首页

> 期刊论文知识库

首页 期刊论文知识库 问题

函数差值论文的开题报告

发布时间:

函数差值论文的开题报告

1 北方民族大学毕业论文(设计) 开 题 报 告 书 题目 姓 名 学 号 专 业 数学与应用数学 指导教师 北方民族大学教务处制 2 北方民族大学毕业论文(设计) 开 题 报 告 书 2014年 3月 12 日 姓 名 院(部) 数信学院 课题性质 学 号 专 业 数学与应用数学 课题来源 老师提供 题 目 探索“积分学”所蕴含的数学美 一、 选题的目的、意义(含国内外相同领域、同类课题的研究现状分析): (一)、选题的目的 (二)、选题的意义 3 二、本题的基本内容: 课题任务、重点研究内容、实现途径、方法及进度计划 4 三、推荐使用的主要参考文献: 四、 指导教师意见: 签章: 年 月 日 五、院(部)审查意见: 签章: 年 月 日还有毕业论文(设计)开题报告 姓名性别学号学院专业年级论文题目 函数极值的探究与应用 □教师推荐题目 □自拟题目 题目来源题目类别指导教师选题的目的、意义(理论意义、现实意义): 选题目的:为进一步研究有关函数极值在不同的情况下的求值问题,特别是当函数是一元、二元或者多元时的极值求解。为学习函数极值问题提供一个比较全面的介绍,从而给学者在函数极值的求解提供充足的知识。理论意义:整合函数极值的有关求解问题,有助于函数极值的更进一步研究。现实意义:为初学函数极值问题提供有关的资料,也为考研及掌握函数极值提供较全面的知识准备。选题的研究现状(理论渊源及演化、国外相关研究综述、国内相关研究综述):函数极值是有关函数的一个重要的研究课题,它对于掌握函数有着重要的作用。目前在有关的研究中都有关于函数极值的讨论,并在不少的学报及学术性论文中都有关于函数极值问题的有关见解,同时这些学者都研究的比较透彻、全面。论文(设计)主要内容(提纲):本文重点介绍了有关函数极值的求解问题及其运用。比较系统的介绍当函数是一元、二元及多元时函数极值的不同求解方法,及有关函数极值的定理及证明。 在介绍各元函数求解方法时给出了相应的函数极值求解的例题,有助于理解求函数极值的有关定理,并对函数极值求解的掌握。拟研究的主要问题、重点和难点: 研究的主要问题:不同元函数的极值求解的相关定理及其证明。重难点是这些定理的证明及应用问题。研究目标:给出有关不同元函数的极值的求解定理。 研究方法、技术路线、实验方案、可行性分析:研究方法:分析和综合以及理论联系实际的方法; 技术路线:理论研究; 实验方案:参照书本的相关知识,及相关文章; 可行性分析:综合各种函数极值的求解问题,从而得出自己的研究。 研究的特色与创新之处:综合不同元的函数,给出不同元的函数极值的相关定理与证明,总结出比较系统的有关函数极值的求解问题。进度安排及预期结果: 第七学期第十五周之前:开题报告; 2010年寒假期间:搜集、整理资料,构思、细化研究路线; 第八学期第一至六周:撰写论文,完成“研究路线”中的前四个阶段; 第八学期第七、八周:撰写论文,给出简化阶梯形矩阵在向量空间中的若干重要应用; 第八学期第九周:按照琼州学院教务处制定的《毕业论文撰写规范》排印论文; 第八学期第十周:做好答辩前的准备工作。参考文献: [1] 华东师范大学数学系编.数学分析(第三版)(上)[M].北京:高等教育出版社. [2] 方保镕等.矩阵论[M].北京:清华大学出版社.2004(11). [3]吉艳霞.求函数极值问题的方法探究[J].运城学院学报.2006, [4] 李关民,王娜.函数极值高阶导数判别法的简单证明[J].沈阳工程学报.2009. [5] 李文宇.求多元函数极值的一种新方法[J].鸡西大学学报.2006. 指导教师意见:指导教师签名:年 月 日 答辩小组意见:组长签名:年 月 日 备注:1、题目来源栏应填:教师科研、社会实践、实验教学、教育教学等;2、题目类别栏应填:应用研究、理论研究、艺术设计、程序软件开发等。

数学与应用数学幂函数论文,行咯,多少字的,姐给.

