首页

医学论文

首页 医学论文 问题

分子生物医学杂志告警文章

发布时间:

分子生物医学杂志告警文章

MycoplasmaMycoplasma is a genus of bacteria that lack a cell wall. Because they lack a cell wall, they are unaffected by some antibiotics such as penicillin or other beta-lactam antibiotics that target cell wall synthesis. They can be parasitic or saprotrophic. Several species are pathogenic in humans, including M. pneumoniae, which is an important cause of atypical pneumonia and other respiratory disorders, and M. genitalium, which is believed to be involved in pelvic inflammatory diseases. They may cause or contribute to some genus Mycoplasma is one of several genera within the class Mollicutes. Mollicutes are bacteria which have small genomes, lack a cell wall and have a low GC-content (18-40 mol%). There are over 100 recognized species of the genus Mycoplasma. Their genome size ranges from - megabase-pairs. Mollicutes are parasites or commensals of humans, animals (including insects), and plants; the genus Mycoplasma is by definition restricted to vertebrate hosts. Cholesterol is required for the growth of species of the genus Mycoplasma as well as certain other genera of mollicutes. Their optimum growth temperature is often the temperature of their host if warmbodied (. 37 degrees Celsius in humans) or ambient temperature if the host is unable to regulate its own internal temperature. Analysis of 16S ribosomal RNA sequences as well as gene content strongly suggest that the mollicutes, including the mycoplasmas, are closely related to either the Lactobacillus or the Clostridium branch of the phylogenetic tree (Firmicutes sensu stricto).Mycoplasmas are often found in research laboratories as contaminants in cell culture. Mycoplasmal cell culture contamination occurs due to contamination from individuals or contaminated cell culture medium ingredients. The Mycoplasma cell is usually smaller than 1 µm and they are therefore difficult to detect with a conventional microscope. Mycoplasmas may induce cellular changes, including chromosome aborations, changes in metabolism and cell growth. Severe mycoplasma infections may destroy a cell line. Detection techniques include PCR, plating on sensitive agar and staining with a DNA stain including DAPI or bacteria of the genus Mycoplasma (trivial name: mycoplasmas) and their close relatives are largely characterized by lack of a cell wall. Despite this, the shapes of these cells often conform to one of several possibilities with varying degrees of intricacy. For example, the members of the genus Spiroplasma assume an elongated helical shape without the aid of a rigid structural cell envelope. These cell shapes presumably contribute to the ability of mycoplasmas to thrive in their respective environments. M. pneumoniae cells possess an extension, the so-called 'tip-structure', protruding from the coccoid cell body. This structure is involved in adhesion to host cells, in movement along solid surfaces (gliding motility), and in cell division. M. pneumoniae cells are of small size and pleomorphic, but with a rough shape in longitudinal cross-section resembling that of a round-bottomed are unusual among bacteria in that most require sterols for the stability of their cytoplasmic membrane. Sterols are acquired from the environment, usually as cholesterol from the animal host. Mycoplasmas also generally possess a relatively small genome of megabases, which results in drastically reduced biosynthetic capabilities and explains their dependence on a host. Additionally they use an alternate genetic code where the codon UGA is encoding for the amino acid tryptophan instead of the usual opal stop 1898 Nocard and Roux reported the cultivation of the causative agent of contagious bovine pleuropneumonia (CBPP), which was at that time a grave and widespread disease in cattle herds. Today the disease is still endemic in Africa and Southern Europe. The disease is caused by M. mycoides subsp. mycoides SC (small-colony type), and the work of Nocard and Roux represented the first isolation of a mycoplasma species. Cultiviation was, and still is difficult because of the complex growth requirements. These researchers succeeded by inoculating a semi-permeable pouch of sterile medium with pulmonary fluid from an infected animal and depositing this pouch intraperitoneally into a live rabbit. After fifteen to twenty days, the fluid inside of the recovered pouch was opaque, indicating the growth of a microorganism. Opacitiy of the fluid was not