如图!
2、重心和三角形3个顶点组成的3个三角形面积相等。
在△ABC内,三边为a,b,c,点O是该三角形的重心 AOA1、BOB1、COC1分别为a、b、c边上的中线根据重心性质知,OA1=1/3AA1,OB1=1/3BB1,OC1=1/3CC1过O,
A分别作a边上高h1,h可知Oh1=1/3Ah
则,S(△BOC)=1/2×h1a=1/2×1/3ha=1/3S(△ABC);
同理可证S(△AOC)=1/3S(△ABC),S(△AOB)=1/3S(△ABC) 所以,S(△BOC)=S(△AOC)=S(△AOB)
1.作某一条边的8等分点。将这8个点与该边对应的顶点相连。形成8个三角形。2.中线法,。作三个边的三个中点,做一条中线,然后利用中点连接另两个中点,会形成4个三角形,然后每个三角形做一条中线,就形成8个三角形了。3.做3条中位线。形成4个三角形。然后做每个三角形的中线。得到8个。。
重心和三角形3个顶点组成的3个三角形面积相等。
S(△BOC)=1/2×h1a=1/2×1/3ha=1/3S(△ABC);同理可证S(△AOC)=1/3S(△ABC),S(△AOB)=1/3S(△ABC) 所以,S(△BOC)=S(△AOC)=S(△AOB)。
重心将中线分成了2:1,因此,从重心做垂直线到底边和从顶点到底边的垂直线的比例是1:3,所以由中心与底边围成的三角形是整个三角形面积的三分之一。同理可证明,重心和三顶点连线所形成的三个三角形面积都是整个三角形的三分之一。
判定法:
1、锐角三角形:三角形的三个内角中最大角小于90度。
2、直角三角形:三角形的三个内角中最大角等于90度。
3、钝角三角形:三角形的三个内角中最大角大于90度,小于180度。
其中锐角三角形和钝角三角形统称为斜三角形。
随着信息化社会的到来,社会实践对数学的需求发生了变化,数学越来越成为人们进行交流的必不可少的一种工具。人们更需要的是收集、分析和处理数据、信息的能力,面对变化的情况迅速做出判断的能力,将获得的资料、数据转换成数学问题并加以解决的能力等。面对这样的社会需求,必须改变数学教学脱离实际的倾向,重视数学与社会实际的联系,较好地满足社会的数学需求。新修订的小学数学教学大纲明确指出:“要重视从学生的生活实践经验和已有的知识中学习数学和理解数学。”这就要求数学教师结合学生的生活经验和已有的知识来设计富有情趣和意义的活动,使学生切实体验到身边有数学,用数学可以解决生活中的实际问题,从而对数学产生亲切感,增强学生学习数学的兴趣和信心,发挥自己的聪明才智,运用已有知识去创造性地解决新问题,提高解决实际问题的能力。 一、结合生活实际,培养学生的数学意识。 所谓数学意识,是指能用数学的观念和态度去观察、解释和表示事物的数量 、空间形式和数据信息,以形成量化意识和良好数感。新修订的《小学数学教学大纲》十分强调数学与现实生活的联系,在教学中增加了“使学生感受数学与现实生活的联系。”我感到作为一名数学教师,要结合生活实际,使学生养成主动地从数量上观察、分析客观事物的习惯,认识到数学符号、公式、图表是表示、交流和传递信息的工具,使他们有更多的机会从周围熟悉的事物中学习数学和理解数学,体会到数学就在身边,使学生善于将实际问题转化成数学问题,感受数学的趣味和作用,体验数学的魅力。例如:教学轴对称图形时,引导学生观察实际的事物(树叶、蜻蜓、门窗等),分析它们的共同特征,让学生从熟悉的具体的事物中理解轴对称图形,形成轴对称概念。这样,可以使学生从抽象的概念教学中解脱出来,而且对轴对称图形的特征记得牢。 二、加强动手操作,渗透数学思想和方法 义务教育小学数学教学内容和教材中,已经注意了渗透思想和数学方法。而《新大纲》要求要加强渗透的力度,有些思想和方法完全可以以某种方式让学生较早地体会或初步了解,使小学生能通过数学学习活动积累科学思想、方法的感性经验,逐步形成灵活而缜密、具有创造性的思维品质。