你好,薛定谔方程是从自由粒子的波函数(复数形式)服从的方程猜想出来的,请参阅《量子力学导读》(浙江大学出版社)薛定谔方程是用算符化方法建立起来的,当然不是数学的逻辑地推导出来的,但只要找到合适的数学工具,不仅薛定谔方程可以推导出来,而且可以推导出单粒子体系和双粒子体系的相对论波动方程,当然这方面的研究成果尚未有人发表.我对量子论与狭义相对论的结合问题很有兴趣,事实上,在德布罗意那里量子论跟狭义相对论是触合的,德布罗意公式就是二者结合的产物.狭义相对论跟量子论的分离是从薛定谔那里开始的,克莱因和戈登沿着薛定谔的道路走下去,并试图纠正薛定谔对相对论的偏离,建立了相对论的克莱因-戈登方程,虽然此方程是有用的,但由于存在负几率困难,他们的工作没有成功.狄拉克继续沿此方向前进,他吸取了克莱因和戈登失败的教训,建立了著名的狄拉克方程,此方程竟然导出了电子的自旋,可惜只适用于单粒子体系.当他试图建立双粒子体系的相对论波动方程时,遇到很大困难,于是另擗途径,走量子场论的道路,在费曼等人的努力下,量子电动力学获得极大的成功.虽然量子场论的一般理论一度受到怀疑,由于杨-米耳斯场的引进,以及很多人的努力,弱电统一理论成功建立,使量子场论的成功达到了顶点.最近又有报到称量子场论的量子色动力学也取得了重大进展.因此,狭义相对论与量子论在量子场论中结合得如此成功,很自然使人们觉得在量子力学的框架内不可能使狭义相对论与量子论结合起来.但既然沿着薛定谔的道路即算苻化方法能建立起狄拉克方程,为什么就不能进一步沿此方向建立起双粒子体系的相对论波动方程呢?只要找到合适的数学工具并进行概念上的突破,就一定能实现这个目标.总之,量子论与狭义相对论一点都不矛盾,不仅在德布罗意那里,在狄拉克那里,在量子场论那里结合得很好,在量子力学的框架内也一定能结合起来,只要我们找到合适的数学工具.在我发表这个贴子的时侯,这样的数学工具其实我早已找到,并且已经建立了双粒子体系的相对论波动方程