2. 张立平 阎俊葛秀秀 夏先春何中虎Mark W Sutherland. 普通小麦籽粒黄色素含量的QTL分析. 作物学报,2005,已接受。3. 李云伏张立平 单福华 秦娜张风廷 叶志杰 马荣才赵昌平孙东发.小麦光温敏核雄性不育相关基因的DDRT-PCR分析。作物学报,2005投稿。4. 刘丽阎俊张艳何中虎 Pe?a . 张立平. 冬播麦区Glu-1和Glu-3位点变异及1B/1R易位与小麦加工品质性状的关系.中国农业科学 ,2005,38(10):1944-1950。5. 孙道杰,张立平,夏先春,何中虎,葛秀秀,徐兆华,王辉。小麦多酚氧化酶(PPO)活性的SSR分子标记筛选鉴定。中国农业科学,2005,38(7):1295-1299。6. 张立平 葛秀秀 何中虎 Mark W Sutherland. 普通小麦籽粒多酚氧化酶活性的QTL分析。 作物学报,2005,31(1):7-10。7. 张立平 何中虎 刘建平孙家柱 单福华 苏青。分子生物学技术在普通小麦谷蛋白研究中的应用。麦类作物学报,2004,24(2):121-126。8. 葛秀秀 张立平 何中虎 章元明。冬小麦PPO活性的主基因+多基因混合遗传分析,作物学报,2004,30(1):18-20。9. 刘建平 张立平 苏青 单福华.综合应用花培技术快速建立小麦加倍单倍体系,中国植物生理学会第九次会议,。11. 张立平 何中虎 陆美琴 庞斌双 张学勇夏兰琴Frank Ellison。 用Glu-B3、Gli-B1和SEC-1b复合引物PCR检测普通小麦1BL/1RS易位系。中国农业科学,2003,36(12):1566-1570。12. 刘丽 张立平 何中虎。小麦贮藏蛋白研究进展.麦类作物学报,2003,23(增):75-81。13. 周阳 何中虎 张改生夏兰琴 陈新民张立平 陈峰。用微卫星标记鉴定中国小麦品种中Rht8矮杆基因的分布。作物学报,2003,29(6):810-814。14. 张立平 何中虎 刘建平 单福华 苏青 刘丽。小麦面筋强度相关性状的主效QTL分析。北京市农林科学院第九届青年学术论文集,2003(11),55-61。17. 张立平 杨静华 李天然姚裕琪 张鹤龄。表达葡萄糖氧化酶基因抗晚疫病马铃薯的培育。面向21世纪的中国马铃薯产业,2000,8:107-117。18. 《北方旱地主要粮食作物栽培》第四章的第八节,气象出版社,1996。19. 杨明君樊民夫 李久昌 张立平 鲁喜忠. 脱毒马铃薯扩繁技术初探,马铃薯杂志,1995.(9)4:211-217。20. 张国柱樊民夫 张立平. 雁北地区马铃薯主要病毒病种类的检测,山西农业科学,:7-8。
文章标题:论植物组织培养褐变产生的因素及对策摘要:本文针对植物组织培养中常见的褐变现象,详细地分析了其产生的机理及影响因素,并提出了相应的对策,为科研和生产提供了一定的理论和实践依据。关键词:植物组织培养,褐变,对策目前,在许多植物组织培养过程中,常遇到褐变问题。褐变主要发生在外植体,在植物愈伤组织的继代、悬浮细胞培养以及原生质体的分离与培养中也经常发生。褐变产物不仅使外植体、细胞、培养基等变褐,而且对许多酶有抑制作用,从而影响培养材料的生长与分化,严重时甚至导致死亡。本文探讨植物组织培养中褐变现象的影响因素、机理及防范措施,对我们进行科学研究或工厂生产,包括植物组织的培养,原生质体、悬浮细胞和植物器官的培养都有着十分重要的现实意义。1褐变产生的影响因素影响植物组织培养褐变的因子是复杂的,因植物的种类、基因型、外植体部位及生理状态等不同,褐变的程度也有所不同。植物种类及基因型不同的植物和不同的基因型决定了不同的褐化程度。在组织培养中,品种褐化难易可能是与该品种中多酚类物质含量的多少及多酚氧化酶(PPO)活性的差异有关。外植体部位及生理状态外植体的部位及生理状态不同其褐化程度不同,同时,不同时期和不同年龄的外植体在培养中褐变的程度也不同。培养基成分培养基成分中的无机盐、蔗糖浓度、激素水平等对褐变的程度的影响尤为重要。另外,其pH值也与褐变程度有较大关系。培养条件温度过高或光照过强,均可加速被培养组织的褐变。不利环境条件都能造成细胞的程序化死亡,温度是诱导程序化死亡的主要因素[1]。2褐变产生的机理非酶促褐变非酶促褐变是由于细胞受胁迫或其他不利条件影响所造成的细胞程序化死亡或自然发生的细胞死亡,即坏死形成的褐变现象,并不涉及酚类物质的产生。徐振彪等[1]将生长正常的愈伤组织转移到含NaCl的培养基中,组织周围尤其是接触培养基部分发生褐变,但培养基中没有看到扩散的褐化物质。当温度升高时继代保存时间过长,也会发生此类现象。但这种褐变若采取适当措施或者愈伤组织适应了胁迫环境就不再发生了[3]。酶促褐变目前认为植物组织培养中的褐变主要是由酶促褐变引起的,培养材料变褐主要是由伤口处分泌的酚类化合物引起的[4]。酶促褐变如同一般的酶促反应,其发生必须具备三个条件,即酶、底物和氧。引起褐变的酶有多酚氧化酶(PPO)、过氧化物酶(POD)、苯丙氨酸解氨酶等。从初次培养和继代培养过程中试管苗的褐变程度和PPO的活性来看,表明PPO活性的高低是引起培养材料褐变的关键。引起褐变的酶的底物主要是酚类化合物,按其组成可分成3类:苯基羧酸(包括邻羟基苯酚、儿茶酚、没食子酸、莽草酸等),苯丙烷衍生物(包括绿原酸、肉桂酸、香豆酸、咖啡酸、单宁、木质素等),第三类是黄烷衍生物(包括花青素、黄酮、芸香苷等),但并非所有的酚类物质都是PPO的底物。在正常发育的植物组织中,底物、氧气、PPO同时存在并不发生褐变,是因为在正常的组织细胞内由于多酚类物质分布在细胞的液泡内,而PPO则分布在各种质体或细胞质中,这种区域性分布使底物与PPO不能接触。而当细胞膜的结构发生变化和破坏时,则为酶创造了与PPO接触的条件,在氧存在的情况下使酚类物质氧化成醌,进行一系列的脱水、聚合反应,最后形成黑褐色物质,从而引起褐变。3防止外植体产生褐变的对策从理论上讲,酶促褐变可以通过以下三种方法加以抑制:一是除去引起氧化的物质——氧;二是捕捉或减少聚合反应的中间产物;三是抑制有关的酶。实际操作上,下列措施是被认为行之有效的。适当外植体的选择取材时应注意选择褐变程度较小的品种和部位作外植体。成年植株比幼苗褐变程度厉害,夏季材料比冬季及早春和秋季材料的褐变要严重。冬季的芽不易生长,宜选用早春和秋季的材料作为外植体。王异星[5]用荔枝无菌苗不同组织的诱导试验表明,茎最容易诱导出愈伤组织,培养2周后长出浅黄色的愈伤组织;叶大部分不能产生愈伤组织或诱导出的愈伤组织中度褐变;而根极大部分不产生愈伤组织,诱导出的愈伤组织全部褐变。对外植体的处理通过对较易褐变的外植体材料的预处理能减轻醌类物质的毒害作用。处理方法如下:外植体经流水冲洗后,在2-5℃的低温下处理12-24小时,再用升汞或70酒精消毒,然后接种于只含有蔗糖的琼脂培养基中培养5-7天,使组织中的酚类物质部分渗入培养基中。取出外植体用漂白粉溶液浸泡10分钟,再接种到合适的培养基中。若仍有酚类物质渗出,3-5天后再转移培养基2-3次,当外植体的切口愈合后,酚类物质减少,这样可使外植体褐变减轻或完全被抑制。何琼英等[6]用抗坏血酸预处理香蕉吸芽外植体,能减轻外植体褐变,从而提高芽丛诱导率。