例如在三角形面积的计算教学中,通过图示和实际操作,先把两个完全相同的三角形叠在一起,然后以它们重合的一个顶点为中心,把上面的三角形旋转180度,再沿着一条边平移,直到与另一个三角形拼成一个平行四边形。这样不仅使学生清楚地看到三角形的底和高与所拼成的平行四边形的底和高的关系,而且还使 学生直观地了解一些平移和旋转的含义,以及对图形位置变化的作用,有利于发展学生的空间观念。 三、注重实践活动,培养学生发现数学问题的能力。 为了在学生学习数学知识的同时,初步接触和逐渐掌握数学思想,不断增强数学意识,就必须在数学教学进程中加强实践活动,使学生有更多的机会接触生活和生产实践中的数学问题,认识现实中的问题和数学问题之间的联系与区别。例如,在教学《利息和利率》这一课时,可以利用活动课的时间带学生到银行去参观,并以自己的压岁钱为例,让学生模拟储蓄、取钱,这时学生的问题就出来了,“利率是什么啊?”“为什么银行的利率会不同啊?”、“储蓄哪种方式比较合理呢”……对于学生这些问题我微笑不答,表扬他们观察得很仔细,然后就让他们带着问题去预习新课,到上课的时候学生由于是自己发现的问题,自己来解决问题,兴趣浓厚,气氛活跃,轻轻松松地学习了新的知识,从而找到了符合实际需要的储蓄方式。这样学生培养了养成留心周围事物,有意识地用数学的观点去认识周围事物的习惯,并自觉把所学习的知识与现实中的事物建立联系。 四、创设生活情景,提高学生解决问题的能力。 目前的应用题教学仍未摆脱传统的应用题教学模式,所以仍然是小学数学教学的难点,占用了大量的教学时间,还是导致学生分化的主要内容。存在的主要问题是,就其内容而言,有的部分脱离学生的实际生活;就其能力训练的价值来看,侧重的是解习题的技能,而对运用数学知识解决简单的实际问题的能力的重视仍显不够。为了使学生更好地了解数学的思想方法,提高学生分析问题、解决问题的能力,教师必须善于发现和挖掘生活中的一些具有发展性、趣味性的问题。让学生从生活中学数学,激发学生学习的兴趣,提高解题的技巧,培养学生根据实际情况来解决问题的能力。例如在教学《工程问题》之后,我设计这样一道题:“老师带了一些钱去买跳绳和毽子,所带的钱如果全部买跳绳可以买50根,如果全部买毽子可以买60只,现在先买了30根跳绳,剩下的钱,还能买多少只毽子?”这道题突破了常规“工程问题”的命题方式,由于问题来自于生活,学生表现出了浓厚的兴趣,激起了学生创造性思维的“火花”,从不同角度提出了多种解决问题的方法,提高了解决问题的灵活性。 课程改革对我们数学教师的要求越来越高,教学中我们应该重视应用数学知识解决实际问题能力的培养,通过联系实际的教学内容,练习题,与现实背景相联系的教学过程,培养学生运用数学的观点观察周围事物的兴趣,提高学生运用数学的意识和解决简单实际问题的能力,从而让学生真正体会到数学学习的趣味性和实用性,在生活中发现数学,喜欢数学。
那是星期六的一天下午,我嚷着要吃西瓜,妈妈爽快地答应了。于是我和奶奶就去买西瓜。 走进菜市场,我一眼就瞅住了一个西瓜堆儿。这里的西瓜是红瓤的,又大又圆,看着就让人垂涎三尺。奶奶说:“给我挑个熟的!”那个小贩在西瓜上敲了敲,说:“包熟!”于是放在电子秤上说:“一斤十块半,斤,17元8角。”奶奶说:“什么?17元8角,这么贵?不买了不买了!”小贩急了,说:“别,别,别,你去其它地方买就不贵吗?我这儿可是全市最便宜的了,我这儿一斤十块半,人家一斤半十五块五了!”奶奶数学本来就不好,被小贩这么一说便糊涂了,我当时也在想:一斤十块半,也就是1斤元,单价是:÷1=元,而一斤半十五块五,也就是斤元,它的单价是:÷,我没细算,想想可能应该比多,但是却犯了个致命的错误。 算错就会犯错,我向奶奶使了个眼色,示意让她买,于是奶奶说:“价格能少一点吗?”“不能、不能,本能就比人家便宜,再少,我就亏大了,干脆别卖了。”看着小贩的“真诚”的态度,奶奶于是付了钱,拎着装好西瓜的袋子就走了。 回到家,我把这件事告诉给妈妈。妈妈听了之后又问了一遍价钱。我说:“小贩说他这儿一斤十块半,别人那一斤半十五块五。”妈妈哭笑不得,问:“你怎么知道别人那儿贵呢?你再好好的算算”。“因为这儿是÷1=,而别人那儿是÷,反正他这儿便宜”我理直气壮。妈妈说:“你呀,太马虎了,÷……,谁便宜呀!”通过这件事,我知道了数学在我们日常生活中运用十分广泛,学好数学十分重要,另外还要记住:“不要利用数学人,也不能不懂数学而被人!”