seen in the control. This turbid broth could then be used to inoculate a second and third round and subsequently introduced into a healthy animal, causing disease. However, this did not work if the material was heated, indicating a biological agent at work. Uninoculated media in the pouch, after removal from the rabbit, could be used to grow the organism in vitro, demonstrating the possibility of cell-free cultivation and ruling out viral causes, although this was not fully appreciated at the time (Nocard and Roux, 1890). The name Mycoplasma, from the Greek mykes (fungus) and plasma (formed), was proposed in the 1950’s, replacing the term pleuropneumonia-like organisms (PPLO) referring to organisms similar to the causative agent of CBPP (Edward and Freundt, 1956). It was later found that the fungus-like growth pattern of M. mycoides is unique to that confusion about mycoplasmas and virus would surface again 50 years later when Eaton and colleagues cultured the causative agent of human primary atypical pneumonia (PAP) or 'walking pneumonia.' This agent could be grown in chicken embryos and passed through a filter that excluded normal bacteria. However, it could not be observed by high magnification light microscopy, and it caused a pneumonia that could not be treated with the antimicrobials sulphonamides and penicillin (Eaton, et al., 1945a). Eaton did consider the possibility that the disease was caused by a mycoplasma, but the agent did not grow on the standard PPLO media of the time. These observations led to the conclusion that the causative agent of PAP is a virus. Researchers at that time showed that the cultured agent could induce disease in experimentally infected cotton rats and hamsters. In spite of controversy whether the researchers had truly isolated the causative agent of PAP (based largely on the unusual immunological response of patients with PAP), in retrospect their evidence along with that of colleagues and competitors appears to have been quite conclusive (Marmion, 1990). In the early 1960's, there were reports linking Eaton's Agent to the PPLOs or mycoplasmas, well known then as parasites of cattle and rodents, due to sensitivity to antimicrobial compounds (. organic gold salt) (Marmion and Goodburn, 1961). The ability to grow Eaton's Agent, now known as Mycoplasma pneumoniae, in cell free media allowed an explosion of research into what had overnight become the most medically important mycoplasma and what was to become the most studied advances in molecular biology and genomics have brought the genetically simple mycoplasmas, particularly M. pneumoniae and its close relative M. genitalium, to a larger audience. The second published complete bacterial genome sequence was that of M. genitalium, which has one of the smallest genomes of free-living organisms (Fraser, et al., 1995). The M. pneumoniae genome sequence was published soon afterwards and was the first genome sequence determined by primer walking of a cosmid library instead of the whole-genome shotgun method (Himmelerich, et al., 1996). Mycoplasma genomics and proteomics continue in efforts to understand the so-called minimal cell (Hutchison and Montague, 2002), catalog the entire protein content of a cell (Regula, et al., 2000), and generally continue to take advantage of the small genome of these organisms to understand broad biological have also been exploring an association between mycoplasma and cancer. Despite a number of interesting studies, this cancer bacteria association hasn't been clearly established, and has yet to be fully elucidated (Ning and Shou, 2004), (Tsai, et al., 1995).The medical and agricultural importance of members of the genus Mycoplasma and related genera has led to the extensive cataloging of many of these organisms by culture, serology, and small subunit rRNA gene and whole genome sequencing. A recent focus in the sub-discipline of molecular phylogenetics has both clarified and confused certain aspects of the organization of the class Mollicutes, and while a truce of sorts has been reached, the area is still somewhat of a moving target (Johansson and Pettersson, 2002).The name mollicutes is derived from the Latin mollis (soft) and cutes (skin), and all of these bacteria do lack a cell wall and the genetic capability to synthesize peptidoglycan. While the trivial name 'mycoplasmas' has commonly denoted all members of this class, this usage is somewhat imprecise and will not be used as such here. Despite the