四格表资料检验
四格表资料的卡方检验用于进行两个率或两个构成比的比较。
1. 专用公式:
若四格表资料四个格子的频数分别为a,b,c,d,则四格表资料卡方检验的卡方值=n(ad-bc)^2/(a+b)(c+d)(a+c)(b+d),
自由度v=(行数-1)(列数-1)
列联表资料检验
同一组对象,观察每一个个体对两种分类方法的表现,结果构成双向交叉排列的统计表就是列联表。
1. R*C 列联表的卡方检验:
R*C 列联表的卡方检验用于R*C列联表的相关分析,卡方值的计算和检验过程与行×列表资料的卡方检验相同。
2. 2*2列联表的卡方检验:
2*2列联表的卡方检验又称配对记数资料或配对四格表资料的卡方检验,根据卡方值计算公式的不同,可以达到不同的目的。当用一般四格表的卡方检验计算时,卡方值=n(ad-bc)^2/[(a+b)(c+d)(a+c)(b+d)],此时用于进行配对四格表的相关分析。
如考察两种检验方法的结果有无关系;当卡方值=(|b-c|-1)2/(b+c)时,此时卡方检验用来进行四格表的差异检验,如考察两种检验方法的检出率有无差别。
列联表卡方检验应用中的注意事项同R*C表的卡方检验相同。
卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,卡方值越大,越不符合,偏差越小,卡方值就越小,越趋于符合,若量值完全相等时,卡方值就为0,表明理论值完全符合。
行×列表资料检验
行×列表资料的卡方检验用于多个率或多个构成比的比较。
1. 专用公式:
r行c列表资料卡方检验的卡方值=n[(A11/n1n1+A12/n1n2+...+Arc/nrnc)-1]
2. 应用条件:
要求每个格子中的理论频数T均大于5或1 列联表资料检验 同一组对象,观察每一个个体对两种分类方法的表现,结果构成双向交叉排列的统计表就是列联表。 1. R*C 列联表的卡方检验: R*C 列联表的卡方检验用于R*C列联表的相关分析,卡方值的计算和检验过程与行×列表资料的卡方检验相同。 2. 2*2列联表的卡方检验: 2*2列联表的卡方检验又称配对记数资料或配对四格表资料的卡方检验,根据卡方值计算公式的不同,可以达到不同的目的。 当用一般四格表的卡方检验计算时,卡方值=n(ad-bc)^2/[(a+b)(c+d)(a+c)(b+d)],此时用于进行配对四格表的相关分析。 如考察两种检验方法的结果有无关系;当卡方值=(|b-c|-1)2/(b+c)时,此时卡方检验用来进行四格表的差异检验,如考察两种检验方法的检出率有无差别。 列联表卡方检验应用中的注意事项同R*C表的卡方检验相同。 卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,卡方值越大,越不符合,偏差越小,卡方值就越小,越趋于符合,若量值完全相等时,卡方值就为0,表明理论值完全符合。 为什么从正态总体中抽取出的样本的方差服从χ2分布 在抽样分布理论一节里讲到,从正态总体进行一次抽样就相当于独立同分布的 n 个正态随机变量ξ1,ξ2,?,ξn的一次取值。 将 n 个随机变量针对总体均值与方差进行标准化得(i=1,?,n),显然每个都是服从标准正态分布的,因此按照χ2分布的定义,应该服从参数为 n 的χ2分布。 如果将中的总体均值 μ 用样本平均数 ξ 代替,即得,它是否也服从χ2分布呢?理论上可以证明,它是服从χ2分布的,但是参数不是 n 而是 n-1 了,究其原因在于它是 n-1 个独立同分布于标准正态分布的随机变量的平方和 扩展资料 卡方检验的统计量是卡方值,它是每个格子实际频数A与理论频数T差值平方与理论频数之比的累计和。每个格子中的理论频数T是在假定两组的发癌率相等(均等于两组合计的发癌率)的情况下计算出来的。 如第一行第一列的理论频数为71*(91/113)=,故卡方值越大,说明实际频数与理论频数的差别越明显,两组发癌率不同的可能性越大。 参考资料:卡方检验的百度百科 卡方公式是: H0:总体X的分布函数为F(x). 