我在网站上为你找到一些答案,你看下合适不? 一、 如何做文献综述 首先需要将“文献综述( Literature Review) ”与“背景描述 (Backupground Description) ”区分开来。我们在选择研究问题的时候,需要了解该问题产生的背景和来龙去脉,如“中国半导体产业的发展历程”、“国外政府发展半导体产业的政策和问题”等等,这些内容属于“背景描述”,关注的是现实层面的问题,严格讲不是“文献综述”,关注的是现实层面问题,严格讲不是“文献综述”。“文献综述”是对学术观点和理论方法的整理。其次,文献综述是评论性的( Review 就是“评论”的意思),因此要带着作者本人批判的眼光 (critical thinking) 来归纳和评论文献,而不仅仅是相关领域学术研究的“堆砌”。评论的主线,要按照问题展开,也就是说,别的学者是如何看待和解决你提出的问题的,他们的方法和理论是否有什么缺陷?要是别的学者已经很完美地解决了你提出的问题,那就没有重复研究的必要了。 清楚了文献综述的意涵,现来说说怎么做文献综述。虽说,尽可能广泛地收集资料是负责任的研究态度,但如果缺乏标准,就极易将人引入文献的泥沼。 技巧一:瞄准主流。主流文献,如该领域的核心期刊、经典著作、专职部门的研究报告、重要化合物的观点和论述等,是做文献综述的“必修课”。而多数大众媒体上的相关报道或言论,虽然多少有点价值,但时间精力所限,可以从简。怎样摸清该领域的主流呢?建议从以下几条途径入手:一是图书馆的中外学术期刊,找到一两篇“经典”的文章后“顺藤摸瓜”,留意它们的参考文献。质量较高的学术文章,通常是不会忽略该领域的主流、经典文献的。二是利用学校图书馆的“中国期刊网”、“外文期刊数据库检索”和外文过刊阅览室,能够查到一些较为早期的经典文献。三是国家图书馆,有些上世纪七八十年代甚至更早出版的社科图书,学校图书馆往往没有收藏,但是国图却是一本不少(国内出版的所有图书都要送缴国家图书馆),不仅如此,国图还收藏了很多研究中国政治和政府的外文书籍,从互联网上可以轻松查询到。 技巧二:随时整理,如对文献进行分类,记录文献信息和藏书地点。做博士论文的时间很长,有的文献看过了当时不一定有用,事后想起来却找不着了,所以有时记录是很有必要的。罗仆人就积累有一份研究中国政策过程的书单,还特别记录了图书分类号码和藏书地点。同时,对于特别重要的文献,不妨做一个读书笔记,摘录其中的重要观点和论述。这样一步一个脚印,到真正开始写论文时就积累了大量“干货”,可以随时享用。 技巧三:要按照问题来组织文献综述。看过一些文献以后,我们有很强烈的愿望要把自己看到的东西都陈述出来,像“竹筒倒豆子”一样,洋洋洒洒,蔚为壮观。仿佛一定要向读者证明自己劳苦功高。我写过十多万字的文献综述,后来发觉真正有意义的不过数千字。文献综述就像是在文献的丛林中开辟道路,这条道路本来就是要指向我们所要解决的问题,当然是直线距离最短、最省事,但是一路上风景颇多,迷恋风景的人便往往绕行于迤逦的丛林中,反面“乱花渐欲迷人眼”,“曲径通幽”不知所终了。因此,在做文献综述时,头脑时刻要清醒:我要解决什么问题,人家是怎么解决问题的,说的有没有道理,就行了。 二、如何撰写开题报告 问题清楚了,文献综述也做过了,开题报告便呼之欲出。事实也是如此,一个清晰的问题,往往已经隐含着论文的基本结论;对现有文献的缺点的评论,也基本暗含着改进的方向。开题报告就是要把这些暗含的结论、论证结论的逻辑推理,清楚地展现出来。 写开题报告的目的,是要请老师和专家帮我们判断一下:这个问题有没有研究价值、这个研究方法有没有可能奏效、这个论证逻辑有没有明显缺陷。因此,开题报告的主要内容,就要按照“研究目的和意义”、“文献综述和理论空间”、“基本论点和研究方法”、“资料收集方法和工作步骤”这样几个方面展开。其中,“基本论点和研究方法”是重点,许多人往往花费大量笔墨铺陈文献综述,但一谈到自己的研究方法时但寥寥数语、一掠而过。这样的话,评审老师怎么能判断出你的研究前景呢?又怎么能对你的研究方法给予切实的指导和建议呢? 对于不同的选题,研究方法有很大的差异。一个严谨规范的学术研究,必须以严谨规范的方法为支撑。在博士生课程的日常教学中,有些老师致力于传授研究方法;有的则突出讨论方法论的问题。这都有利于我们每一个人提高自己对研究方法的认识、理解、选择与应用,并具体实施于自己的论文工作中