适宜的培养基培养基的成分与褐变程度有关,要考虑所选培养基的状态和类型。适当的无机盐浓度张妙霞等[7]在柿树组织培养防止褐变所进行的试验中,4种培养基的无机盐以改良MS(大量元素减半)和1/2MS的效果最好,MS的效果较差,结果证明低浓度的无机盐可促进外植体的生长与分化,减轻外植体褐变的程度。徐振彪[1]在对玉米幼胚耐NaCl愈伤组织的筛选表明,随NaCl浓度升高,褐变现象加重。适当和适量的激素王异星[5]在荔枝的组织培养过程中,培养基中添加1mg/LBA 时,愈伤组织较坚硬,增殖缓慢,易产生褐变。培养基中添加1mg/LBA 1mg/L2,4-D时,愈伤组织浅黄疏松,增殖也快。培养基的硬度在一定范围内,琼脂用量大,培养基硬度大,褐变率低[8],这可能是培养基的硬度影响了酚类物质的扩散速度的缘故。培养基中水的硬度的影响硬度低的蒸馏水褐变率低,而使用硬度较高的自来水,褐变严重,甚至会出现褐变死亡[8]。这可能是配制培养基的水改变了培养基中无机盐的浓度,间接地影响了植物外植体的褐变。培养基的pH值在水稻体细胞培养中,pH值为时MS液体培养基可保持愈伤组织处于良好的生长状态,其表面呈黄白色,而pH值为时,愈伤组织严重褐变[9]。一般来说,酸性环境(pH值为)不利于褐变过程的发生[10]。培养条件如温度过高或光照过强,光照会提高PPO的活性,促进多酚类物质的氧化,从而加速被培养的组织褐变。高浓度CO2也会促进褐变,其原因是环境中的CO2向细胞内扩散,细胞内CO32-增多,CO32-与细胞膜上的CO32-结合,使有效CO32-减少,导致内膜系统瓦解,酚类物质与PPO相互接触,产生褐变[11]。因此,初期培养要在黑暗或弱光下进行。添加褐变抑制剂和吸附剂褐变抑制剂主要包括抗氧化剂和PPO抑制剂。在培养基中加入偏二亚硫酸钠、L-半胱氨酸、抗坏血酸、柠檬酸、二硫苏糖醇等抗氧化剂都可以与氧化产物醌发生作用,使其重新还原为酚[12]。由于其作用过程均为消耗性的,在实际应用中应注意添加量,其中L-半胱氨酸和抗坏血酸均对外植体无毒副作用,在生产应用中可不受限制。在水稻细胞的培养基中,添加植酸(PA),可防止褐变,PA分子中众多的羟基产生抗氧化作用,使生色物质的含量下降或PA与PPO分子中的Cu2 结合,从而降低了其活力。陈学森等[13]在对植酸在银杏组织培养中应用的研究中也证实了植酸具有抑制多酚氧化酶活性的作用。常用的吸附剂有活性炭和聚乙烯吡咯烷酮(PVP)。活性炭是一种吸附性较强的无机吸附剂,能吸附培养基中的有害物质,包括琼脂中的杂质、培养物在培养过程中分泌的酚、醌类物质以及蔗糖在高压消毒时产生的5-羟甲基糠醛等,从而有利于培养物的生长。粉末状的活性炭与颗粒状的活性炭相比吸附性更强,一般在培养基中加入1-4g/L的活性炭。在使用过程中应注意,尽量用最低浓度的活性炭来对抗褐变的产生,因为活性炭的吸附作用是没有选择性的,在吸附物质的同时,也会吸附培养基中的其他成分,对外植体的诱导分化会产生一定的负面影响[14]。而聚乙烯吡咯烷酮(PVP)是酚类物质的专一性吸附剂,在生化制备中常用作酚类物质和细胞器的保护剂,可用于防止褐变[15]。进行细胞筛选和多次转移在组织培养过程中,经常进行细胞筛选,可以剔除易褐变的细胞。在外植体接种1-2天后应立即转移到新鲜培养基中,能减轻酚类物质对培养物的毒害作用,降低抑制作用,使外植体尽快分生,连续转移5-6次,可基本解决外植体的褐变问题。参考文献:[1]徐振彪等.植物组织培养过程中的褐化现象.国外农学——杂粮作物,1997(1):55~56.[2]符近.三种不同类型种子休眠萌发及马占相思种子老化过程的研究.北京农业大学硕士研究生论文,1996.[3]傅作申,玉米耐NaCl幼胚愈伤组织的筛选及特性分析,长春农牧大学硕士论文,1996.[4]颜昌敏编著,植物组织培养手册,上海科学技术出版社,1990.[5]王异星.荔枝细胞培养的初步研究.暨南大学学报,1997,18(5):84~85.[6]何琼英等.抗坏血酸预处理阻止香蕉吸芽外植体褐变的研究初报.华南农业大学学报,1995,16(3):79~82.[7]张妙霞.柿树组织培养防止外植体褐变的研究.河南农业大学学报,1999,33(1):87~91.[8]金坚敏.水稻幼穗和成熟种子诱导胚状体时的有关因子探讨.植物学通报,1992,9(2):53~54.[9]金坚敏.水稻幼稿和成熟种子诱导胚状体时的有关因子探讨.植物学通报,1992.[10]王东霞等,如何对抗植物组织中的组织褐变,中国花卉盆景,2002,12:29~30.[11]姚洪军,罗晓芳,田砚亭.植物组织培养外植体褐变的研究进展.北京林业大学学报,1999,21(3):78~83.[12]蔡金星等.不同品种梨多酚氧化酶特性及其抑制剂的研究.河北农业技术师范学院学报,1999,13(1):55~57.[13]陈学森,张艳敏等,植酸在银杏组织培养中应用的研究.天然产物研究与开发,1997,9(2):24~27.[14]刘用生.植物组织培养中活性炭的使用.植物生理学通讯,1994,30(3):214.[15]姚洪军等.植物组织培养外植体褐变的研究进展.北京林业大学学报,1999,21(3):78~84.《论植物组织培养褐变产生的因素及对策》来源于文秘114网,欢迎阅读论植物组织培养褐变产生的因素及对策。---------------------------- 植物组织培养 植物组织培养即植物无菌培养技术,是根据植物细胞具有全能性的理论,利用植物体离体的器官、组织或细胞,如根、茎、叶、花、果实、种子、胚、胚珠、子房、花药、花粉以及贮藏器官的薄壁组织、维管束组织等,在无菌和适宜的人工培养基及光照、温度等条件下,能诱导出愈伤组织、不定芽、不定根,最后形成完整的植株。至今,世界各国在无性系繁殖、花卉育种、植株脱病毒和种质保存等方面,广泛应用组织培养技术。 (一)组织培养技求的应用 1.无性系繁殖无性系繁殖是植物组织培养应用的主流之一,用植物组织培养进行无性繁殖的优点是,用材少,速度快,不受气候、季节、基质等自然条件的影响,比传统的常规繁殖方法要快得多,人们又叫它'快速繁殖'或'微型繁殖'。其常见繁殖方式有短枝扦插、芽增殖、原球茎、器官分化和胚状体发生。其中芽增殖在盆栽花卉繁殖中应用最为普遍,如草本植物四季秋海棠、鸡冠花、万寿菊、长春花,观叶植物蟆叶秋海棠、网纹草、花叶芋、天鹅绒竹芋,木本植物三角花、比利时杜鹃、月季、八仙花等,在生产实践中,均已取得较好的经济效益。原球茎培养在大花蕙兰、蝴蝶兰、美丽兜兰、石斛、春兰等兰科植物和肾蕨、凤尾蕨、鹿角蕨等观赏蕨的规模性生产中得到广泛应用。胚状体培养,据报道目前已在30个科150种植物上观察到它们的愈伤组织可以分化出胚状体,而盆栽花卉中的花叶芋、山茶花都是成功的范例。器官分化主要是从外植体直接产生不定芽或不定根,一般不通过从愈伤组织进行器官分化形成植株,因为其性状有可能发生变化或经过多次继代培养后,会丧失再生植株的能力。 2.花卉育种当今盆栽花卉育种中,也广泛应用组培技术。 胚培养:在花卉种间杂交或远缘杂交中,有时虽然能正常受精,但胚往往发育不完全或胚与胚乳间不亲和,不能得到种子,可采用胚的早期离体培养促使胚正常发育,培养出杂交后代。如山茶花、百合和鸢尾杂交中均采用幼胚培养,成功地收到了杂交种子。