如果总体分布为离散型,则假设具体为: H0:总体X的分布律为P{X=xi}=pi, i=1,2,...; 当H0为真时,n次试验中样本值落入第i个小区间Ai的频率fi/n与概率pi应很接近,当H0不真时,则fi/n与pi相差很大。在0假设成立的情况下服从自由度为k-1的卡方分布。 扩展资料 四格表资料的卡方检验用于进行两个率或两个构成比的比较。 1、专用公式: 若四格表资料四个格子的频数分别为a,b,c,d,则四格表资料卡方检验的卡方值=n(ad-bc)^2/(a+b)(c+d)(a+c)(b+d),(或者使用拟合度公式)。 自由度v=(行数-1)(列数-1)=1 2、应用条件: 要求样本含量应大于40且每个格子中的理论频数不应小于5。当样本含量大于40但有1=<理论频数<5时,卡方值需要校正,当样本含量小于40或理论频数小于1时只能用确切概率法计算概率。 问题一:卡方检验具体怎么计算 卡方检验计算: 假设有两个分类变量X和Y,它们的值域分别为{x1, x2}和{y1, y2},其样本频数列联表为: 若要推断的论述为H1:“X与Y有关系”,可以利用独立性检验来考察两个变量是否有关系,并且能较精确地给出这种判断的可靠程度。 具体的做法是,由表中的数据算出随机变量K^2的值(即K的平方) K^2 = n (ad - bc) ^ 2 / [(a+b)(c+d)(a+c)(b+d)]其中n=a+b+c+d为样本容量 K^2的值越大,说明“X与Y有关系”成立的可能性越大。 当表中数据a,b,c,d都不小于5时,可以查阅下表来确定结论“X与Y有关系”的可信程度: 例如,当“X与Y有关系”的K^2变量的值为,根据表格,因为≤> 问题二:卡方检验怎么算 20分 卡方检验 你的数据应该用交叉列联表做,数据录入格式为:建立两个变量,变量1是组别, 正常对照组用数据1表示,病例组用数据2表示;变量2是疗效等分类变量,用1表示分类属性1,用2表示分类属性2, 还有一个变量3是权重,例数 数据录入完成后,先加权频数后点 *** yze-descriptive statistics-crosstabs-把变量1选到rows里 ,把变量2选到column里,然后点击下面的statistics,打开对话框,勾选chi-squares, 然后点continue,再点ok,出来结果的第3个表就是你要的卡方检验,第一行第一个数是卡方值, 后面是自由度,然后是P值。 问题三:请问卡方检验中理论频数怎么算? 拿你的数据为例,理论频数T11=82*100/200=41; T12=128*100/200=64 以此类推 下面是适用于四格表应用条件: 1)随机样本数据。两个独立样本比较可以分以下3种情况: (1)所有的理论频数T≥5并且总样本量n≥40,用卡方进行检验。 (2)如果理论数T<5但T≥1,并且n≥40,用连续性校正的卡方进行检验。 (3)如果有理论数T<1或n<40,则用Fisher’s检验。 手打请采纳 问题四:请问这样的卡方检验是怎么算的? 卡方检验 你的数据应该用交叉列联表做,数据录入格式为:建立两个变量,变量1是组别, 正常对照组用数据1表示,病例组用数据2表示;变量2是疗效等分类变量,用1表示分类属性1,用2表示分类属性2, 还有一个变量3是权重 问题五:卡方检验中的t代表什么,如何计算 卡方偿验是用途非常广的一种假设检验方法,它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。 T为理论数。T计算公式BRC=nRnc/N,BRC为第R行C列格子的理论数,nR为第R行的合计数,nC为第C列的合计数。 其他: t检验有单样本t检验,配对t检验和两样本t检验。 单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。 配对t检验:是采用配对设计方法观察以下几种情形: 1,两个同质受试对象分别接受两种不同的处理; 2,同一受试对象接受两种不同的处理; 3,同一受试对象处理前后。 