lack of a cell wall, Mycoplasma and relatives have been classified in the phylum Firmicutes consisting of low G+C Gram-positive bacteria such as Clostridium, Lactobacillus, and Streptococcus based on 16S rRNA gene analysis. The cultured members of Mollicutes are currently arranged into four orders: Acholeplasmatales, Anaeroplasmatales, Entomoplasmatales, and Mycoplasmatales. The order Mycoplasmatales contains a single family, Mycoplasmataceae, which contains two genera: Mycoplasma and Ureaplasma. Historically, the description of a bacterium lacking a cell wall was sufficient to classify it to the genus Mycoplasma and as such it is the oldest and largest genus of the class with about half of the class' species (107 validly described) each usually limited to a specific host and with many hosts harboring more than one species, some pathogenic and some commensal. In later studies, many of these species were found to be phylogenetically distributed among at least three separate orders. A limiting criterion for inclusion within the genus Mycoplasma is that the organism have a vertebrate host. In fact, the type species, M. mycoides , along with other significant mycoplasma species like M. capricolum, is evolutionarily more closely related to the genus Spiroplasma in the order Entomoplasmatales than to the other members of the Mycoplasma genus. This and other discrepancies will likely remain unresolved because of the extreme confusion that change could engender among the medical and agricultural communities. The remaining species in the genus Mycoplasma are divided into two non-taxonomic groups, hominis and pneumoniae, based on 16S rRNA gene sequences. The hominis group contains the phylogenetic clusters of M. bovis, M. pulmonis, and M. hominis, among others. The pneumoniae group contains the clusters of M. muris, M. fastidiosum, U. urealyticum, the currently unculturable haemotrophic mollicutes, informally referred to as haemoplasmas (recently transferred from the genera Haemobartonella and Eperythrozoon), and the M. pneumoniae cluster. This cluster contains the species (and the usual or likely host) M. alvi (bovine), M. amphoriforme (human), M. gallisepticum (avian), M. genitalium (human), M. imitans (avian), M. pirum (uncertain/human), M. testudinis (tortoises), and M. pneumoniae (human). Most if not all of these species share some otherwise unique characteristics including an attachment organelle, homologs of the M. pneumoniae cytadherence-accessory proteins, and specialized modifications of the cell-division detailed analysis of the 16S rRNA genes from the order Mollicutes by Maniloff has given rise to a view of the evolution of these bacteria that includes an estimate of the time-scale for the emergence of some groups or features (Maniloff, 2002). This analysis suggests that about 600 million years ago (MYA), late in the Proterozoic era, Mollicutes branched away from the low G+C Gram-positive ancestor of the streptococci, losing their cell wall. At this time on Earth, molecular oxygen was present in the atmosphere at 1%, and the fossil record shows that multicellular marine animals had recently spread in the Cambrian explosion. One hundred million years later the requirement for sterols in the cytoplasmic membrane evolved along with the change to the alternate genetic code. Also, the ancestor of the genera Spiroplasma and Entomoplasma (primarily plant and insect pathogens) and Mycoplasma emerged at this time and would itself diverge into the Spiroplasma-Entomoplasma and Mycoplasma lineages approximately 100 million years after that. This diversity coincided with the origin of land plants 500 MYA. It appears that the calculated rate of evolution for the Mycoplasma group increased several fold about 190 MYA, soon after the appearance of vertebrates, while the Spiroplasma-Entomoplasma ancestor continued to evolve at the previously shared slower rate until about 100 MYA, when angiosperms and their associated pollinating insects appeared. Then the evolution rate of these bacteria appears to have also increased significantly. This is an attractive hypothesis, but while it tracks the emergence of several of the unusual characteristics of Mycoplasma and related organisms, it does not address the selective pressures driving their evolution, except perhaps the widespread close association of a parasite with a specific host. The advantages of a reduced genome, cell wall-less structure, and alternate genetic code remain murky.