梯形面积公式真神通一天,我和孙予澄.我表妹在家里整理平行四边形、三角形和梯形面积公式时,按妈妈的要求写出几组能用梯形面积公式计算的数据进行计算。我想了一下很快写出了一组:上底8米,下底15米,高4米。(8+15)×4÷2=23×4÷2=92÷2=46(平方米)过了一会我又写出了一组:上底5分米,下底5分米,高2分米。(5+5)×2÷2=10×2÷2=10(平方分米)就在这时候,孙予澄说:杨琦姐姐,上底和下底都是5分米的图形不是梯形,这组数据不符合要求。‘’经孙予澄一提醒,我一想,哎,真的!这时妈妈过来了,她看了看我们写出的数据后说:“那我们就照叶杨琦的数据缩小10倍,画一画图形,验证一下好吗?”说干就干,大家一下忙开了,不一会儿,我们的图形证实这不是梯形,而是一个平行四边形,而且而我自己还分别画出上底下底都是3厘米和4厘米的图形,发现都是平行四边形。我不好意思地涨红了脸。这时,妈妈用鼓励的眼光看着我说:“我们一起来算算这个平行四边形的面积行吗?”话音刚落,“5×2=10平方分米”孙予澄嘴真快。大家都点头称是。妈妈说:“同一个图形,如果看作是平行四边形,面积是10平方分米。如果看作是一个梯形,面积还是10平方分米。说明了什么呢?”我们议论开了。孙予澄说,平行四边形可以看作是上底等于下底的梯形。我说,当梯形的上底等于下底时,就成了平行四边形。老师说:“照你们的说法,平行四边形面积也能用梯形面积公式来计算啦!”“能。”大家异口同声地说。谁知一波刚平一波又起,孙予澄拿着我表妹的数据哈哈大笑起来,我接过来一看,惊呆了。“上底是0厘米,下底是6厘米,高是2厘米。”“哪有上底是0的梯形呢?”表妹却理直气壮地说:“允许你把上底等于下底是平行四边形的看作梯形,就不允许我把上底等于0的三角形看作是一个梯形啊?”就在我和表妹争论的空档,孙予澄已经画出了图形,又分别用梯形面积公式和三角形面积公式进行计算。孙予澄对我挤挤眼,意思说,我表妹说的有道理。这时我也一下子豁然开朗了。对呀!梯形面积公式真神啊!通过了这次整理,我不仅懂得用梯形面积公式能计算出三角形、平行四边形的面积,还明白了:世界上的事物不是一成不变的,有的事物会由于数量的变化,演变成另一种事物的道理。
、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、8会
赠照片一张
‘ 什么样的图形是三角形?就是三条边,而且是一个封闭图形。而且三角形有一个特点。不管三角形画成什么样,最少也会有两个锐角。三角形有三种,一种是锐角三角形,一种是直角三角形,一种是钝角三角形。这三个三角形最少也会有两个锐角。这个就是三角形的样子了。 如果三角形不封口还是三角形吗? 肯定不是啊,如果三角形不封口的话,那就是角, 如果是钝角三角形,那也有可能是钝角,也可能是锐角。如果是直角三角形可能是锐角,也可能是直角。如果是锐角三角形,只有可能是锐角。 三角形肯定有面积和周长啊,要不然的话他怎么能是封闭图形呢? 如果要把它分成锐角钝角直角那些角肯定先要角分呐。 还有三角形也有高,我们去拿直角三角形举例来说一说, 如果我们把直角三角形的一条边当做底,那它的高肯定是底向上延伸,到最高的地方。 如果我们把一个直角三角形的两个角,分别捏住向外延伸,他肯定会变成一个钝角三角形,因为它是越拉越大,不是越来越小。锐角三角形就不一样了,如果捏住他的角向外延伸,可能会变成一个直角三角形,有可能会变成一个钝角三角形。 而且三角形的角,可以这样代表:(钝角直角锐角三角形都可以。)画一个小小的角,然后在旁边写角几就可以了,而且如果你要这样写,你旁边的是那个三角形每个角的边上也要写上去角几,这样才行。