问题六:卡方检验求计算答案 卡方检验求计算答案 这里应该找不到答案 你可以问问老师或者同学 尽量自己做吧 不会了让同学给你讲讲,这样才对你的学习有帮助,答案只能解决一时。 问题七:spss统计学 如下图中卡方检验每组的x2值和P值是怎么计算得到的 这是论文的写作思路里涉及的,每行就相当于是每个组的数据而已,也就是分析了下 每个组的男女性别是否有显著差异。通常我们看到只有一个卡方 那是因为你把所有数据汇总到一个组里面分析不同性别的差异。 举个例子,一个学校有很多班级,你可以只分析一个卡方值 来看下这个学校的男女是否有差异,也可以分每个班级分析一个卡方值 ,看每个班级的性别是否都不存在差异。 问题八:卡方检验中卡方值代表什么,意义上什么 四格表资料的卡方检验 四格表资料的卡方检验用于进行两个率或两个构成比的比较。 1. 专用公式: 若四格表资料四个格子的频数分别为a,b,c,d,则四格表资料卡方检验的卡方值=(ad-bc)2*n/(a+b)(c+d)(a+c)(b+d), 自由度v=(行数-1)(列数-1) 2. 应用条件: 要求样本含量应大于40且每个格子中的理论频数不应小于5。当样本含量大于40但理论频数有小于5的情况时卡方值需要校正,当样本含量小于40时只能用确切概率法计算概率。 行X列表资料的卡方检验 行X列表资料的卡方检验用于多个率或多个构成比的比较。 1. 专用公式: r行c列表资料卡方检验的卡方值=n[(A11/n1n1+A12/n1n2+...+Arc/nrnc)-1] 2. 应用条件: 要求每个格子中的理论频数T均大于5或1 问题九:如何用excel做卡方检验 5分 卡方(χ2)常用以检验两个或两个以上样本率或构成比之间差别的显著性分析,用以说明两类属性现象之间是否存在一定的关系。 卡方检验常采用四格表,如图 5-4-18所示,比较的A、B两组数据分别用a、b、c、d表示,a为A组的阳性例数,b为A组的阴性例数,c为B组的阳性例数,d为B组的阴性例数。 用EXCEL进行卡方检验时,数据的输入方式按实际值和理论值分别输入四个单元格,如图5-4-18所示。 (1)比较的A、B两组数据分别用a、b、c、d表示。a=52,为A组的阳性例数;b=19,为A组的阴性例数;c=39,为B组的阳性例数;d=3,为B组的阴性例数。根据公式计算理论值T11、T12、、T21和T22。将实际值和理论值分别输入如图所示的四个单元格(图5-4-19)。 选择表的一空白单元格,存放概率p值的计算结果,将鼠标器移至工具栏的“ fx”处,鼠标器左键点击工具栏的“ fx”快捷键,打开函数选择框。 (2)在函数选择框的“函数分类”栏选择“统计”项,然后在“函数名”栏内选择“CHITEST”函数,用鼠标器点击“确定”按钮,打开数据输入框(图5-4-20)。 (3)在“Actual_range”项的输入框内输入实际值(a、b、c、d)的起始单元格和结束单元格的行列号,在“Expected_range”项的输偿框内输入理论值(T11、T12、T21、T22)的起始单元格和结束单元格的行列号,起始单元格和结束单元格的行列号之间用“:”分隔(图5-4-20)。 在数据输入完毕后,p值的计算结果立即显示。用鼠标器点击“确定”按钮,观察计算结果。 (4)在表存放概率 p 值的空白单元格处显示 p 值的计算结果。在“编辑”栏处显示χ2检验的函数“CHITEST”及两组比较数据的起始与结束单元格的行列号(图 5-4-21)。 四格表资料检验 四格表资料的卡方检验用于进行两个率或两个构成比的比较。 1. 专用公式: 若四格表资料四个格子的频数分别为a,b,c,d,则四格表资料卡方检验的卡方值=n(ad-bc)^2/(a+b)(c+d)(a+c)(b+d), 自由度v=(行数-1)(列数-1) 列联表资料检验 同一组对象,观察每一个个体对两种分类方法的表现,结果构成双向交叉排列的统计表就是列联表。 1. R*C 列联表的卡方检验: R*C 列联表的卡方检验用于R*C列联表的相关分析,卡方值的计算和检验过程与行×列表资料的卡方检验相同。 2. 