首页

职称论文知识库

首页 职称论文知识库 问题

天体物理学家发表论文

发布时间:

天体物理学家发表论文

周又元院士主要从事类星体和活动星系核的研究,同时涉及宇宙学和宇宙大尺度结构等的研究。他是我国最早进行这类研究的学者之一,并创建了相应的研究团组。

天体物理学的奠基人是牛顿。艾萨克·牛顿(1643年1月4日—1727年3月31日)爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持,并推动了科学革命。在力学上,牛顿阐明了动量和角动量守恒的原理,提出牛顿运动定律[1] 。在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。在经济学上,牛顿提出金本位制度。天体物理学分为:太阳物理学、太阳系物理学、恒星物理学、恒星天文学、行星物理学、星系天文学、宇宙学、宇宙化学、天体演化学等分支学科。另外,射电天文学、空间天文学、高能天体物理学也是它的分支。天体物理学是研究宇宙的物理学,这包括星体的物理性质(光度,密度,温度,化学成分等等)和星体与星体彼此之间的相互作用。应用物理理论与方法,天体物理学探讨恒星结构、恒星演化、太阳系的起源和许多跟宇宙学相关的问题。由于天体物理学是一门很广泛的学问,天文物理学家通常应用很多不同的学术领域,包括力学、电磁学、统计力学、量子力学、相对论、粒子物理学等等。由于近代跨学科的发展,与化学、生物、历史、计算机、工程、古生物学、考古学、气象学等学科的混合,天体物理学大小分支大约三百到五百门主要专业分支,成为物理学当中最前沿的庞大领导学科,是引领近代科学及科技重大发展的前导科学,同时也是历史最悠久的古老传统科学。天体物理实验数据大多数是依赖观测电磁辐射获得。比较冷的星体,像星际物质或星际云会发射无线电波。大爆炸后,经过红移,遗留下来的微波,称为宇宙微波背景辐射。研究这些微波需要非常大的无线电望远镜。太空探索大大地扩展了天文学的疆界。由于地球大气层的干扰,红外线、紫外线、伽马射线和X射线天文学必须使用人造卫星在地球大气层外做观测实验。光学天文学通常使用加装电荷耦合元件和光谱仪的望远镜来做观测。由于大气层会干涉观测数据的品质,还必须配备调适光学系统,或使用太空望远镜,才能得到最优良的影像。在这频域里,恒星的可见度非常高。借着观测化学频谱,可以分析恒星、星系和星云的化学成份。理论天体物理学家的工具包括分析模型和计算机模拟。天文过程的分析模型时常能使学者更深刻地理解内中奥妙;计算机模拟可以显现出一些非常复杂的现象或效应。大爆炸模型的两个理论栋梁是广义相对论和宇宙学原理。由于太初核合成理论的成功和宇宙微波背景辐射实验证实,科学家确定大爆炸模型是正确无误。学者又创立了ΛCDM模型来解释宇宙的演化,这模型涵盖了宇宙膨胀(cosmic inflation)、暗能量、暗物质等等概念。理论天体物理学家及实测天体物理学家分别扮演这门学科当中的两大主力研究者,两者专业分工。理论天体物理学家通常扮演大胆假设的研究者,理论不断推陈出新,对于数据的验证关心程度较低,假设程度太高时,经常会演变成伪科学,一般都是天体物理学研究者当中的激进人士。实测天体物理学家通常本身精通理论天体物理,在相当程度上来说也有能力自行发展理论,扮演小心求证的研究者,通常是物理实证主义的奉行者,只相信观测数据,经常对理论天体物理学所提出的假说进行证伪或证实的活动,一般都是天体物理学研究者当中的保守人士。银河系有一、二千亿颗恒星,其物理状态千差万别。球状体、红外星、天体微波激射源、赫比格一阿罗天体,可能都是从星际云到恒星之间的过渡天体。金牛座T型变星光变不规则,没有固定的周期;新星爆发时抛出大量物质,光度急骤增加几万到几百万倍;有的红巨星的半径比太阳半径大1000倍以上;白矮星的密度为每立方厘米一百公斤到十吨,中子星密度更高达每立方厘米一亿吨到一千亿吨。各种各样的恒星,为研究恒星的形成和演化规律提供了样品。另外,天体上特殊的物理条件,在地球上往往并不 具备,利用天体现象探索物理规律,是天体物理学的重要职能。通过各种观测手段,人们的视野扩展到150亿光年的宇宙“深处“。这就是“观测到的宇宙”,或称为“我们的宇宙”,也就是总星系。研究表明,宇宙物质由化学元素周期表中近百种化学元素和289种同位素组成。在不同宇宙物质中发现了地球上不存在的矿物和分子。用物理学的技术和方法分析来自天体的电磁辐射,可得到天体的各种物理参数。根据这些参数运用物理理论来阐明发生在天体上的物理过程,及其演变是实测天体物理学和理论天体物理学的任务。理论物理学中的辐射、原子核、引力、等离子体、固体和基本粒子等理论,为研究类星体、宇宙线、黑洞脉冲星、星际尘埃、超新星爆发奠定了基础。