背景; 随着时间的推移和社会的不断发展,数学知识的运用越来越广泛,地位也变得越来越重要。但是现在有很多的中学生对学习数学知识感到很吃力。对学习数学函数知识感到得困难尤为突出。而函数知识穿插在数学各个方面的知识点里面,很多数学题目都能够用函数知识进行解决。所以学好函数知识是一条关于学好数学知识的捷径,对我们的学习成绩有很大的帮住。所以我们选择择了“关于函数在各个章节的体现的研究”开展研究目的与意义;随着越来越多的学生对学习数学知识感到非常困难,于是他们的学习存在严重的偏科现同时可以提高我们的分析能力。学习成绩下降等问题也随之而来.所以研究关于函数知识在数学各章节中是如何体现的十分必要.学好函数知识是学好数学知识,提高我们成绩的一条捷径.同时可以提高我们的分析能力。活动计划;(1)分组。 (2)查询分析。(3)整理。(4)得出结论。具体实施:1、把小组分成三组。第一小组负责查找高中数学书中的函数知识并记录下来。 2、第二小组打各大书店和图书馆查询有关函数的资料,并进行筛选分析,在将有价值的材料记录下来。 3、第三小组负责网上查找关于函数的资料、并询问老师。 4、把所得的信息进行汇总,筛选出有价值的信息,为撰写报告做准备

论文函数极值开题报告

首先你要说下研究函数极值的意义:在很多工程实际中,我们经常需要做一些优化。当然,本人是学飞行器设计的,举个简单的例子:飞机的升力主要由机翼提供,那么机翼的截面到底设计成什么形状,或者机翼的平面投影设计成什么形状,其升力可以达到最大,甚至在保证升力的同时还不能让阻力太大,所以这些都涉及到一个最优的问题。(当然,楼主可以就具体工程实际给出例子),再比如,就拿天气预报来说吧,通过实验测得很多气象数据,那么我们怎么处理这些数据,或者说用什么方法处理这些数据,才能达到预测结果最为准确呢,这其实也是一个广义上的极值问题。还有就是经济学的投资问题,我们知道现在国家搞什么高铁、高速公路的,都是浩大的工程,动不动就几百亿的,如何合理布局(要考虑建设成本、怎么选定线路、建成之后为国民经济带来的效益、运营费用、会不会对环境有影响,那么污染治理费也要考虑),才能让这些公共基础建设的利远大于弊。。。。一般实际问题都是一个或者一组多元函数,那么研究清楚这些问题,对我们的工程实际将有莫大的裨益,对节省能源等等问题都有好处

数学与应用数学幂函数论文,行咯,多少字的,姐给.