2*2列联表的卡方检验: 2*2列联表的卡方检验又称配对记数资料或配对四格表资料的卡方检验,根据卡方值计算公式的不同,可以达到不同的目的。当用一般四格表的卡方检验计算时,卡方值=n(ad-bc)^2/[(a+b)(c+d)(a+c)(b+d)],此时用于进行配对四格表的相关分析。 如考察两种检验方法的结果有无关系;当卡方值=(|b-c|-1)2/(b+c)时,此时卡方检验用来进行四格表的差异检验,如考察两种检验方法的检出率有无差别。 列联表卡方检验应用中的注意事项同R*C表的卡方检验相同。 卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,卡方值越大,越不符合,偏差越小,卡方值就越小,越趋于符合,若量值完全相等时,卡方值就为0,表明理论值完全符合。 行×列表资料检验 行×列表资料的卡方检验用于多个率或多个构成比的比较。 1. 专用公式: r行c列表资料卡方检验的卡方值=n[(A11/n1n1+A12/n1n2+...+Arc/nrnc)-1] 2. 应用条件: 要求每个格子中的理论频数T均大于5或1 列联表资料检验 同一组对象,观察每一个个体对两种分类方法的表现,结果构成双向交叉排列的统计表就是列联表。 1. R*C 列联表的卡方检验: R*C 列联表的卡方检验用于R*C列联表的相关分析,卡方值的计算和检验过程与行×列表资料的卡方检验相同。 2. 2*2列联表的卡方检验: 2*2列联表的卡方检验又称配对记数资料或配对四格表资料的卡方检验,根据卡方值计算公式的不同,可以达到不同的目的。 当用一般四格表的卡方检验计算时,卡方值=n(ad-bc)^2/[(a+b)(c+d)(a+c)(b+d)],此时用于进行配对四格表的相关分析。 如考察两种检验方法的结果有无关系;当卡方值=(|b-c|-1)2/(b+c)时,此时卡方检验用来进行四格表的差异检验,如考察两种检验方法的检出率有无差别。 列联表卡方检验应用中的注意事项同R*C表的卡方检验相同。 卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,卡方值越大,越不符合,偏差越小,卡方值就越小,越趋于符合,若量值完全相等时,卡方值就为0,表明理论值完全符合。 为什么从正态总体中抽取出的样本的方差服从χ2分布 在抽样分布理论一节里讲到,从正态总体进行一次抽样就相当于独立同分布的 n 个正态随机变量ξ1,ξ2,…,ξn的一次取值。 将 n 个随机变量针对总体均值与方差进行标准化得(i=1,…,n),显然每个都是服从标准正态分布的,因此按照χ2分布的定义,应该服从参数为 n 的χ2分布。 如果将中的总体均值 μ 用样本平均数 ξ 代替,即得,它是否也服从χ2分布呢?理论上可以证明,它是服从χ2分布的,但是参数不是 n 而是 n-1 了,究其原因在于它是 n-1 个独立同分布于标准正态分布的随机变量的平方和 扩展资料 卡方检验的统计量是卡方值,它是每个格子实际频数A与理论频数T差值平方与理论频数之比的累计和。每个格子中的理论频数T是在假定两组的发癌率相等(均等于两组合计的发癌率)的情况下计算出来的。 如第一行第一列的理论频数为71*(91/113)=,故卡方值越大,说明实际频数与理论频数的差别越明显,两组发癌率不同的可能性越大。 参考资料:卡方检验的百度百科 卡方检验计算: 假设有两个分类变量X和Y,它们的值域分别为{x1, x2}和{y1, y2},其样本频数列联表为: 若要推断的论述为H1:“X与Y有关系”,可以利用独立性检验来考察两个变量是否有关系,并且能较精确地给出这种判断的可靠程度。 具体的做法是,由表中的数据算出随机变量K^2的值(即K的平方) K^2 = n (ad - bc) ^ 2 / [(a+b)(c+d)(a+c)(b+d)]其中n=a+b+c+d为样本容量 K^2的值越大,说明“X与Y有关系”成立的可能性越大。 卡方检验是用途非常广的一种假设检验方法,它在分类资料统计推断中的应用,包括:两个率或两个构成比比较的卡方检验;多个率或多个构成比比较的卡方检验以及分类资料的相关分析等。 