同时,在杂交中受精困难,也可把未受精的胚珠分离出来,在试管内用花粉受精来解决,这在草本花卉花菱草中已取得成功。 单倍体育种:利用花药培养诱导花粉形成单倍体,在试管培养中通过秋水仙素处理,使染色体加倍,而成为纯合二倍体植物,从而缩短新品种育种的时间,还有利于突变中隐性突变的分离。这在花卉的株型、花色、花型的大小或重瓣,叶型、叶色等产生变异,往往有直接利用价值。这在矮牵牛的育种中已应用。 体细胞杂交和植物基因工程:利用原生质体遗传操作技术,可以从原来不大可能进行杂交的不同属植物间获得体细胞杂种或核质杂种。可以通过摄取外源目的基因,定向改造植物的某些重要性状。 3.植株脱病毒用无性繁殖方法来繁衍的花卉种类如菊花、香石竹、郁金香、百合、白鹤芋等,不能通过种子途径去除病毒,用化学方法防治和高温处理往往成效不稳定。作为组织培养的无性繁殖材料,最好是去病毒组织,否则易导致病毒积累,危害加重。而植物的茎尖部分无维管束,病毒难以侵入。所以,茎尖培养是获得无病毒植株的最好途径。至今,茎尖培养脱毒法已在菊花、百合、香石竹、郁金香等盆栽花卉上推广使用。 4.种质保存用无性繁殖的植物,因没有种子,只能在植物园内长期栽培保存,耗费大量的土地和劳力。种质材料还易受自然环境的变化和病虫危害而流失。若用组织培养方法,保存愈伤组织、胚状体、茎尖等组织,可节省大量人力和物力。 (二)组织培养的几个步骤 1.材料的选用一般用于组织培养的材料称为外植体。常分为两类。一类是带芽的外植体,如茎尖、侧芽、鳞芽、原球茎等,组织培养过程中可直接诱导丛生芽的产生。其获得再生植株的成功率较高,变异性也较小,易保持材料的优良性状。另一类主要是根、茎、叶等营养器官和花药、花瓣、花轴、花萼、胚珠、果实等生殖器官。这一类外植体需要一个脱分化过程,经过愈伤组织阶段,再分化出芽或产生胚状体,然后形成再生植株。 外植体的取用与组织部位、植株年龄、取材季节以及植株的生理状态、质量,都对培养时器官的分化有一定影响。一般阶段发育年幼的实生苗比发育年龄老的栽培品种容易分化,顶芽比腋芽容易分化,萌动的芽比休眠芽容易分化。在组织培养中,最常用的外植体是茎尖,通常切块在0.5厘米左右,太小产生愈伤组织的能力差,太大则在培养瓶中占据空间太多。培养脱毒种苗,常用茎尖分生组织部,长度为0.1毫米以下。 2.外植体的消毒植物组培能否取得成功的重要因素之一,就是保证培养物在无菌条件下安全生长。为此,必须抓好外植体的消毒和实行无菌操作。 由于培养的植物材料大都采集于田间栽培植株,材料上常附有各种微生物,一旦被带入培养基,即会迅速繁殖滋长,造成污染,培养失败。所以培养前必须对外植体进行严格的消毒处理,消毒的尺度为既能全都杀灭外植体上附带的微生物,但又不伤害材料的生活力。因此,必须正确选择消毒剂和使用的浓度、处理时间及程序。目前,常用的消毒剂有次氯酸钙、氯化汞、次氯酸钠、双氧水、酒精(70%)等。具体消毒方法如下: (1)茎尖、茎、叶片的消毒消毒前先用清水漂洗干净或用软毛刷将尘埃刷除,茸毛较多的用皂液洗涤,然后再用清水洗去皂液,洗后用吸水纸吸干表面水分,用70%酒精浸数秒钟,取出后及时用10%次氯酸钙饱和上清液浸泡10~20分钟。或用2%~10%次氯酸钠溶液浸泡6~15分钟。消毒后用无菌水冲洗3次,用无菌纱布或无菌纸吸干接种。 (2)根、块茎、鳞茎的消毒这类材料大都生长在土中,常带有泥土,挖取时易遭损伤。消毒前必须先用净水清洗干净,在凹凸不平处以及鳞片缝隙处,均用毛笔或软刷将污物清除干净,用吸水纸吸干后,在70%酒精中浸一下,然后用6%~10%次氯酸钠溶液浸5~15分钟,或用0.1%~0.2%氯化汞消毒5~10分钟,最后用无菌水清洗3~4次,用无菌纱布或无菌纸吸干后接种。 (3)果实、种子的消毒这类材料有的表皮上具有茸毛或蜡质,消毒前先用70%酒精浸泡几秒钟或2~10分钟,然后用饱和漂白粉上清液消毒10~30分钟或2%次氯酸钠溶液浸10~20分钟,消毒后去除果皮,取出内部组织或种子接种。直接用种子或果实消毒,经消毒后的材料均须用无菌水多次冲洗后接种。 (4)花药、花粉的消毒植物的花药外面常被花瓣、花萼包裹着,一般处于无菌状态,只需采用表面消毒即可接种。通常先用70%酒精棉球擦拭花蕾或叶鞘,然后将花蕾剥出,在饱和漂白粉上清液中浸泡10~15分钟,用无菌水冲洗2~3次,吸干后即可接种。 3.组织培养的条件接种后的培养容器置放培养室,室温应控制在23~26℃,每天12~16小时光照,光照度为1000~3000勒克斯。 4.外植体的增殖接种后的外植体要分化出丛状芽、愈伤组织或胚状体,必须对培养基及激素的种类和浓度进行严格的设计和筛选。常用的基本培养基为MS培养基,激素的种类和浓度对外植体的分化和增殖起到重要的作用。也就是说不同的花卉种类对激素的种类和浓度是有差别的(表4--3)。 5.诱导生根继代培养形成的不定芽和侧芽等一般没有根,要促使试管苗生根,必须转移到生根培养基上,生根培养基一般应用1/2MS培养基,因为降低无机盐浓度有利于根的分化。同时,不同盆栽花卉诱导生根时所需要的生长素的种类和浓度是不同的(表4-4)。一般常用吲哚乙酸(IAA)、萘乙酸(NAA)和吲哚丁酸(IBA)三种。一般在生根培养基中培养1个月左右即可获得健壮根系。 6.组培苗的移栽生根或形成根原基的试管苗从无菌,温、光、湿度稳定环境中进入到自然环境中,从异养过渡到自养过程,必须经过一个炼苗过程。首先打开试管瓶塞放阳光充足处让其锻炼1~2天,然后取出幼苗用温水将琼脂冲洗掉,移栽到泥炭、珍珠岩、蛭石、砻糠灰等组成的基质中,基质使用前需高温消毒,移栽后要适当遮荫,可用塑料薄膜覆盖,保持较高空气湿度,温度维持在25℃左右,勿使阳光直晒,7~10天后要注意通风和补充浇水,约20~40天,新梢开始生长后,小苗可转入正常管理。
markers for grain polyphenol oxidase activity in common wheat Molecular breeding, 2009, mapping for flour and noodle colour components and yellow pigment content in common wheat, Euphytica, 2009, alleles of Viviparous-1B associated with pre-harvest sprouting in micro-core collections of Chinese wheat germplasm, Molecular breeding, 2010,25(3) a novel allele of viviparous-1 (Vp-1Bf) associated with high seed dormancy of Chinese wheat landrace, Wanxianbaimaizi Molecular breeding, 2010,25(3) allelic variations of Viviparous-1A and their associations with seed dormancy/pre-harvest sprouting of common wheat , Euphytica,2011,1796.