1 北方民族大学毕业论文(设计) 开 题 报 告 书 题目 姓 名 学 号 专 业 数学与应用数学 指导教师 北方民族大学教务处制 2 北方民族大学毕业论文(设计) 开 题 报 告 书 2014年 3月 12 日 姓 名 院(部) 数信学院 课题性质 学 号 专 业 数学与应用数学 课题来源 老师提供 题 目 探索“积分学”所蕴含的数学美 一、 选题的目的、意义(含国内外相同领域、同类课题的研究现状分析): (一)、选题的目的 (二)、选题的意义 3 二、本题的基本内容: 课题任务、重点研究内容、实现途径、方法及进度计划 4 三、推荐使用的主要参考文献: 四、 指导教师意见: 签章: 年 月 日 五、院(部)审查意见: 签章: 年 月 日还有毕业论文(设计)开题报告 姓名性别学号学院专业年级论文题目 函数极值的探究与应用 □教师推荐题目 □自拟题目 题目来源题目类别指导教师选题的目的、意义(理论意义、现实意义): 选题目的:为进一步研究有关函数极值在不同的情况下的求值问题,特别是当函数是一元、二元或者多元时的极值求解。为学习函数极值问题提供一个比较全面的介绍,从而给学者在函数极值的求解提供充足的知识。理论意义:整合函数极值的有关求解问题,有助于函数极值的更进一步研究。现实意义:为初学函数极值问题提供有关的资料,也为考研及掌握函数极值提供较全面的知识准备。选题的研究现状(理论渊源及演化、国外相关研究综述、国内相关研究综述):函数极值是有关函数的一个重要的研究课题,它对于掌握函数有着重要的作用。目前在有关的研究中都有关于函数极值的讨论,并在不少的学报及学术性论文中都有关于函数极值问题的有关见解,同时这些学者都研究的比较透彻、全面。论文(设计)主要内容(提纲):本文重点介绍了有关函数极值的求解问题及其运用。比较系统的介绍当函数是一元、二元及多元时函数极值的不同求解方法,及有关函数极值的定理及证明。 在介绍各元函数求解方法时给出了相应的函数极值求解的例题,有助于理解求函数极值的有关定理,并对函数极值求解的掌握。拟研究的主要问题、重点和难点: 研究的主要问题:不同元函数的极值求解的相关定理及其证明。重难点是这些定理的证明及应用问题。研究目标:给出有关不同元函数的极值的求解定理。 研究方法、技术路线、实验方案、可行性分析:研究方法:分析和综合以及理论联系实际的方法; 技术路线:理论研究; 实验方案:参照书本的相关知识,及相关文章; 可行性分析:综合各种函数极值的求解问题,从而得出自己的研究。 研究的特色与创新之处:综合不同元的函数,给出不同元的函数极值的相关定理与证明,总结出比较系统的有关函数极值的求解问题。进度安排及预期结果: 第七学期第十五周之前:开题报告; 2010年寒假期间:搜集、整理资料,构思、细化研究路线; 第八学期第一至六周:撰写论文,完成“研究路线”中的前四个阶段; 第八学期第七、八周:撰写论文,给出简化阶梯形矩阵在向量空间中的若干重要应用; 第八学期第九周:按照琼州学院教务处制定的《毕业论文撰写规范》排印论文; 第八学期第十周:做好答辩前的准备工作。参考文献: [1] 华东师范大学数学系编.数学分析(第三版)(上)[M].北京:高等教育出版社. [2] 方保镕等.矩阵论[M].北京:清华大学出版社.2004(11). [3]吉艳霞.求函数极值问题的方法探究[J].运城学院学报.2006, [4] 李关民,王娜.函数极值高阶导数判别法的简单证明[J].沈阳工程学报.2009. [5] 李文宇.求多元函数极值的一种新方法[J].鸡西大学学报.2006. 指导教师意见:指导教师签名:年 月 日 答辩小组意见:组长签名:年 月 日 备注:1、题目来源栏应填:教师科研、社会实践、实验教学、教育教学等;2、题目类别栏应填:应用研究、理论研究、艺术设计、程序软件开发等。

我觉得LS回答得太随意了,我不是学数学专业的,所有帮不了你!