卡方检验就是统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,卡方值越大,越不符合;卡方值越小,偏差越小,越趋于符合,若两个值完全相等时,卡方值就为0,表明理论值完全符合。 参考资料:百度百科-卡方检验 卡方公式是: H0:总体X的分布函数为F(x). 如果总体分布为离散型,则假设具体为: H0:总体X的分布律为P{X=xi}=pi, i=1,2,...; 当H0为真时,n次试验中样本值落入第i个小区间Ai的频率fi/n与概率pi应很接近,当H0不真时,则fi/n与pi相差很大。在0假设成立的情况下服从自由度为k-1的卡方分布。 扩展资料 四格表资料的卡方检验用于进行两个率或两个构成比的比较。 1、专用公式: 若四格表资料四个格子的频数分别为a,b,c,d,则四格表资料卡方检验的卡方值=n(ad-bc)^2/(a+b)(c+d)(a+c)(b+d),(或者使用拟合度公式)。 自由度v=(行数-1)(列数-1)=1 2、应用条件: 要求样本含量应大于40且每个格子中的理论频数不应小于5。当样本含量大于40但有1=<理论频数<5时,卡方值需要校正,当样本含量小于40或理论频数小于1时只能用确切概率法计算概率。 卡方检验分为拟合优度检验和独立性检验两种。 卡方检验的步骤: 1、设置假设。 首先,需要明确假设的原假设和备择假设,例如原假设为观测值符合某个分布,备择假设为观测值不符合该分布。 2、计算期望值。 使用假设分布,计算期望值。一般情况下,期望值等于样本容量乘上假设分布的比例。 3、计算卡方值。 根据观测值和期望值计算卡方值,公式为:卡方值=Σ((观测值-期望值)^2/期望值),其中符号“Σ”表示对样本中的每个值进行求和。 4、计算自由度。 自由度是指能够自主变化的变量个数。对于拟合优度检验,自由度等于样本个数减去假设分布参数的个数减去1。 5、查卡方分布表。 查找卡方分布表得到相应的p值,p值越小,表示观测值与期望值之间的差异越大,拒绝原假设的可能性越大。 6、判断结论。 将p值与显著性水平(通常为)进行比较,如果p值小于显著性水平,则拒绝原假设,认为观测值与假设分布不符;否则,接受原假设,认为观测值符合假设分布。 卡方检验的主要应用: 1、检验样本是否符合某种分布。 卡方检验可以进行拟合优度检验,即对实际观测数据按照某种假设分布进行检验,以判断样本是否符合该分布。 2、检验两组变量之间是否独立。 卡方检验可以进行独立性检验,以判断两个分类变量是否独立。例如,可以使用卡方检验来检验性别是否与某种疾病有关联。 3、比较多组观测值的差异性。 卡方检验可以用于比较多组分类数据的差异性。例如,可以使用卡方检验来比较不同种类产品的销售量是否有明显的差异。 4、分析因素对分类变量的影响。 卡方检验可以用于分析某些因素对分类变量的影响程度。例如,可以使用卡方检验来分析年龄对健康指标的影响程度。 及第三方会的12。 最小理论频数是行最小×列最小 故为71×56除以143 卡方检验统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,如果卡方值越大,二者偏差程度越大;反之,二者偏差越小;若两个值完全相等时,卡方值就为0,表明理论值完全符合。 扩展资料: (1)提出原假设: H0:总体X的分布函数为F(x). 如果总体分布为离散型,则假设具体为 H0:总体X的分布律为P{X=xi}=pi, i=1,2,... (2)将总体X的取值范围分成k个互不相交的小区间A1,A2,A3,…,Ak,如可取 A1=(a0,a1],A2=(a1,a2],...,Ak=(ak-1,ak), 其中a0可取-∞,ak可取+∞,区间的划分视具体情况而定,但要使每个小区间所含的样本值个数不小于5,而区间个数k不要太大也不要太小。 参考资料来源:百度百科-卡方检验 卡方公式是: H0:总体X的分布函数为F(x). 