性质1:直角三角形两直角边的平方和等于斜边的平方。性质2:在直角三角形中,两个锐角互余。性质3:在直角三角形中,斜边上的中线等于斜边的一半。性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。性质5:如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)×2=BD·DC,(2)(AB)×2=BD·BC,射影定理图(3)(AC)×2=CD·BC。等积式(4)ABXAC=ADXBC(可用面积来证明)(5)直角三角形的外接圆的半径R=1/2BC,(6)直角三角形的内切圆的半径r=1/2(AB+AC-BC)(公式一);r=AB*AC/(AB+BC+CA)(公式二)
学好数理化,走遍天下都不怕。写好数学论文的前提是需要有拟定一个优秀的数学论文题目,有哪些比较优秀的数学论文题目呢?下面我给大家带来2022最新数学方向 毕业 论文题目有哪些,希望能帮助到大家!
↓↓↓点击获取更多“知足常乐 议论文 ”↓↓↓
★ 数学应用数学毕业论文 ★
★ 大学生数学毕业论文 ★
★ 大学毕业论文评语大全 ★
★ 毕业论文答辩致谢词10篇 ★
中学数学论文题目
1、用面积思想 方法 解题
2、向量空间与矩阵
3、向量空间与等价关系
4、代数中美学思想新探
5、谈在数学中数学情景的创设
6、数学 创新思维 及其培养
7、用函数奇偶性解题
8、用方程思想方法解题
9、用数形结合思想方法解题
10、浅谈数学教学中的幽默风趣
11、中学数学教学与女中学生发展
12、论代数中同构思想在解题中的应用
13、论教师的人格魅力
14、论农村中小学数学 教育
15、论师范院校数学教育
16、数学在母校的发展
17、数学学习兴趣的激发和培养
18、谈新课程理念下的数学教师角色的转变
19、数学新课程教材教学探索
20、利用函数单调性解题
21、数学毕业论文题目汇总
22、浅谈中学数学教学中学生能力的培养
23、变异思维与学生的创新精神
24、试论数学中的美学
25、数学课堂中的提问艺术
26、不等式的证明方法
27、数列问题研究
28、复数方程的解法
29、函数最值方法研究
30、图象法在中学数学中的应用
31、近年来高考命题研究
32、边数最少的自然图的构造
33、向量线性相关性讨论
34、组合数学在中学数学中的应用
35、函数最值研究
36、中学数学符号浅谈
37、论数学交流能力培养(数学语言、图形、 符号等)
38、探影响解决数学问题的心理因素
39、数学后进学生的心理分析
40、生活中处处有数学
41、数学毕业论文题目汇总
42、生活中的数学
43、欧几里得第五公设产生背景及对数学发展影响
44、略谈我国古代的数学成就
45、论数学史的教育价值
46、课程改革与数学教师
47、数学差生非智力因素的分析及对策
48、高考应用问题研究
49、“数形结合”思想在竞赛中的应用
50、浅谈数学的 文化 价值
51、浅谈数学中的对称美
52、三阶幻方性质的探究
53、试谈数学竞赛中的对称性
54、学竞赛中的信息型问题探究
55、柯西不等式分析
56、中国剩余定理应用
57、不定方程的研究
58、一些数学思维方法的证明
59、分类讨论思想在中学数学中的应用
60、生活数学文化分析
数学研究生论文题目推荐
1、混杂随机时滞微分方程的稳定性与可控性
2、多目标单元构建技术在圆锯片生产企业的应用研究
3、基于区间直觉模糊集的多属性群决策研究
4、排队论在交通控制系统中的应用研究
5、若干类新形式的预条件迭代法的收敛性研究
6、高职微积分教学引入数学文化的实践研究
7、分数阶微分方程的Hyers-Ulam稳定性