函数极值论文开题报告

首先你要说下研究函数极值的意义:在很多工程实际中,我们经常需要做一些优化。当然,本人是学飞行器设计的,举个简单的例子:飞机的升力主要由机翼提供,那么机翼的截面到底设计成什么形状,或者机翼的平面投影设计成什么形状,其升力可以达到最大,甚至在保证升力的同时还不能让阻力太大,所以这些都涉及到一个最优的问题。(当然,楼主可以就具体工程实际给出例子),再比如,就拿天气预报来说吧,通过实验测得很多气象数据,那么我们怎么处理这些数据,或者说用什么方法处理这些数据,才能达到预测结果最为准确呢,这其实也是一个广义上的极值问题。还有就是经济学的投资问题,我们知道现在国家搞什么高铁、高速公路的,都是浩大的工程,动不动就几百亿的,如何合理布局(要考虑建设成本、怎么选定线路、建成之后为国民经济带来的效益、运营费用、会不会对环境有影响,那么污染治理费也要考虑),才能让这些公共基础建设的利远大于弊。。。。一般实际问题都是一个或者一组多元函数,那么研究清楚这些问题,对我们的工程实际将有莫大的裨益,对节省能源等等问题都有好处

哈哈,我也是数学系的。不过,是师范类,我的论文是高中数学相关的。我觉得,求最值,就是为了知道一个临界值,了解了临界值,就知道了这个函数或者曲线的区域,就知道了范围。呵呵,知识都还给老师了。

数学与应用数学幂函数论文,行咯,多少字的,姐给.

背景; 随着时间的推移和社会的不断发展,数学知识的运用越来越广泛,地位也变得越来越重要。但是现在有很多的中学生对学习数学知识感到很吃力。对学习数学函数知识感到得困难尤为突出。而函数知识穿插在数学各个方面的知识点里面,很多数学题目都能够用函数知识进行解决。所以学好函数知识是一条关于学好数学知识的捷径,对我们的学习成绩有很大的帮住。所以我们选择择了“关于函数在各个章节的体现的研究”开展研究目的与意义;随着越来越多的学生对学习数学知识感到非常困难,于是他们的学习存在严重的偏科现同时可以提高我们的分析能力。学习成绩下降等问题也随之而来.所以研究关于函数知识在数学各章节中是如何体现的十分必要.学好函数知识是学好数学知识,提高我们成绩的一条捷径.同时可以提高我们的分析能力。活动计划;(1)分组。 (2)查询分析。(3)整理。(4)得出结论。具体实施:1、把小组分成三组。第一小组负责查找高中数学书中的函数知识并记录下来。 2、第二小组打各大书店和图书馆查询有关函数的资料,并进行筛选分析,在将有价值的材料记录下来。 3、第三小组负责网上查找关于函数的资料、并询问老师。 4、把所得的信息进行汇总,筛选出有价值的信息,为撰写报告做准备