抗坏血酸对小麦多酚氧化酶活性抑制的研究, 中国粮油学报,2007,22(1)7.小麦籽粒发育时期Puroindolines蛋白与硬度的关系 ,麦类作物学报, 2007,27(4)8.小麦鲜面片色泽的影响因素研究,麦类作物学报,2007,27(5)个新疆地方小麦品种Glu-A3位点低分子量谷蛋白亚基新基因的序列分析,分子植物育种,2007,5(4)10.小麦低多酚氧化酶(PPO)活性品种资源的筛选, 麦类作物学报,2007,27(4)11.几对麦谷蛋白亚基对小麦面筋品质的影响,南京农业大学学报,2007,30(2)12.小麦2D染色体上多酚氧化酶(PPO)基因STS标记的开发与应用, 中国农业科学,2008,41(6)标记在扬麦158×淮麦18F4群体中的应用及其与PPO活性的关系,分子植物育种,2008,6(3)14.小麦溶剂保持力的基因型和环境及其互作效应分析, 麦类作物学报,2008,28(3)15.糯小麦粉添加比例对中国干白面条品质的影响 ,中国粮油学报,2008,23(3)16.不同Wx蛋白重组类型对普通小麦直链淀粉含量及RVA参数的影响, 中国粮油学报,2008,23(3)17.糯小麦粉添加比例对面包老化的影响 , 南京农业大学学报,2008,31(2)18.小麦PEBP-like基因等位变异与籽粒大小、粒重关系研究, 分子植物育种,2009,7(1)19.小麦微核心种质的Vp1-B1基因多态性及其对籽粒休眠性的检测和鉴定, 农业生物技术学报,2009,17(4)20.小麦RILs群体籽粒灌浆与粒形、粒重的关系, 安徽农业大学学报,2009,36(1)21.小麦细胞分裂素氧化酶基因Tackx3参与穗粒数的形成, 分子植物育种,2009,7(2)22.小麦穗发芽抗性分子标记的有效性检测与验证 ,分子植物育种2009,7(1)23.小麦重组自交系群体籽粒灌浆与粒重的关系,江苏农业科学,2009,224.小麦籽粒休眠Vp1-B1 基因的等位变异检测与分离, 分子植物育种2009,7(2)25.中国小麦微核心种质及地方品种籽粒休眠特性的分子标记鉴定, 作物学报,2010,36(10)26.中国小麦地方品种籽粒强休眠特性的主效基因鉴定,农业生物技术学报,2011,19(2)
葡萄糖氧化酶作为一种抗氧化剂,参与体内的氧化还原反应。通过它独特的去氧产酸的效果,使动物消化道形成良好的酸性厌氧环境。从而使有益微生物大量生长繁殖,消化道环境在各方面都得到极大的平衡,以最快的速度解决畜禽的生理性和细菌性腹泻问题。葡萄糖氧化酶在这方面的作用不同于药物和益生素。畜禽在发生腹泻后,对所有药物的吸收都不容易,大部分药物穿肠而过,不能起到应有的作用。益生素也是难以定殖,不能达到应有的效果。而葡萄糖氧化酶作为一种酶,只要进入消化道,就可以迅速去氧产酸,平衡环境,以最快的速度达到理想的效果。
葡萄糖氧化酶法
1、原理:葡萄糖氧化酶催化葡萄糖氧化反应中释放过氧化氢,过氧化氢在过氧化物酶催化下与色原性氧受体缩合为红色化合物,此物质在505mm处有最大吸收峰,其吸光度值和葡萄糖量成正比。
2、将血清和酶酚混合试剂混匀,置于适宜环境中保温保存,反应完毕后用调零过的分光光度计测定产物于505mm处吸光度值。根据光度值查表或计算可得到样品中葡萄糖浓度。
扩展资料
葡萄糖氧化酶法:特异性强、价廉、方法简单。其正常值:空腹全血为~毫摩尔/升(65~95毫克/分升),血浆为~毫摩尔/升(70~110毫克/分升)。
葡萄糖测定常用的两种方法中,葡萄糖氧化酶法准确度和精密度符合临床要求,操作简便,是血糖测定的常规检验方法,也可用于脑脊液葡萄糖浓度测定;己糖激酶法为国际临床化学和实验室医学联盟(IFCC)推荐的参考方法。
参考资料来源:百度百科-血糖测定
参考资料来源:百度百科-葡萄糖测定
葡萄糖氧化酶(Glucose Oxidase,GOD)是食品工业中一种重要的工业用酶, 广泛用于葡萄酒、啤酒、果汁、奶粉等食品脱氧、面粉改良、防止食品褐变等方面, 在食品快速检测及生物传感器上也有广泛应用。
葡萄糖氧化酶又被称为氧化葡萄酶;葡萄糖氧化酶GOD和过氧化氢酶。它是一种叫做需氧脱氢酶的酶制剂。在食物中添加葡萄糖氧化酶可以中和食物或者密封食物容器中的氧气成分。避免食物与空气做过多的接触,减缓食物变质的速度。由于葡萄糖氧化酶最开始提取于青霉,所以它本身就含有一定的抗菌杀菌能力,所以它的也被广泛的使用在临床检查和化学等方面。夏盛老牌子
酶,指具有生物催化功能的高分子物质。 在酶的催化反应体系中,反应物分子被称为底物,底物通过酶的催化转化为另一种分子。几乎所有的细胞活动进程都需要酶的参与,以提高效率。与其他非生物催化剂相似,酶通过降低化学反应的活化能来加快反应速率,大多数的酶可以将其催化的反应之速率提高上百万倍;事实上,酶是提供另一条活化能需求较低的途径,使更多反应粒子能拥有不少于活化能的动能,从而加快反应速率。酶作为催化剂,本身在反应过程中不被消耗,也不影响反应的化学平衡。酶有正催化作用也有负催化作用,不只是加快反应速率,也有减低反应速率。与其他非生物催化剂不同的是,酶具有高度的专一性,只催化特定的反应或产生特定的构型。虽然酶大多是蛋白质,但少数具有生物催化功能的分子并非为蛋白质,有一些被称为核酶的RNA分子 和一些DNA分子同样具有催化功能。此外,通过人工合成所谓人工酶也具有与酶类似的催化活性。 有人认为酶应定义为具有催化功能的生物大分子,即生物催化剂。[1]酶的催化活性会受其他分子影响:抑制剂是可以降低酶活性的分子;激活剂则是可以增加酶活性的分子。有许多药物和毒药就是酶的抑制剂。酶的活性还可以被温度、化学环境(如pH值)、底物浓度以及电磁波(如微波)等许多因素所影响。一般来说,动物体内的酶最适温度在35到40℃之间,植物体内的酶最适温度在40-50℃之间;细菌和真菌体内的酶最适温度差别较大,有的酶最适温度可高达70℃。动物体内的酶最适PH大多在之间,但也有例外,如胃蛋白酶的最适PH为,植物体内的酶最适PH大多在之间。酶的这些性质使细胞内错综复杂的物质代谢过程能有条不紊地进行,使物质代谢与正常的生理机能互相适应。若因遗传缺陷造成某个酶缺损,或其它原因造成酶的活性减弱,均可导致该酶催化的反应异常,使物质代谢紊乱,甚至发生疾病,因此酶与医学的关系十分密切。酶之所以能够加速化学反应的进行,是因为它能降低反应的活化能。因为任何一种酶,对于它所能催化的反应都有极强的选择性,这种选择性决定着每一个细胞在特定的时候发生特定的化学反应。酶分子是蛋白质,每种蛋白质都有特定的三维形状,而这种形状就决定了酶的选择性。酶所催化的反应中的反应物称为底物,酶只能识别一种或一类专一的底物并催化专一的化学反应,这种性质称为酶的底物专一性。 酶的重要性:生物体由细胞构成,每个细胞由于酶的存在才表现出种种生命活动,体内的新陈代谢才能进行。酶是人体内新陈代谢的催化剂,只有酶存在,人体内才能进行各项生化反应。人体内酶越多,越完整,其生命就越健康。当人体内没有了活性酶,生命也就结束。人类的疾病,大多数均与酶缺乏或合成障碍有关。酶使人体所进食的食物得到消化和吸收,并且维持内脏所有功能包括:细胞修复、消炎排毒、新陈代谢、提高免疫力、产生能量、促进血液循环。酶主宰了内脏和细胞的所有功能,没有酶就没有生命!