8、三维面板数据模型的序列相关检验
9、半参数近似因子模型中的高维协方差矩阵估计
10、高职院校高等数学教学改革研究
11、若干模型的分位数变量选择
12、若干变点模型的 经验 似然推断
13、基于Navier-Stokes方程的图像处理与应用研究
14、基于ESMD方法的模态统计特征研究
15、基于复杂网络的影响力节点识别算法的研究
16、基于不确定信息一致性及相关问题研究
17、基于奇异值及重组信任矩阵的协同过滤推荐算法的研究
18、广义时变脉冲系统的时域控制
19、正六边形铺砌上H-三角形边界H-点数的研究
20、外来物种入侵的广义生物经济系统建模与控制
21、具有较少顶点个数的有限群元阶素图
22、基于支持向量机的混合时间序列模型的研究与应用
23、基于Copula函数的某些金融风险的研究
24、基于智能算法的时间序列预测方法研究
25、基于Copula函数的非寿险多元索赔准备金评估方法的研究
26、具有五个顶点的共轭类类长图
27、刚体系统的优化方法数值模拟
28、基于差分进化算法的多准则决策问题研究
29、广义切换系统的指数稳定与H_∞控制问题研究
30、基于神经网络的混沌时间序列研究与应用
31、具有较少顶点的共轭类长素图
32、两类共扰食饵-捕食者模型的动力学行为分析
33、复杂网络社团划分及城市公交网络研究
34、在线核极限学习机的改进与应用研究
35、共振微分方程边值问题正解存在性的研究
36、几类非线性离散系统的自适应控制算法设计
37、数据维数约简及分类算法研究
38、几类非线性不确定系统的自适应模糊控制研究
39、区间二型TSK模糊逻辑系统的混合学习算法的研究
40、基于节点调用关系的软件执行网络结构特征分析
41、基于复杂网络的软件网络关键节点挖掘算法研究
42、圈图谱半径问题研究
43、非线性状态约束系统的自适应控制方法研究
44、多维power-normal分布及其参数估计问题的研究
45、旋流式系统的混沌仿真及其控制与同步研究
46、具有可选服务的M/M/1排队系统驱动的流模型
47、动力系统的混沌反控制与同步研究
48、载流矩形薄板在磁场中的随机分岔
49、广义马尔科夫跳变系统的稳定性分析与鲁棒控制
50、带有非线性功能响应函数的食饵-捕食系统的研究
51、基于观测器的饱和时滞广义系统的鲁棒控制
52、高职数学课程培养学生关键技能的研究
53、基于生存分析和似然理论的数控机床可靠性评估方法研究
54、面向不完全数据的疲劳可靠性分析方法研究
55、带平方根俘获率的可变生物种群模型的稳定性研究
56、一类非线性分数阶动力系统混沌同步控制研究
57、带有不耐烦顾客的M/M/m排队系统的顾客损失率
58、小波方法求解三类变分数阶微积分问题研究
59、乘积空间上拓扑度和不动点指数的计算及其应用
60、浓度对流扩散方程高精度并行格式的构造及其应用
专业微积分数学论文题目
1、一元微积分概念教学的设计研究
2、基于分数阶微积分的飞航式导弹控制系统设计方法研究
3、分数阶微积分运算数字滤波器设计与电路实现及其应用
4、分数阶微积分在现代信号分析与处理中应用的研究
5、广义分数阶微积分中若干问题的研究
6、分数阶微积分及其在粘弹性材料和控制理论中的应用
7、Riemann-Liouville分数阶微积分及其性质证明
8、中学微积分的教与学研究
9、高中数学教科书中微积分的变迁研究
10、HPM视域下的高中微积分教学研究
11、基于分数阶微积分理论的控制器设计及应用
12、微积分在高中数学教学中的作用
13、高中微积分的教学策略研究
14、高中微积分教学中数学史的渗透
15、关于高中微积分的教学研究
16、微积分与中学数学的关联
17、中学微积分课程的教学研究
18、高中微积分课程内容选择的探索
19、高中微积分教学研究
20、高中微积分教学现状的调查与分析
21、微分方程理论中的若干问题
22、倒向随机微分方程理论的一些应用:分形重倒向随机微分方程
