1966年春,陈景润向世界宣告,他得出了关于哥德巴赫猜想的最好的结果(1+2),即任何一个充分大的偶数,都可以表示成为两个数之和,其中一个是素数,另一个为不超过两个素数的乘积.1966年,第17期《科学通报》上发表了陈景润的论文. (原文200多页,不乏冗杂之处.) 1972年,陈景润改进了古老的筛法,完整优美地证明了哥德巴赫猜想中的(1+2),改进了1966年的论文. 1973年,《中国科学》杂志正式发表了陈景润的论文《大偶数表为一个素数及一个不超过两个素数的乘积之和》.该文和陈景润1966年6月发表在《科学通报》的论文题目是一样的,但内容焕然一新,文章简洁、清晰. 该论文的排版也颇费周折.由于论文中数学公式极多,符号极繁,且很多是多层嵌套,拼排十分困难.科学院印刷厂派资深排版师傅欧光弟操作,整整排了一星期. 所以只贴陈景润先生在论文之开始: 【命P_x(1,2)为适合下列条件的素数p的个数: x-p=p_1或x-p=(p_2)*(p_3) 其中p_1, p_2 , p_3都是素数. 用x表一充分大的偶数. 命Cx={∏p|x,p 2}(p-1)/(p-2){∏p 2}(1-1/(p-1)^2 ) 对于任意给定的偶数h及充分大的x,用xh(1,2)表示满足下面条件的素数p的个数: p≤x,p+h=p_1或h+p=(p_2)*(p_3), 其中p_1,p_2,p_3都是素数.