200分之内没人会给你翻译的(机译除外)

给楼主论文:分子细胞基因组的研究随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。1 植物体细胞杂交后代胞质基因组重组的多样性体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。2 创制胞质杂种的方法2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。2.3 其它的可能途径(1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。3 胞质杂种中双亲胞质基因的传递遗传学3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。4 植物胞质基因组控制的重要性状目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。

文章在哪里?

分子生物医学杂志告警

华中科技大学同济医学院生物化学与分子生物学系副主任,三级教授,博士生导师,《医学分子生物学杂志》特邀审稿专家。主持国家自然科学基金资助课题2项,湖北省卫生厅资助课题1项,作为主要成员参加国家自然科学基金课题5项,国家自然科学基金重点课题1项,国家“973”项目子课题2项,卫生部科学研究基金课题2项,教育部课题2项,省自然科学基金1项。在国内外中英文杂志发表科研论文88篇。研究方向:肿瘤免疫治疗与肿瘤生物治疗目前在研项目:1. 《用于长期阻遏肿瘤转移的CBD-HepⅡ重组多肽的药理学研究》,国家自然科学基金,(No. 3077 25 89),~, 32万元, 课题负责人。2.《肿瘤损伤相关分子模式诱导肿瘤免疫抑制的相关机制研究》,国家自然科学基金重点项目(No. 30830095),~,160万元,参与课题,承担部分研究工作。3.《肿瘤转移潜伏细胞和微小转移病灶的早期诊断及清除》,“973”项目子课题(),2009~2013,320万元,参与课题,承担部分研究工作。科研论文在国内外中英文杂志发表科研论文88篇。近年以通讯作者署名发表的代表性论文:张蔚,张桂梅,黄波,刘毅,龚伟,陈国玺,肖晗,吴丰华,冯作化。纤粘连蛋白重组多肽CH50抑制黑色素瘤MMP-2和MMP-9表达、激活的研究。医学分子生物学杂志,2007;4(2):116-120。朱明,张桂梅,黄波,刘毅,龚伟,冯作化。重组FN多肽CH50抑制黑色素瘤B16细胞体内转移的研究。 医学分子生物学杂志,2007;4(4): 306-310。许朝旭,张桂梅,黄波,冯作化。膜型Tim-3分子促进荷瘤鼠小鼠抗肿瘤免疫应答的研究。 医学分子生物学杂志,2007;4(3):200-203。耿婷,张桂梅,黄波,肖晗,冯作化。采用sPD-1协同4-BBL进行肿瘤免疫基因治疗的研究。医学分子生物学杂志,2007;4(3):209-214。项锦毅,张桂梅,耿辉,袁野,刘毅,李东,肖晗,吴丰华,冯作化。 重组FN多肽CH50促进肿瘤微环境正向免疫调节效应。中国肿瘤治疗杂志,2006; 13(2):93 - 97.吴丰华,张桂梅,刘毅,耿辉,李东,袁野,肖晗,冯作化。重组纤维连接蛋白多肽CH50对黑色素瘤B16细胞侵袭能力的抑制作用及机制。医学分子生物学杂志,2006; 3(3): 170 - 175. 于智睿,张桂梅,李东,刘毅,耿辉,肖晗,吴丰华,冯作化。重组多肽CH50抑制肿瘤细胞侵袭生长和血管形成能力。中华肿瘤杂志,2006; 28(11): 815 - 819。韩凌斐,张桂梅,刘毅,李东,邱惠,耿辉,肖晗,吴丰华,冯作化。sPD-1和4-1BBL体内联合表达对小鼠实验性肝癌的治疗作用。中华微生物学和免疫学杂志.,2006; 26(9):831-835.朱汉钢,冯作化,耿辉,张桂梅。肿瘤组织中Tim-3表达的特征及其在肿瘤免疫耐受中的作用。细胞与分子免疫学杂志,2005; 21(4):403-407.

1 Principles of Biochemistry (3rd edition) Lehninger 必读2 Biochemisty Stryer 选读3 Biochemisty Zubay 选读4 Moleculor Biology of the Cell Alberts et al. 必读5 Nature Mac. Magasines Ltd. 必读6 Nature Medicine Mac. Magasines Ltd. 选读7 Nature Structure Biol Mac. Magasines Ltd. 选读8 Science 必读9 Cell Cell Press 必读10 EMBO J. Eur. Mol. Bio. Org. 必读11 必读12 Biochemistry Cambridge 必读13 Menthods Enzymol USA 必读14 J. Biol. Chem. USA 必读15 Nucleic Acid Research Oxford University 必读16 Cancer Res. USA 必读17 Gene Elsevier 必读18 J. Bacteriol USA 必读19 生物化学与生物物理学报 中科院生物化学研究所 必读20 生物化学与生物物理进展 中科院生物化学研究所 必读21 生物化学与生物分子学学报 中国生化与分子生物学学会 选读22 中国科学 中国科学院

分子医学这个就相对精细了,这和正常的医学里分得更细的呀

Nature,Science,Cell,JBC,Nature Cell Biology,Molecular Cell,et al.