消化酶(digestive enzyme ):参与消化的酶的总称。 一般消化酶的作用是水解,有的消化酶由消化腺分泌,有的参与细胞内消化。细胞外消化酶中,有以胃蛋白酶原、胰蛋白酶原、羧肽酶原等一些不活化酶原的形式分泌然后再被活化的。
缺少消化酶会导致食物的不完全分解,然后集中在结肠,容易造成消化不良、变性疾病、和快速老化的环境。
一、蛋白质的消化吸收
蛋白质是由氨基酸以“脱水缩合”的方式组成的多肽链经过盘曲折叠形成的具有一定空间结构的物质。蛋白质在胃液消化酶的作用下,初步水解,在小肠中完成整个消化吸收过程。氨基酸的吸收通过小肠黏膜细胞,是由主动运转系统进行,分别转运中性、酸性和碱性氨基酸。
在肠内被消化吸收的蛋白质,不仅来自于食物,也有肠黏膜细胞脱落和消化液的分泌等,每天有70g左右蛋白质进入消化系统,其中大部分被消化和重吸收。未被吸收的蛋白质由粪便排出体外。
二、蛋白质维持体内代谢平衡的方法
1、蛋白质是机体细胞的重要组成部分
人的身体由百兆亿个细胞组成,细胞可以说是生命的最小单位,它们处于永不停息的衰老、死亡、新生的新陈代谢过程中。而蛋白质是一切生命的物质基础,是机体细胞的重要组成部分,是人体组织更新和修补的主要原料。
2、运载各种物质
载体蛋白对维持人体的正常生命活动是至关重要的。可以在体内运载各种物质。比如血红蛋白—输送氧(红血球更新速率250万/秒)、脂蛋白——输送脂肪、细胞膜上的受体还有转运蛋白等。维持与构成维持机体内的渗透压的平衡。
3、构成酶
蛋白质构成人体必需的催化和调节功能的各种酶。我们身体有数千种酶,每一种只能参与一种生化反应。人体细胞里每分钟要进行一百多次生化反应。
酶有促进食物的消化、吸收、利用的作用。相应的酶充足,反应就会顺利、快捷的进行,我们就会精力充沛,不易生病。否则,反应就变慢或者被阻断。
4、构成激素
激素具有调节体内各器官的生理活性的作用。胰岛素是由51个氨基酸分子合成。生长激素是由191个氨基酸分子合成(与生长素无关)。
扩展资料
富含蛋白质的食物
一、奶类食物以及奶制品。
像牛奶、羊奶、马奶等这些都属于牲畜的奶,这些奶中都含有大量的蛋白质,其中以牛奶中所含有的蛋白质含量最为丰富。可以说在脱脂奶粉的含钙量最高,油脂含量几乎没有,故脱脂奶粉泡成的牛奶,是成年人保持苗条身材的最佳蛋白质和钙的来源。
二、肉类食物。
牲畜的肉类范围很广,比如像牛、羊、猪、狗肉、鸡、鸭、鹅、鹌鹑、鸵鸟等,这些肉类食物都属于牲畜肉类。这类肉中含有人体所需的氨基酸,因此动物性蛋白质的营养价值要高于植物性的蛋白质。
而且在所有的动物蛋白中,由于牛奶、蛋类的蛋白质具有易消化,氨基酸种类齐全,不易引起痛风发作的特点,因此可以说其营养价值是所有蛋白质食物中最好的。
三、蛋类食物。
说到蛋白质含量高的食物,蛋类食物更是个中翘楚,无论是鸡蛋、鸭蛋还是鹌鹑蛋,其中蛋黄中所含有的蛋白质都略高于蛋白。
研究发现,蛋黄中的热量是蛋白的6倍,因此蛋黄也算是高热量的食物。因此很多人都将鸡蛋作为减肥的最佳选择,它不仅仅能够提供营养,同时还能帮助我们达到减肥的作用。
参考资料来源:中国网-蛋白质的重要性 过多摄取蛋白质有危害
参考资料来源:百度百科-蛋白质
膳食给人体提供各类蛋白质,在胃肠道内,通过各种酶的联合作用分解成氨基酸。蛋白质在胃肠道内的消化过程如下:食物蛋白经口腔加温,进入胃后,胃黏膜分泌胃泌素,刺激胃腺的腔壁细胞分泌盐酸和主细胞分泌胃蛋白酶原。无活性的胃蛋白酶原经激活转变成胃蛋白酶。胃蛋白酶将食物蛋白质水解成大小不等的多肽片段,随食糜流入小肠,触发小肠分泌胰泌素。胰泌素刺激胰腺分泌碳酸氢盐进入小肠,中和胃内容物中的盐酸。pH值达左右。同时小肠上段的十二指肠释放出肠促胰酶肽,以刺激胰腺分泌一系列的胰酶原,其中有胰蛋白酶原、胰凝乳蛋白酶原和羧肽酶原等。在十二指肠内,胰蛋白酶原经小肠细胞分泌的肠激酶作用,转变成有活性作用的胰蛋白酶,催化其他胰酶原激活。这些胰酶将肽片段混合物分别水解成更短的肽。小肠内生成的短肽由羧肽酶从肽的C端降解,氨肽酶从N端降解,如此经过多种酶的联合催化,食糜中的蛋白质降解成氨基酸(或氨基酸和小肽)的混合物,再由肠黏膜上皮细胞吸收进入机体。游离的氨基酸进入血液循环进入人体。氨基酸的吸收是一种耗能过程。天然的氨基酸都含有a-氨基和羧基,氨基酸的代谢一般也含有脱氨基作用和脱羧基作用两个方面。其中脱氨基为主要代谢途径。酶是消化吸收的主要工具。如果屁很臭说明蛋白质消化不良。就要适当补充相关酶类或有助消化吸收的益生菌。
1、在食品行业中的应用:氧化淀粉在食品中广泛应用于蛋黄酱、冰激凌、牛皮糖、色拉调酱、柠檬酸酪、软糕点及调味料、淀粉果冻、番茄酱、草莓酱、辣椒酱及面包等食品中,代替阿拉伯胶生产胶母糖、糖果、软糖、蜜饯,用作炸鱼类食品的敷料和拌粉。2、在纺织行业中的应用:作为经纱上浆剂3、在造纸工业中的应用:在造纸工业中,用作表面施胶剂、涂布胶粘剂、湿部添加剂、瓦楞纸板粘合剂。4、在精细化工的应用:在精细化工中氧化淀粉广泛应用于皮肤清洗剂、抑汗剂、滚珠型止汗剂、唇膏、胭脂、脱毛剂、婴儿爽身粉、皮肤除臭剂(足部使用)、地毯清洁剂、防粘结地毯清洗剂、液体手套、皮肤防护油膏、发光涂料(蓝色荧光涂料、黄色荧光涂料、绿色荧光涂料)、粘合剂等产品。5、在医学的应用:主要成分:氧化淀粉。性状:粉剂。功能主治:用于治疗各种原因引起的氮质血症和慢性肾炎、高血压、糖尿病引起的尿毒症。用法及用量:口服:每次5~10g,每日2次,饭后用温开水调和后口服或鼻饲。小儿剂量酌减。不良反应和注意:偶有轻度腹泻、腹痛等,在继续治疗中可逐渐消失。在胃肠道中不吸收,长期服用对人体无损害。规格:粉剂:5g、10g。是否医保用药:非医保是否非处方药:非处方其它:与尿素氮结合时受pH影响,酸性条件可促进醛基与氨、氮结合,故应避免与碱性药物同服。急性肠道感染、消化道出血患者忌用。
二步交联法改善淀粉胶黏剂的耐水性梁祝贺,黄智奇,张雷娜,吕建平(合肥工业大学,合肥230009)摘要:以甲苯二异氰酸酯(TDI)和环氧氯丙烷为交联剂,对氧化淀粉进行两步交联改性,提高了淀粉胶黏剂的耐水性。实验结果表明,先用对氧化淀粉交联改性,再在弱碱性条件下用的环氧氯丙烷对其进行二次交联,可以使淀粉胶黏剂耐水时间从提高到20h。在两步交联改性之间,用过硫酸铵(APS)对淀粉分子进行适度的氧化降解,可以降低体系粘度。关键词:淀粉胶黏剂;交联;TDI;环氧氯丙烷;耐水性