23、基于偏微分方程图像分割技术的研究
24、状态受限的随机微分方程:倒向随机微分方程、随机变分不等式、分形随机可生存性
25、几类分数阶微分方程的数值方法研究
26、几类随机延迟微分方程的数值分析
27、微分求积法和微分求积单元法--原理与应用
28、基于偏微分方程的图像平滑与分割研究
29、小波与偏微分方程在图像处理中的应用研究
30、基于粒子群和微分进化的优化算法研究
31、基于变分问题和偏微分方程的图像处理技术研究
32、基于偏微分方程的图像去噪和增强研究
33、分数阶微分方程的理论分析与数值计算
34、基于偏微分方程的数字图象处理的研究
35、倒向随机微分方程、g-期望及其相关的半线性偏微分方程
36、反射倒向随机微分方程及其在混合零和微分对策
37、基于偏微分方程的图像降噪和图像恢复研究
38、基于偏微分方程理论的机械故障诊断技术研究
39、几类分数阶微分方程和随机延迟微分方程数值解的研究
40、非零和随机微分博弈及相关的高维倒向随机微分方程
41、高中微积分教学中数学史的渗透
42、关于高中微积分的教学研究
43、微积分与中学数学的关联
44、中学微积分课程的教学研究
45、大学一年级学生对微积分基本概念的理解
46、中学微积分课程教学研究
47、中美两国高中数学教材中微积分内容的比较研究
48、高中生微积分知识理解现状的调查研究
49、高中微积分教学研究
50、中美高校微积分教材比较研究
51、分数阶微积分方程的一种数值解法
52、HPM视域下的高中微积分教学研究
53、高中微积分课程内容选择的探索
54、新课程理念下高中微积分教学设计研究
55、基于分数阶微积分的线控转向系统控制策略研究
56、基于分数阶微积分的数字图像去噪与增强算法研究
57、高中微积分教学现状的调查与分析
58、高三学生微积分认知状况的思维层次研究
59、分数微积分理论在车辆底盘控制中的应用研究
60、新课程理念下高中微积分课程的教育价值及其教学研究
三角形的认识 【教学内容】 现代小学数学六年制教材第九册。 【教材简析】 三角形在平面图形中是最简单的也是最基本的多边形,一切多边形都可分割成若干个三角形,并借助三角形来推导有关的性质,所以掌握三角形的特征是很重要的。这部分内容是在学生已学习线段、角和直观认识了三角形的基础上进行教学的。教材先通过学生熟悉的具有三角形形状的物体,结合操作演示,抽象概括出三角形定义,发现三角形的稳定性及其应用,然后讲按角的大小给三角形分类。本节课教学要使学生认识三角形,理解三角形的定义和特征,会按角的大小对三角形进行分类。同时培养学生的实际操作能力、观察能力以及形象思维能力等。 【教具准备】 每人五根长短不同的小棒 、平行四边形模型、一把坏的椅子、电脑 【课前参与】 1、 找一找现实生活中的三角形?并想一想为什么把它做成三角形的? 2、 画一些不同的三角形,并剪下来。 (以上的课前参与作业学生可以通过绘画、利用电脑进行课件制作或其他的方法进行) 【教学过程】 1. 导入。 (教师出示一把坏的椅子)说:谁敢坐这把椅子?没人敢做!?为什么?看来得需要加固,那怎么加固呢?为什么这样加固呢 ? (板书课题:三角形的认识) (1) 课前大家都找了找现实生活中的三角形,先小组内交流一下。 (2) 下面哪一组同学说一说你们组所找的三角形? ●三角形的定义。(你们组能说一说什么叫三角形吗?) 其他组可以再进行补充、质疑,从而得出定义。 教师板书定义:由三条线段围成的图形叫做三角形 教师可运用概念进行判断,(或当作反例进行概念的得出) 下面的图形是三角形吗?为什么? (2)三角形的边、角、顶点。(你们组还能介绍一下三角形的其它知识吗) 板书:三条边、三个角 (3) 教师提问:如果用小棒代替线段,要围成一个三角形,必须有几根小棒?(4) 那么,给你三根小棒,能围成一个三角形吗? 学生试着摆 (5)如果给你三根小棒,你就能围成一个三角形吗? 