矩阵值函数论文开题报告

1 北方民族大学毕业论文(设计) 开 题 报 告 书 题目 姓 名 学 号 专 业 数学与应用数学 指导教师 北方民族大学教务处制 2 北方民族大学毕业论文(设计) 开 题 报 告 书 2014年 3月 12 日 姓 名 院(部) 数信学院 课题性质 学 号 专 业 数学与应用数学 课题来源 老师提供 题 目 探索“积分学”所蕴含的数学美 一、 选题的目的、意义(含国内外相同领域、同类课题的研究现状分析): (一)、选题的目的 (二)、选题的意义 3 二、本题的基本内容: 课题任务、重点研究内容、实现途径、方法及进度计划 4 三、推荐使用的主要参考文献: 四、 指导教师意见: 签章: 年 月 日 五、院(部)审查意见: 签章: 年 月 日还有毕业论文(设计)开题报告 姓名性别学号学院专业年级论文题目 函数极值的探究与应用 □教师推荐题目 □自拟题目 题目来源题目类别指导教师选题的目的、意义(理论意义、现实意义): 选题目的:为进一步研究有关函数极值在不同的情况下的求值问题,特别是当函数是一元、二元或者多元时的极值求解。为学习函数极值问题提供一个比较全面的介绍,从而给学者在函数极值的求解提供充足的知识。理论意义:整合函数极值的有关求解问题,有助于函数极值的更进一步研究。现实意义:为初学函数极值问题提供有关的资料,也为考研及掌握函数极值提供较全面的知识准备。选题的研究现状(理论渊源及演化、国外相关研究综述、国内相关研究综述):函数极值是有关函数的一个重要的研究课题,它对于掌握函数有着重要的作用。目前在有关的研究中都有关于函数极值的讨论,并在不少的学报及学术性论文中都有关于函数极值问题的有关见解,同时这些学者都研究的比较透彻、全面。论文(设计)主要内容(提纲):本文重点介绍了有关函数极值的求解问题及其运用。比较系统的介绍当函数是一元、二元及多元时函数极值的不同求解方法,及有关函数极值的定理及证明。 在介绍各元函数求解方法时给出了相应的函数极值求解的例题,有助于理解求函数极值的有关定理,并对函数极值求解的掌握。拟研究的主要问题、重点和难点: 研究的主要问题:不同元函数的极值求解的相关定理及其证明。重难点是这些定理的证明及应用问题。研究目标:给出有关不同元函数的极值的求解定理。 研究方法、技术路线、实验方案、可行性分析:研究方法:分析和综合以及理论联系实际的方法; 技术路线:理论研究; 实验方案:参照书本的相关知识,及相关文章; 可行性分析:综合各种函数极值的求解问题,从而得出自己的研究。 研究的特色与创新之处:综合不同元的函数,给出不同元的函数极值的相关定理与证明,总结出比较系统的有关函数极值的求解问题。进度安排及预期结果: 第七学期第十五周之前:开题报告; 2010年寒假期间:搜集、整理资料,构思、细化研究路线; 第八学期第一至六周:撰写论文,完成“研究路线”中的前四个阶段; 第八学期第七、八周:撰写论文,给出简化阶梯形矩阵在向量空间中的若干重要应用; 第八学期第九周:按照琼州学院教务处制定的《毕业论文撰写规范》排印论文; 第八学期第十周:做好答辩前的准备工作。参考文献: [1] 华东师范大学数学系编.数学分析(第三版)(上)[M].北京:高等教育出版社. [2] 方保镕等.矩阵论[M].北京:清华大学出版社.2004(11). [3]吉艳霞.求函数极值问题的方法探究[J].运城学院学报.2006, [4] 李关民,王娜.函数极值高阶导数判别法的简单证明[J].沈阳工程学报.2009. [5] 李文宇.求多元函数极值的一种新方法[J].鸡西大学学报.2006. 指导教师意见:指导教师签名:年 月 日 答辩小组意见:组长签名:年 月 日 备注:1、题目来源栏应填:教师科研、社会实践、实验教学、教育教学等;2、题目类别栏应填:应用研究、理论研究、艺术设计、程序软件开发等。

所以你写完了吗?能不能给我参考参考

数学与应用数学幂函数论文,行咯,多少字的,姐给.

建议你去论文网上搜索下..里面很全的.什么都有..