分子生物医学杂志

具体哪个刊物呢?文章录用被杂志社录用之后会有录用通知书,通知书上面有具体的刊期,被知网收录的话一般要出刊之后1个月左右,也就是比如你的刊期是9月,那么被知网收录也就是10月左右,可以参考 我方网站科普下知识。

国内生物类期刊中,排在第一的《Cell Research》杂志已经成为了本领域较为有影响力的期刊,不少著名学者都选择将新成果发表在该期刊上,其影响因子自突破10之后,今年又稳步上升至了,这份期刊于1990年创刊,2001年首次获得影响因子,这份杂志由中国科学院上海生命科学研究院生物化学与细胞生物学研究所与中国细胞生物学学会共同主办。 同时,中科院的另外一份期刊:MOL PLANT(分子植物) 也升至,排在第三,据报道这两份期刊SCI影响因子位于同学科前10%,另外中科院还有《国家科学评论》《中国病毒学》今年上半年被SCI正式收录。MOL PLANT(分子植物)创刊于2008年,由中国科学院主管,中国科学院上海生命科学研究院植物生理生态研究所和中国植物生理与分子生物学学会共同主办,中国科学院上海生命科学信息中心承办。目前这份期刊在植物科学领域期刊中已位列亚洲第一,在全球植物生物学领域研究类期刊排名也很靠前,前面的几份期刊是Plant Cell, Plant Physiology, New Phytologist等,可见这一期刊已跻身国际植物学领域顶级期刊行列。还有遗传学报(J GENET GENOMICS)也是发展迅猛,影响因子从去年的上升至,这份期刊由中国遗传学会,中国科学院遗传与发育生物学研究所主办,主要刊载动物、植物、医学和微生物等遗传学领域的研究论文,也包括该领域中的最新技术和最新方法。

论文在期刊上发表后,如果快的一般一个月到三个左右时间能够在网上查到,如果慢的可能3,4个月才能刊登的。期刊一般比较快,如果是学报,就有点慢。再一个,核心刊物会更慢一点。一般情况下是2个月左右的就能查询的,不过也有个别特例的, 我之前有在汇刊文化发过,效果还不错

国家没有这样的规定吧,可能是单位有这样的规定,只是评审职称的时候用到

电子生物医学杂志几分

《生物医学工程学杂志》被国外《医学索引》(IM)、MEDLINE及《化学文摘》(CA)收录;被国内《中文核心期刊(北京大学图书馆)》、《中文生物医学核心期刊》、《中国科技论文统计源期刊》(是CSCD核心)、《中国期刊网》、《中国学术期刊》等多家检索机构收录。

是国家级期刊

...不知道叫什么名字- -

期刊分省级、国家级、核心期刊。医学核心期刊分7个。中文核心期刊每4年评选一次,最新版是08年版的,统计源期刊每2年评一次,最新是09年版。 判断一个期刊是不是中文核心期刊或统计源期刊就在08年版北大图书馆公布的中文核心期刊目录总揽以及09年最新科技论文统计源期刊里查询,只有这个是足迹权威的。

国际分子生物医学杂志

经查询,分子科学学报是北大核心期刊,属于国内核心期刊的一种。需要提升科研能力或者升学的作者,核心论文起到的作用是很大的,甚至很多单位或者学校都会要求发表几篇核心论文。

SCI。在JCR分区中,位于Q2。在中科院分区升级版中,大类位于2区,小类位于3区。INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES,期刊发表范围发表范围:分子相关的科学研究,包括生物学、化学和医学领域的基础研究、实验技术研究等 INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES大类属于生物,小类属于生化与分子生物学。

国际生物大分子期刊是SCI二区的期刊。

生物大分子是指生物体细胞内存在的蛋白质、核酸、多糖等大分子。每个生物大分子内有几千到几十万个原子,分子量从几万到几百万以上。

生物大分子的结构很复杂,但其基本的结构单元并不复杂。蛋白质分子是由氨基酸分子以一定的顺序排列成的长链。

氨基酸分子是大部分生命物质的组成材料,不同的氨基酸分子有好几十种。生物体内的绝大多数酶就属于蛋白质,是生物体维持正常代谢功能所不可缺少的。

美国《科学引文索引》(Science Citation Index, 简称 SCI )于1957 年由美国科学信息研究所(Institute for Scientific Information, 简称 ISI)在美国费城创办。

是由美国科学信息研究所(ISI)1961年创办出版的引文数据库。SCI(科学引文索引 )、EI(工程索引 )、ISTP(科技会议录索引 ) 是世界著名的三大科技文献检索系统。

是国际公认的进行科学统计与科学评价的主要检索工具,其中以SCI最为重要,创办人为尤金·加菲尔德(Eugene Garfield, September 16,1925~ February 26,2017)。

相关百科

热门百科

首页
发表服务