学生动手操作,指名投影演示,底下同学进行质疑。(可以加问:这三根小棒是围成三角形?那什么是"围成"呢?) 可让演示的学生把两条短边一直往一起移动,一直到在一条直线上,发现也不能围成一个三角形 从中突出"围成"一词,即两条线段的两个端点首尾连接,同时渗透"三角形两边之和大于第三边"。 问:为什么这样的三条线段不能围成一个三角形了?那什么样的三条线段就可以围成三角形了?学生讨论得出: 当两条线段长度之和比第三条线段大时,才能围成一个三角形 师:当两条线段之和比第三条大时,就能围成一个三角形吗? (可出示反例:对于三条线段分别是4厘米、15厘米、8厘米这样的三条线段能围成一个三角形吗?用多少厘米的线段代替8厘米的线段就可以围成一个三角形了,这样的线段有多少条?) 师:那你在说一说什么样的三条线段就可以围成一个三角形了? (任何两条线段之和都大于第三条线段就可以围成一个三角形了) 师:2厘米、4厘米、5厘米这三条线段可以围成一个三角形了吗?为什么? 师:如果现在就用不能围成三角形的三条线段,你能围出一个三角形吗? 讲哥伦布磕鸡蛋的故事 3.三角形的特性。 (1)刚才同学们举了很多的例子,比如说: 红领巾、路牌、房顶的一个平面等 ,那你们说一说为什么要做成三角形的吗? (2) 小组讨论,发言。 (3) 学生概括出:(虽然四边形的四条边长短固定,但形状不能固定,易变形。准备教具) 三角形的三条边长短固定了,那么三角形的形状大小也就固定了。这就是三角形的重要特征--稳 定性。(板书:稳定性) 开放题: 还记得刚上课的椅子吗?现在你会修理这把前后左右都摇摆的椅子吗?五、课后延伸: 课后剪几个不同的三角形,试着把你所剪的三角形分一分类。 板书: 三角形的认识 由三条线段围成的图形叫作三角形 三角形具有稳定性 三个顶点三个角三务边
在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。 例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。 再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。 六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度。用3个正四边形就可以铺满地面。 七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度。它不能铺满地面。 由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。 我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面。 例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形…… 现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的。
(一) 本节内容在教材中的地位与作用。 对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。因此,本节课的知识具有承上启下的作用。同时,苏科版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。(二) 教学目标在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:(1)经历探索三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验。(2)掌握“边角边”这一三角形全等的识别方法,并能利用这些条件判别两个三角形是否全等,解决一些简单的实际问题。(3)培养学生勇于探索、团结协作的精神。