一、 淀粉和变性淀粉的产销概况淀粉作为经纱上浆的主要浆料,已有悠久历史。我国元朝(公元1300年前后)已采用小麦粉作为浆料。1890年"上海机器织布局"(中国第一家纺织工厂)也以发酵的小麦粉作为经纱上浆的浆料。国外在1821年已使用糊精作为浆料,同期也出现了淀粉制造工业,最初是以小麦淀粉为主,不久,其他淀粉也有生产与应用。 尽管植物界中存在着含淀粉的大量品种,但能用于工业上的品种却并不多。主要为玉米、马铃薯、小麦、甘薯、木薯等。玉米具有高产、种植地区广、淀粉含量高、副产品的品种多、经济价值高,又易于运输和贮存,加工厂不受季节和地区限制,可全年生产的优点,有许多优良性能(粘度较稳定等等)。因此,全世界的淀粉产量中,玉米淀粉占70%以上,在美国95%以上的淀粉来自玉米,而在欧洲以马铃薯为主,泰国、巴西等国主要是木薯淀粉,在我国南方木薯淀粉也发展得较快。小麦淀粉过去用得较多,前20年有所回落,但近几年来,小麦淀粉的用量在上升,主要是用于无碳复写纸的新用途发展。全世界和主要几个国家的淀粉和变性淀粉的近年产量情况,见表1。由表可见,我国的淀粉工业的规模还较小,尤其是变性淀粉的产量太低了。 表1 淀粉产量概况(2000年) 国 别 原淀粉产量 (万吨) 变性淀粉产量 (万吨) 全世界 4700 700 中国 550 35 美国 1600 260 欧共体 450 100 日本 200 30 淀粉是天然高分子化合物,属于多糖类物质,存在于某些植物的种子、块茎、块根或果实中。从植物块茎、块根提取的淀粉称为根淀粉,如马铃薯淀粉、甘薯淀粉及木薯淀粉等;从植物种子或果实中提取的淀粉称为种子淀粉,如小麦淀粉、玉米淀粉及橡子淀粉等。淀粉对亲水性的天然纤维有较好的粘附性,也有一定的成膜能力,基本上能满足这些纤维的上浆要求。淀粉的资源丰富、价格低廉,在纺织经纱上浆中的应用已积累了丰富的经验。但其上浆性却不能令人十分满意,常需用各种辅助浆料加以弥补。运用物理或化学方法使淀粉变性,或与其他浆料混合使用,可提高淀粉的上浆效果并扩大其使用范围。淀粉浆的退浆污水对环境污染程度较其他化学浆料低。因此,当前在各种浆料中,淀粉及变性淀粉仍占着最大比例(为65%~70%)。 我国变性淀粉设备的总生产能力: 70万吨/年(2001年实际产量是35万吨)。按生产方法分:化学变性淀粉方法生产:23万吨/年;预糊精化方法生产:10万吨/年;其他方法生产:2万吨/年。1996年我国变性淀粉实际销售量:21万吨;2000年为35万吨,其中:主要用于下列各工业部门(表2)。总体说来,我国变性淀粉仍处于初期发展阶段,它的前景宽广。预计到2010年将突破100万吨,变性淀粉的生产将成为淀粉工业、精细化工产业的主要支柱。 表2 我国变性淀粉实际使用量 应用的 工业部门 1996年实际销售量 (万吨) 2002年需求量 (万吨) 造纸工业 20~30 纺织工业 10~13 饲料工业 8~10 食品工业 14~16 医药工业 2~4 铸造工业 3~4 淀粉塑料 10~12 其他工业 5~8 总计 21 72~100 二、淀粉大分子的结构特点和变性原理A、淀粉结构特点:淀粉是由a-葡萄糖缩聚而成的高分子化合物,是一种高聚糖。淀粉大分子结构中的甙键及其所含的羟基是制取各种变性淀粉可能性的内在因素。甙键的断裂使大分子分解,聚合度降低,主要使淀粉的物理性能发生很大变化;位于葡萄糖剩基的第六碳原子(伯碳原子)和第二、第三碳原子(仲碳原子)上的羟基,具有通常的伯醇、仲醇基团的一系列化学反应──氧化、醚化、酯化、胺基化以及接枝共聚等反应,可制得一系列的变性淀粉。也可用加热或高能射线方法,使淀粉大分子的结构发生变化制备预糊化淀粉、降解淀粉等;也可用特种的生物酶制备变性淀粉。 B、变性淀粉的制造方法主要有:化学变性:使用化学试剂,经过一定的化学反应得到的产品。如:酸解淀粉、氧化淀粉、酯化淀粉、醚化淀粉、交联淀粉、阳离子淀粉、接枝共聚淀粉等;物理变性:如:预糊化淀粉、电子辐射处理淀粉、热降解淀粉等;生物变性:如:酶转化淀粉等。 必需指出的是:淀粉是一个有机高分子化合物,它的变性反应的发生必需要有一定条件(引发剂、温度和时间等等);不可能像无机化合物的酸与碱中和反应那样瞬时发生的。后者是一种离子交换的化学反应,而淀粉与各种变性试剂的反应是依靠分子间的碰撞接触后,才有可能发生。C、影响变性淀粉浆料上浆性能的一些因素:由于变性淀粉的原料是天然淀粉,因此产品的最后性能和质量稳定性受许多因素影响,包括一些自然因素。可以说,变性淀粉的性能往往取决于下述因素影响:1、植物来源:品种、土壤、气候、季节等;2、物理形态:颗粒状、预糊化;3、直链淀粉与支链淀粉比例与含量;4、分子量分布范围(工业上常用粘度描述);5、所含杂质和缔合成分(蛋白质、脂肪酸、含磷化合物),或天然取代基团;6、预处理历史:酸解、氧化、酶降解或糊精化等;7、变性类型:酯化、醚化、氧化、氨基化、接枝等;8、取代基的性质:乙酰基、羧甲基、羟丙基、胺基等;9、取代度的大小等等。近来时有遇到的一个问题:即原淀粉的上浆性能以那一种为好?因为市场上有的标榜是由《马铃薯淀粉》制得的变性淀粉浆料,这似乎比玉米淀粉的为好。从我们几十年的纺织上浆生产使用体会来说,以各种原淀粉的上浆性能比较,应该是: 玉米淀粉的上浆性能最好,它对天然纤维粘附性最高,浆液粘度最稳定。因此过去用原淀粉上浆时,都首推玉米淀粉。其次是小麦淀粉,它的粘附性比玉米淀粉略差,但流动性较玉米淀粉为好。列第三位的是马铃薯淀粉,它对天然纤维粘附性较差,但它由于含有少量的天然磷酸盐,浆液的流动性好,上浆较易均匀。其后是:木薯淀粉、甘薯淀粉等等。