫内部与外部的环境,将它置于一个恒温箱中,并且让它与通风系统相连,然后通风设备会持续泵入气体混合物,并对恒温箱进行实时的监控,从而不断调节气体的浓度、压力和温度等,以此来为小鼠的胚胎创造出理想的“发育环境”。
一般来说技术都有它的两面性,体外培育也不例外,这门技术一旦被心术不正的研究者利用,或许会造成人类的恐慌,比如是否会出现人造人?是否会出现人造的各种具有危害的动物等等,这些都会对人类造成危害。
总而言之,我认为这类的医学研究有着非常大的风险。
308 浏览 2 回答
194 浏览 4 回答
160 浏览 3 回答
352 浏览 4 回答
148 浏览 2 回答
297 浏览 3 回答
194 浏览 3 回答
98 浏览 2 回答
100 浏览 3 回答
211 浏览 3 回答
276 浏览 4 回答
179 浏览 2 回答
158 浏览 2 回答
178 浏览 3 回答
167 浏览 2 回答