(三) 教材重难点 由于本节课是第一次探索三角形全等的条件,故我确立了以“探究全等三角形的必要条件的个数及探究边角边这一识别方法作为教学的重点,而将其发现过程以及边边角的辨析作为教学的难点。同时,我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。(四)教学具准备,教具:相关多媒体课件;学具:剪刀、纸片、直尺。画有相关图片的作业纸。二、教法选择与学法指导本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。三、教学流程(一)创设情景,激发求知欲望首先,我出示一个实际问题:问题:皮皮公司接到一批三角形架的加工任务,客户的要求是所有的三角形必须全等。质检部门为了使产品顺利过关,提出了明确的要求:要逐一检查三角形的三条边、三个角是不是都相等。技术科的毛毛提出了质疑:分别检查三条边、三个角这6个数据固然可以。但为了提高我们的效率,是不是可以找到一个更优化的方法,只量一个数据可以吗?两个呢?……然后,教师提出问题:毛毛已提出了这么一个设想,同学们是否可以和毛毛一起来攻克这个难题呢?这样设计的目的是既交代了本节课要研究和学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。(二)引导活动,揭示知识产生过程数学教学的本质就是数学活动的教学,为此,本节课我设计了如下的系列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。活动一:让学生通过画图或者举例说明,只量一个数据,即一条边或一个角不能判断两个三角形全等。 活动二:让学生就测量两个数据展开讨论。先让学生分析有几种情况:即边边、边角、角角。再由各小组自行探索。同样可以让学生举反例说明,也可以通过画图说明。活动三:在两个条件不能判定的基础上,只能再添加一个条件。先让学生讨论分几种情况,教师在启发学生有序思考,避免漏解。
1三边全相等2两边和一夹角分别相等3三角分别相等和一对相等
你说的不完全对,二重积分的几何意义并不是空间几何体的体积。在XOY平面外有一曲面z=f(x,y),该曲面在XOY平面的投影为D,那么该曲面与XOY平面为上下底的柱体体积为∫∫f(x,y)dxdy所以一重积分是求曲线下与x轴所成图形的面积,二重积分是曲面下与XOY平面所成几何体的体积 那么三重积分呢,则是有两曲面f(x,y,z)和g(x,y,z),求两曲面之间所成几何体的体积,其中z的上下限分别为f(x,y),g(x,y)接着解释你第二个问题:你回想怎么求曲边梯形面积呢?将梯形的高dx累加,dx为无限小时求极限,就是一重积分。二重积分一样,曲面柱体体积怎么求呢?体积=底面积*高。底面积就是dS,高就是z函数值,而dS等于x轴微元乘以y轴微元,就是把x和y的dxdy都趋于无限小,dS=dxdy,因为就是小微元矩形的面积。累加求极限就是二重积分
二重积分的积分区域是x、y的函数,也就是面,三重积分的积区分域是x、y、z的函数,也就是体。
三重积分的计算方法:三重积分的计算是化为三次积分进行的。其实质是计算一个定积分(一重积分)和一个二重积分。
从顺序看:如果先做定积分f(x,y,z)dz,再做二重积分F(x,y)d,就是“投影z1Dz2法”,也即“先一后二”。步骤为:找及在xoy面投影域D。
当积分函数为1时,就是其密度分布均匀且为1,质量就等于其体积值。当积分函数不为1时,说明密度分布不均匀。
扩展资料:
三重积分计算方法
适用于被积区域Ω不含圆形的区域,且要注意积分表达式的转换和积分上下限的表示方法
先一后二法投影法,先计算竖直方向上的一竖条积分,再计算底面的积分。
①区域条件:对积分区域Ω无限制。
②函数条件:对f(x,y,z)无限制。
答:就是把x看成固定的数,把y看成自变量,这样的函数若为奇函数,则二重积分积分为0;