三、变性淀粉种类:按照上述的淀粉大分子结构和变性原理,依据开发的年代,经纱上浆中常用的变性淀粉浆料,可归纳如下几种:分解淀粉(也被称为:第一代变性淀粉) 酸处理淀粉:酸解淀粉、可溶性淀粉、低调度淀粉焙供糊精:白糊精、黄糊精、印染胶氧化淀粉:二醛淀粉、次氯酸氧化淀粉淀粉衍生物 (第二代变性淀粉) 淀粉醚 甲基淀粉(MS)羧甲基淀粉(CMS)羟乙基淀粉(HES)羟丙基淀粉(HPS)丙烯基淀粉阳离子淀粉酰胺淀粉(也称:淀粉氨基甲酸酯)淀粉酯淀粉醋酸酯 淀粉磷酸酯 淀粉丁二酸酶 淀粉黄原酸酯 淀粉氨基甲酸酯(也称:酰胺淀粉) 交联淀粉 甲醛交联淀粉表氯酸交联淀粉磷酸交联淀粉丙烯酸交联淀粉接枝淀粉(第三代变性淀粉)丙烯酰胺接枝淀粉� 丙烯酸酯接枝淀粉 � 醋酸乙烯接枝淀粉物理处理的变性淀粉 辐射线处理:α、β、γ及中子线处理淀粉高频处理淀粉热湿处理淀粉微波处理淀粉 四、常用的变性淀粉浆料的基本特性A、酸解淀粉:酸解淀粉也叫酸化淀粉。在国际上也有多种名称:酸转化淀粉(Acid Conversion starch)或酸变性淀粉(Acid Modified Starch),但在工业上常称为易煮淀粉(Thin Boiling Starch)。酸解淀粉已有很久历史,早在1886年就有用盐酸处理天然淀粉。主要是利用酸对淀粉大分子分解得到的产物。现在工业上有各种流度的酸变性淀粉,应用于许多行业。美国的变性淀粉消耗量中,70%是酸解淀粉。研究与探索这类变性淀粉的主要目的有两:(1)降低粘度,以增加工业上可应用的浓度范围;(2)改变流变性能,以扩大淀粉在工业上应用的功能性,例如转化成果糖与糖浆,以制取凝胶坚实度及凝胶断裂强度恰到好处的胶姆糖的原料。 B、氧化淀粉氧化淀粉是最普通的变性淀粉之一,它与天然淀粉比较颜色洁白,容易糊化,浆液粘度可有很大范围调节,且粘度稳定性较高,透明性、成膜性和胶粘性强,成本较低。在造纸、纺织、食品和其他工业上已有广泛应用。淀粉大分子中的羟基与甙键是氧化作用的主要内在因素。按氧化剂对淀粉作用形式,可分为:专一性氧化剂及随机性氧化剂两类。专一性氧化剂只能氧化淀粉大分子中的特定部位,例如高碘酸只能氧化C2及C3上的仲醇基,生成的产物叫双醛淀粉。随机性氧化剂可在淀粉大分子的有关部分随机发生氧化,例如次氨酸盐、过氧化氢等。工业上常用的氧化方式是以次氯酸钠或次氯酸钙作氧化剂,纺织工业常用的主要是次氯酸钠。次氯酸钠是在冷的氢氧化钠水溶液中缓慢地通入氯气制得。若温度过高(超过30℃)会使次氯酸盐转化成氯化盐,丧失氧化效能。<30℃2NaOH 十 Cl2 →NaClO 十NaCI 十 H2O (OH)-NaClO→ NaCl + [O]在氧化淀粉的化学结构中,不仅切断了某些甙键,使分子量降低;而且还引入了其他官能团(羧基),使它具有另一些独特性能。羧基含量常作为氧化淀粉变性深度的一个指标。主体浆料中应用:在细支高密纯棉纱、苎麻纱等上浆中氧化淀粉可作主体浆料应用。浆纱物理机械性能及织造性能都较相应的原淀粉为好。在上浆成本方面,显然比用天然浆要高一些,但从总的纺织厂经济效益来说,不一定低。混合浆料中应用:氧化淀粉与PVA、聚丙烯酸酯类合成浆料有较好的相容性,常将它们混合使用。适用于涤/棉、涤/粘、涤/毛等混纺纱上浆,并可弥补纯合成浆料的再粘性及价格贵等的缺点。混合比可从低比例的10%氧化淀粉与90%PVA到高比例的70%与30%。当氧化淀粉混合比例低于30%~40%时,退浆方法可以按合成浆料的退浆工艺,不需要另外的酶退浆。C、交联淀粉从化学角度来看,淀粉实质上也是一个多元醇的多羟基化合物。众所周知,羟基是一种化学活性较高的官能团,它可与许多化合物发生多种化学反应,例如:酸酐、环氧化合物、烯烃类化合物及含卤素的有机化合物等。在这些化学品中若含有两个或两个以上能与羟基反应的基团时,则就存在着可与淀粉分子上两个不同羟基反应的可能性,结果在同一分子或不同分子上的羟基之间形成交联。交联淀粉就是通过与双官能团或多官能团试剂的反应,使不同淀粉分子的羟基联结在一起,所制得的产物。如前所述,交联淀粉的交联试剂有多种,具体制取方法也有显著不同。其中以醛类交联键为最老、较成熟。但近几十年来,交联淀粉的技术文献中几乎都是使用含有各种双官能团或多官能团化合物的专利。其中以已二酸-醋酸混合酐制成双淀粉已二酯;磷酰氯或三偏磷酸钠制成双淀粉磷酸酯;3-氯-1,2-环氧丙烷得到双淀粉甘油醚也甚为广泛。 在经纱上浆中应用主要着眼于,它的优良的粘度稳定性及耐热性。粘度稳定保持了前后上浆质量的恒定;耐热性可使每缸浆有更长的使用时间,每次调浆量可多一些,方便了调浆操作。低交联度的变性淀粉主要适用于苎麻纱上浆及低支棉纱上浆,即用在要求以被覆性为主的纱线上浆。例如苎麻细布及粗斜纹棉布的经纱上浆,具有稳定的粘度,较柔软的薄膜。这种变性淀粉也可用于与低粘度、高流动性的合成浆料混合使用,作为各种纤维的混纺纱上浆。例如与聚丙烯酸酯类浆料或与水分散性聚酯浆料混合,作为涤/棉纱、涤/麻纱及涤/粘纱等上浆。D、 羧甲基淀粉(Carboxyl Methyl Starch)常简称为 CMS,系英文名称的缩写。由于它的水溶性、增稠性及无毒性,已在许多工业部门得到了应用,特别是为食品工业应用。第一次制得羧甲基淀粉产品是1924年,是原淀粉在碱液(4%NaOH)中与一氯醋酸反应而得。对羧甲基淀粉的制备原理及方法、性能、适用性等已有不少报导。国内外市场上已有多种规格与型号,以适合多种用途。新近的研究主要是提高性能、改进工艺、开拓用途、降低成本;并向复合化的方向发展,使产品的功能性更突出。随着取代度的增加,产品的糊化温度下降,在较高取代度时,成为冷水可溶性产品,溶液像水一样清晰。工业生产的主要是低取代度的产品。由于CMS浆液透明、细腻、粘度高、粘着力较大,且有良好的乳化性和渗透性,不易腐败变质。在医药、食品、纺织、印刷、造纸、石油钻井和铸造等行业中都有着广泛的用途,是一类重要的淀粉衍生物。羧甲基淀粉的水溶性随羧甲基化反应程度的增加而提高。一般来说,当取代度>时,即开始呈现部分水溶性。取代度越高;溶解度越大,溶解速率越快。取代度≥时,已是冷水可溶性了。水溶液清晰、透明,呈粘滞状。溶解度及溶解速率也与原淀粉的颗粒结构及聚合度有关。工业用的羧甲基淀粉取代度一般在以下。羧甲基淀粉也是一种高分子电介质,呈阴离子型,这是引入的基团所形成的特性。可与碱金属生成盐,提高了产品的吸水性及水溶性。