指数函数论文开题报告

科学计数法可以表示如下:×10exp(5),也可直接写为×10exp5 如有疑问请追问,解决问题还望采纳

首先,为了简化繁重的四则运算,发明了对数,然后就发明了对数函数,然后取反函数发明了指数函数.

1.函数概念的产生与发展 (1)函数概念的起源 函数概念的萌芽,可以追溯到古代对图形轨迹的研究,随着社会的发展,人们开始逐渐发现,在所有已经建立起来的数的运算中,某些量之间存在着一种规律:一个或几个量的变化,会引起另一个量的变化,这种从数学本身的运算中反映出来的量与量之间的相互依赖关系,就是函数概念的萌芽。在代数学的方程理论中,对不定方程的求解,使得人们对函数概念逐步由模糊趋向清晰。 (2)函数概念的产生 恩格斯指出:“数学中的转折点是笛卡儿的变数,有了变数,运动进入了数学;有了变数,辩证法进入了数学” 。笛卡儿在1637年出版的《几何学》中,第一次涉及到变量,他称为“未知和未定的量”,同时也引入了函数的思想。英国数学家格雷果里在1667年给出的函数的定义,被认为是函数解析定义的开始。他在“论圆和双曲线的求积”中指出:从一些其他量经过一系列代数运算或任何其他可以想象的运算而得到的一个量。这里的运算指的是五种代数运算以及求极限运算,但这一定义未能引起人们的重视。 一般公认最早给出函数定义的是德国数学家莱布尼兹,他在1673年的一篇手稿中,把任何一个随着曲线上的点变动而变动的几何量,如切线、法线、点的纵坐标都称为函数;并且强调这条曲线是由一个方程式给出的。莱布尼兹又在1692年的论文中,称 幂的 、 、 等为 的幂数,把幂与函数看作同义语,以后又用“函数”表示依赖于一个变量的量。 (3)函数概念的扩张 函数概念被提出后,由于微积分学的发展,函数概念也不断进行扩张,日趋深化。致使函数概念日趋精确化、科学化。函数概念在发展过程中,大致经过了以下几个阶段的扩张。 第一次扩张主要是解析扩张,提出了“解析的函数概念”。瑞士数学家约翰.伯努利于1698年给出了函数新的定义:由变量 和常量用任何方式构成的量都可以叫做 的函数。这里的“任何方式”包括了代数式子和超越式子。1748年欧拉在《无穷小分析引论》中给出的函数定义是:“变量的函数是一个解析表达式,它是由这个变量和一些常量以任何方式组成的”。1734年欧拉还曾引入了函数符号 ,并区分了显函数和隐函数、单值函数和多值函数、一元函数和多元函数等。在十八世纪占主要地位的观点是,把函数理解为一个解析表达式(有限或无限的)。 函数概念的第二次扩张是从几何方而的扩张,提出了“几何的函数概念”。十八世纪中期的一些数学家发展了莱布尼兹将函数看作几何量的观点,而把曲线称为函数(因为解析表达式在几何上表示为曲线)。达朗贝尔在1746年研究弦振动问题时,提出了用单独的解析表达式给出的曲线是函数,后来欧拉发现有些曲线不一定是由单个解析式给出的,因此提出了一个新的定义,函数是:“ 平面上随手画出来的曲线所表示的 与 的关系”。即把函数定义为由单个解析式表达出的连续函数,也包括由若干个解析式表达出的不连续函数(不连续函数的名称是由欧拉提出的)。 函数概念的第三次扩张,朴素地反映了函数中的辩证因素,体现了“自变”到“因变”的生动过程。形成了“科学函数定义的雏型”。1775年,欧拉在《微分学》一书中,给出了函数的另一定义:“如果某些变量,以这样一种方式依赖于另一些变量,即当后者变化时,前者也随之变化,则称前面的变量为后面变量的函数”。值得指出的是,这里的“依赖”、“随之变化”等等的含义仍不十分确切。