如果总体分布为离散型,则假设具体为: H0:总体X的分布律为P{X=xi}=pi, i=1,2,...; 当H0为真时,n次试验中样本值落入第i个小区间Ai的频率fi/n与概率pi应很接近,当H0不真时,则fi/n与pi相差很大。在0假设成立的情况下服从自由度为k-1的卡方分布。 扩展资料 四格表资料的卡方检验用于进行两个率或两个构成比的比较。 1、专用公式: 若四格表资料四个格子的频数分别为a,b,c,d,则四格表资料卡方检验的卡方值=n(ad-bc)^2/(a+b)(c+d)(a+c)(b+d),(或者使用拟合度公式)。 自由度v=(行数-1)(列数-1)=1 2、应用条件: 要求样本含量应大于40且每个格子中的理论频数不应小于5。当样本含量大于40但有1=<理论频数<5时,卡方值需要校正,当样本含量小于40或理论频数小于1时只能用确切概率法计算概率。 卡方检验用于检验两个变量之间的相关性。在进行卡方检验时,需要计算卡方值和p值。手算卡方检验的p值:1、计算卡方值:根据实际观测值和期望值,可以计算出卡方值,公式如下:卡方值=∑(观测值-期望值)2/期望值,2、计算自由度:自由度的计算公式为:自由度=(行数-1)*(列数-1),其中行数和列数分别表示变量的类别数。3、查找卡方分布表:根据自由度和显著性水平查找卡方分布表,得到对应的临界值。4、计算p值:根据卡方分布的对称性,可以得到双侧p值。计算p值需要用到积分函数或计算机软件,因此可以使用现成的卡方检验计算器或Excel的函数进行计算。 给你举例“自然景观”那个卡方值吧。卡方值,p=,是按以下方法计算出来的:国内旅游者584名,“自然景观”206名,其他就是584-206=378(名);国外旅游者568名,“自然景观”152名,其他就是568-152=416(名)。在SPSS里,先按照以下数据格式建立数据:A(国内/国外)、B(自然景观/非自然景观)、N(人数)。ABN11206123782115222416我给你英文菜单,中文翻译很简单将N加权,菜单Data->Weight Cases,把变量N放入右边加权的变量框里。下面计算卡方值:菜单Analyza->Descriptives Statistics->Crosstabs将A放入行变量,将B放入列变量,右边有一个Statistics按钮,点击进入,选择左上角,CHi-Square,就是输出卡方值了。 用SPSS分析问卷地调查中的多选题进行卡方检验,比对单选数据分析稍微复杂,所以我做了一些总结。主要分为以下几个步骤:要先用多重响应创建数据集,然后定制表,可以查看单个卡方检验,然后汇总值,进行个案加权( 重要 ),进而做交叉表,得到表分组的卡方检验。此外,我还提供了卡方检验中期望值的计算方法,以方便大家在写论文绘制表格时用到。 11.作为一名足球运动员,您认为踢球时哪个部位最容易受伤?(多选题) A.头面部 B.颈胸(腰)部 C.四肢 D.膝关节 E.踝关节 F.足部 G.其他 现在对球龄与球员认为最容易受伤的部位进行关联分析,即做卡方检验,步骤如下: 可以用线上的卡方计算器 链接: 卡方计算器 () 1. 专用公式: 若四格表资料四个格子的频数分别为a,b,c,d,则四格表资料卡方检验的卡方值=(ad-bc)2*n/(a+b)(c+d)(a+c)(b+d), 自由度v=(行数-1)(列数-1) 2. 应用条件: 要求样本含量应大于40且每个格子中的理论频数不应小于5。当样本含量大于40但理论频数有小于5的情况时卡方值需要校正,当样本含量小于40时只能用确切概率法计算概率。 标准公式:(ad-bc)^2*n/(a+b)(c+d)(a+c)(b+d) 卡方公式是: H0:总体X的分布函数为F(x). 如果总体分布为离散型,则假设具体为: H0:总体X的分布律为P{X=xi}=pi, i=1,2,...; 当H0为真时,n次试验中样本值落入第i个小区间Ai的频率fi/n与概率pi应很接近,当H0不真时,则fi/n与pi相差很大。在0假设成立的情况下服从自由度为k-1的卡方分布。 扩展资料 四格表资料的卡方检验用于进行两个率或两个构成比的比较。 