遇二价或二价以上的重金属盐,浆液呈絮凝状,甚至出现不溶性的沉淀。可被阳离子染料染色(甲基蓝染料),在浆液配合中应避免使用阳离子型辅助材料,例如阳离子型表面活性剂等。羧甲基淀粉商品中,常含有一定量盐分(主要是氯化钠),这种盐对羧甲基淀粉的性能有密切关系,因此已作为该类产品的主要质量指标之一。含有较多量盐分的羧甲基淀粉,不仅使它的吸水量大大提高,甚至会使浆料出现再粘;更严重的是会腐蚀上浆及调装设备的机件。在纺织工业中,主要用作经纱上浆的辅助粘附性浆料。它对天然纤维有较好的粘附性,可用于中、细号棉纱、苎麻纱及亚麻纱上浆;由于它的水溶解性使它也适应于粘胶纤维纱上浆以及精梳毛纱上浆;它与水溶性高分子化合物聚乙烯酸有良好的相混性,因此有时将这类混合浆用于涤/棉等混纺纱上浆,混用比例一般在10%~30%为宜。但因价格较高,通常是作为代替羧甲基纤维素(CMC)促进其他浆料成分的混溶性来使用的。 淀粉醋酸酯淀粉醋酸酯也叫乙酰化淀粉(Acetate Starch)。早在100年前就知道了它的反应原理。自这以后,感兴趣的是高乙酰化的淀粉酯及其他具有2~3取代度的淀粉酯,目的是为了替代醋酸纤维素。它们呈溶剂可溶性(丙酮、氯仿等)及热塑性。淀粉醋酸酯在对淀粉物理性质的探索、直链淀粉"纤维"与薄膜研究中起了重要作用。由于它们在强度及价格方面不能与类似的纤维素衍生物相竞争,因此未能在商业上有所突破。但低于取代度的淀粉醋酸酯基本上属于亲水性物质,已有工业规模性的生产。目前欧美、日本一些国家生产的主要是低取代度(DS<)产品,已在一些工业部门中使用。早期研究及近期所使用的酯化试剂有醋酸酐、醋酸酐-吡啶、醋酸酐-醋酸混合物、乙烯酮、醋酸乙烯酯或醋酸。商业上适用的产品是取代度从~低取代度衍生物。 由于它的成膜能力及对纤维素有良好的粘附性,已在造纸工业中用作表面施胶剂。在这种应用中它比羟烷基淀粉醚、氧化淀粉或由酶、热转化的淀粉更有竞争力。在制取诸如胶粘带的粘合剂应用中,酸解糯玉米淀粉醋酸酯明显的优点是光泽、粘性及再润湿能力。使用具有~羧基及~2%乙酰基的氧化糯玉米醋酸酯制得的胶粘带具有用动物胶制品的性能。纺织行业中的经纱上浆是淀粉制品的主要市场。将原玉米淀粉与玉米淀粉醋酸酯用于涤/棉纱上浆的浆纱性能作了对比试验。由表可见,由于淀粉醋酸酯有较好的亲和性,使涤/棉浆纱显示有很好的耐磨性,浆纱毛羽也有显著降低,这些都有利于织造效率的提高。 表 浆纱性能比较 性能值 原淀粉 浆纱 醋酸酯淀粉浆纱 (中粘度) 醋酸酯淀粉浆纱 (低粘度) 原纱 耐磨(次) 断裂强度(N) 伸长率(%) 断裂功() 比粘附力(N / %) - - >2mm毛羽(根/10m) 53 42 57 74 >3mm毛羽(根/10m) 18 11 9 24 >5mm毛羽(根/10m) 7 - 2 15 退浆率(%) - 淀粉醋酸酯主要用于天然纤维纱及涤/棉混纺纱上浆。在细号、高密棉织物及苎麻纱上浆中,淀粉醋酸酯可作为主体浆料使用,由于它的浆膜有较高的强度及可弯性,对这类纤维的高粘附性,因此它有良好的织造性能。也可用于涤/粘、涤/毛等混纺纱中作为混合浆料的组分之一,它与常见的合成浆料有良好互混性,可用任何比例混合。一般与合成浆料的混用比例在10%~30%之间,若是质量优良的淀粉醋酸酯,并配以合理的调浆工艺与严格的操作与管理,它的混用比也可能达到50%。由于这类淀粉酯有较好的分散性,及较大溶解性,在退浆过程中易于退浆。也可作为玻璃纤维纱的上浆剂。在毛纱及粘胶纱上浆中,它也是一个较理想的浆料。因凝胶倾向弱,可在较低温度条件下上浆,以防止高温对这类纤维性能的损伤。木薯淀粉醋酸酯的制取及在涤/棉混纺纱上浆中的应用曾作过系统研究,在生产工厂作了对比试验与生产性应用。 淀粉氨基甲酸酯淀粉氨基甲酸酯也有人称为"酰胺淀粉",这种变性淀粉所用的试剂是尿素(Urea),因此商业上更多地称为"尿素淀粉"。实际上,这三个名称是同一个产品。尿素是一种含氮的有机化合物,它能促使淀粉膨胀。若加入多量的尿素(对淀粉重量的3~6∶l),可使淀粉在室温下糊化成浆。也有人用这种冷糊化的淀粉浆对20~30tex的棉纱上浆,有一定的织造效果。这种冷糊化现象还不是化学变性,仅是物理作用。尿素的亲水性及吸湿性拆散了淀粉分子间的氢键,促进了水的浸透作用。许多研究表明,尿素对淀粉的变性机理主要是发生在高温状态
茶是中国人最传统的饮料,尤其是绿茶的消费量占全球饮茶量的20%,人均消费每天在120毫升。中国人饮用茶水会根据季节而选择不同的茶叶,比如春天适合饮用花茶,夏天适合饮用绿茶等等。但是对于心脏出现问题的朋友来说,是否可以饮用茶水。
茶
家里的老人身体出现这样或那样的问题后对于饮食的禁忌比较多,茶水也经常成为禁忌之一。对于心脏病患者来说是否可以饮用茶水,很多人表示自己是一知半解。其实心脏病患者是完全可以饮用茶水的,原因在于茶叶中含有的这种物质。
茶
茶叶中的非营养成分较多,而且大多都可以溶解于茶水中被饮用。其中,最广为所知的就是多酚类物质,包括儿茶素、黄酮类、花青素类等,其中儿茶素是茶叶中最主要的多酚类物质。作为植物化学物之一的多酚类物质,具有抗氧化、抑制肿瘤、保护心血管、抑制炎症和细菌、延缓衰老等生理益处。
茶多酚是茶叶中突出的营养物质,茶多酚可以显著降低心血管疾病患者的总胆固醇、低密度脂蛋白和血压。动脉粥样硬化的发生与血浆脂质关系密切,低密度脂蛋白可以导致动脉粥样硬化,而高密度脂肪白则会起到拮抗的作用。茶多酚可以作用与动脉粥样硬化形成和进展过程的各个环节,从而延缓动脉粥样硬化的形成。
茶
虽然茶叶中都含有茶多酚,但是不同茶叶中茶多酚的含量也有较大的区别。未发酵的茶叶中含有较多的儿茶素和茶多酚,绿茶就是没有经过发酵的茶叶,对于心脏病患者来说,绿茶更适合饮用。但是在饮用茶水的过程中还需要注意,浓茶中茶碱含量高,避免饮用浓茶。
茶叶中茶多酚是生物活性物质,有抗炎、抗氧化、改善血压、血脂效果。而茶多酚在体内代谢是非常快的,不能长期储存,要长期保持饮茶习惯以从中获益。所以喝茶是能够降低心脑血管的发病的。
茶多酚的实际使用参考要求
是的,经常喝茶对身体有很多的好处,而且也能够疏通血管,是非常好的养生物品。