这个定义限制了概念的外延,它只能算函数概念的科学雏型。在这次函数概念的扩张中,十九世纪最杰出的法国数学家柯西在1821年所著的《解析教程》中,给出了如下函数定义:“在某些变量间存在着一定的关系,当一经给定其中某一变量的值,其他变量的值也随之确定,则将最初的变量称为自变量,其他各个变量称为函数”。这个定义把函数概念与曲线、连续、解析式等纠缠不清的关系给予了澄清,也避免了数学意义欠严格的“变化”一词。函数是用一个式子或多个式子表示,甚至是否通过式子表示都无关要紧。 函数概念的第四次扩张,可称为“科学函数定义”进入精确化阶段。德国数学家狄利克雷于1837年给出了函数定义:“若对x(a≤x≤b)的每一个值,y总有完全确定的值与之对应,不管建立起这种对应的法则的方式如何,都称y是x的函数”。这一定义彻底地抛弃了前面一些定义中解析式的束缚,强调和突出函数概念的本质,即对应思想,使之具有更加丰富的内涵。因而,此定义才真正可以称得上是函数的科学定义,为理论研究和实际应用提供了方便。狄利克雷还给出了著名的函数(人们称为狄利克雷函数),这个函数是难以用简单的包含自变量x的解析式表达的,但按照上述定义的确是一个函数。为使函数概念适用范围更加广泛,人们对函数定义作了如下补充:“函数y=f(x)的自变量,可以不必取[a,b]中的一切值,而可以仅取其任一部分”,换句话说就是x的取值可以是任意数集,这个集合中可以有有限个数、也可以有无限多个数,可以是连续的、也可以是离散的。这样就使函数成了一个非常广泛的概念。但是,自变量及函数仍然仅限于数的范围,而且也没有意识到“函数”应当指对应法则本身。 函数概念的第五次扩张,提出了“近代函数定义”。出现了美国数学家维布伦的函数定义,这个定义是建立在重新定义变量、变域和常量的基础上的。所谓变量,是代表某集合中任意一个“元素”的记号,由变量所表示的任一元素,称为该变量的值。变量x代表的“元素”的集合,为该变量的变域,而常量是上述集合中只包含一个“元素”情况下的特殊变量。这样的变量与常量的定义,比原来的定义更趋一般化了,而且克服了以往变量定义的缺陷,变量“变动”改进为变量在变域(集合)中代表一个个元素。利用这一变量的定义,维布伦给出了近代函数定义:“设集合X、Y,如果X中每一个元素x都有Y中唯一确定的元素y与之对应,那么我们就把此对应叫做从集合X到集合Y的映射,记作f:X Y,y=f(x)”。映射的特殊情况,从数集到数集的映射就是前面狄利克雷的函数定义;从“数集”到“集”仅一字之差,但含意却大不相同。从而使函数概念摆脱了数的束缚,使得函数概念能广泛地应用于数学的各个分支及其它学科中。 函数概念的第六次扩张,提出了“现代函数定义”。19世纪康托尔创建了集合论,函数概念进入了集合论的范畴,使函数概念纯粹地使用集合论语言进行定义。在这种情形下,函数、映射又归结为一种更为广泛的概念——关系。“设集合X、Y,定义X与Y的积集X Y如下:X Y={(x,y)|x X,y Y}。积集X Y中的一个子集R称为X与Y的一个关系,若(x,y) R,则称x与y有关系R,记为xR(y);若(x,y) R,则称x与y无关系R。设 是x与y的关系,即 X Y,如果(x,y)、(x,z) ,必有y=z,那么称 为X到Y的映射或函数”。这就是现代的函数定义,它在形式上回避了“对应”术语,使用的全部是集合论的语言,一扫原来定义中关于“对应”的含义存在着的模糊性,而使函数念更为清晰、正确,应用范围更加广泛了。

相关百科

热门百科

首页
发表服务