1、专用公式: 若四格表资料四个格子的频数分别为a,b,c,d,则四格表资料卡方检验的卡方值=n(ad-bc)^2/(a+b)(c+d)(a+c)(b+d),(或者使用拟合度公式)。 自由度v=(行数-1)(列数-1)=1 2、应用条件: 要求样本含量应大于40且每个格子中的理论频数不应小于5。当样本含量大于40但有1=<理论频数<5时,卡方值需要校正,当样本含量小于40或理论频数小于1时只能用确切概率法计算概率。 希望对你有用举例说明吧。相对于不做运动的女子,慢跑或快跑可能会对月经周期产生影响,那这种经期的变化是否会改变她们去咨询医生的频率呢?下面是一组统计数据,记录了三组运动状态的女子是否向医生咨询过经期变化的数据。Observed (O),观察值 是否向医生询问过 组 是 否 总数对照 14 40 54慢跑 9 14 23快跑 46 42 88总数 69 96 165简单点说,就是问,慢跑女子是不是会比不跑步的女子更频繁地向医生询问月经的问题?快跑相对于不跑呢?快跑相对于慢跑呢?方法如下:1. 计算每行和每列的总数,如上表所示。2. 计算每列的百分比,即询问过的百分比。在165个女子中,有69个询问过医生,即69/165=42%,那么没询问过医生的就是1-42%=58%。3. 如果跑不跑步,都不会影响询问医生的频率,那么这个询问过医生的可能性,42%,将适用于所有的组别,即在对照组的54个人中,我们预期54*42%=个人会去询问医学,而54*58%=个人不会去询问。用同样的方法把慢跑和快跑组是否会去询问医生的人数分别算出,如下表所示。Expected (E),预期值 是否向医生询问过 组 是 否 总数对照 54慢跑 23快跑 88总数 69 96 1654. 接下来就是要计算,这个预期值和实际观测到的值之间的区别大不大?是只是因为随机抽样产生的误差,还是具有统计学意义的显著性差异?计算公式如下:χ2=∑[(O-E)2/E]O为每个观察值,E为每个预期值在这个例子中,χ2=()2/()+…= 5. 计算自由度=(行数-1)*(列数-1)=26. 查表,自由度为2, p=时的值为,而比大,所以p<, 差异显著。7. 但由于有三个组,上述的值只能说明运动状态对于询问医生的频率有显著影响,却并不知道究竟是哪组跟组有显著差异。很多其他的回答到这里就结束了,其实不然。下面还有三点要注意。1. 接下来要做的就是把上面两个大表转换成亚表,首先只比较慢跑和快跑组 是 否 总数慢跑 9() 14() 23快跑 46() 42() 88总数 55 56 111计算χ2= ∑[(│O-E│-1/2)2/E]=注意当行列为2X2时,要用这个修正公式。自由度为(2-1)(2-1)=1,查表发现是个非常小的数,所以它们之间没有显著差异。而由于它们的差异如此之小,可以把它们合并成一个组,去跟对照不跑步的比较。组 是 否 总数对照 14() 40() 54跑步 55() 56() 111总数 69 96 165同理算得χ2=,大于自由度为1,p=时的值,即p<. 由于对同一数据做了两次测试(快跟VS慢跑,跑步VS对照),为了保证总的测试误差小于,这里不能用原始的p值来做结论,而需要对其做修正,比如使用Bonferroni修正:由于我们做了两次测试,所以用于比较的关键值要用*2=,由于原始p<,修正后的p (跑步VS对照)<, 差异显著。结论即为,快跑跟慢跑相比的女性相比,她们向医生询问经期的频率没有显著差异,而只要是跑过步的,她们询问的频率则显著高于不跑步的(55:56VS14:40)。3. 最后再补充两点使用卡方的条件1) 如果用于2X2,每个格子中的频数(O)都必须大于5。2) 如果是大型表格,许多行X许多列,每个格子中的频数都不得小于1,且它们中小于5的比较必须要低于20%。如果不能满足这两个条件,就要选择其他的统计方法来处理样本量比较小的情况,比如Fisher Exact test。医学论文卡方值计算
医学论文卡方值怎么算
医学论文卡方检验计算器
医学论文卡方值计算公式