从公元前129年古希腊天文学家喜帕恰斯目测恒星光度起,中间经过1609年伽利 天体物理学略使用光学望远镜观测天体,绘制月面图,1655~1656年惠更斯发现土星光环和猎户座星云,后来还有哈雷发现恒星自行,到十八世纪老赫歇耳开创恒星天文学,这是天体物理学的孕育时期。十九世纪中叶,三种物理方法——分光学、光度学和照相术广泛应用于天体的观测研究以后,对天体的结构、化学组成、物理状态的研究形成了完整的科学体系,天体物理学开始成为天文学的一个独立的分支学科。天体物理学的发展,促使天文观测和研究不断出现新成果和新发现。1859年,基尔霍夫对太阳光谱的吸收线(即夫琅和费谱线)作出科学解释。他认为吸收线是光球所发出的连续光谱被太阳大气吸收而成的,这一发现推动了天文学家用分光镜研究恒星;1864年,哈根斯用高色散度的摄谱仪观测恒星,证认出某些元素的谱线,以后根据多普勒效应又测定了一些恒星的视向速度;1885年,皮克林首先使用物端棱镜拍摄光谱,进行光谱分类。通过对行星状星云和弥漫星云的研究,在仙女座星云中发现新星。这些发现使天体物理学不断向广度和深度发展。1905年,赫茨普龙在观测基础上将部分恒星分为巨星和矮星;1913年,罗素按绝对星等与光谱型绘制恒星分布图,即赫罗图;1916年,亚当斯和科尔许特发现相同光谱型的巨星光谱和矮星光谱存在细微差别,并确立用光谱求距离的分光视差法。在天体物理理论方面,1920年,萨哈提出恒星大气电离理论,通过埃姆登、史瓦西、爱丁顿等人的研究,关于恒星内部结构的理论逐渐成熟;1938年,贝特提出了氢聚变为氨的热核反应理论,成功地解决了主序星的产能机制问题。1929年,哈勃在研究河外星系光谱时,提出了哈勃定律,这极大地推动了星系天文学的发展;1931~1932年,央斯基发现了来自银河系中心方向的宇宙无线电波;四十年代,英国军用雷达发现了太阳的无线电辐射,从此射电天文蓬勃发展起来;六十年代用射电天文手段又发现了类星体、脉冲星、星际分子、微波背景辐射。1946年美国开始用火箭在离地面30~100公里高度处拍摄紫外光谱。1957年,苏联发射人造地球卫星,为大气外层空间观测创造了条件。以后,美国、西欧、日本也相继发射用于观测天体的人造卫星。现在世界各国已发射数量可观的宇宙飞行器,其中装有各种类型的探测器,用以探测天体的紫外线、x射线、γ射线等波段的辐射。从此天文学进入全波段观测时代。这是天体物理学的发展状况 希望有所收获

天体物理学的奠基人--牛顿,哥白尼,开普勒 现代天体物理学的开创者和奠基人--爱因斯坦 射电天文学的奠基人--美国无线电工程师央斯基 星系天文学的奠基人--美国天文学家埃德温·哈勃 恒星天文学的奠基人--威廉·赫歇耳,爱丁顿

天体物理学论文发表

外面有那么多的星系、恒星和行星,就真的没有一个外星人?为什么我们还没有发现他们存在的迹象?这是费米悖论的核心问题。在一篇新论文里,两位研究人员提出了下一个显而易见的问题:人类文明需要存活多久才能收到另一个外星文明的消息?他们的答案是 40万年。对于一个只存在了几十万年、大约在 12000 年前才发明农业的物种来说,400000 年是一段很漫长的时光。这是根据对交流地外智能文明(CETI)的一些新研究得出的。论文题为《我们银河系中可能的 CETI 的数量和这些 CETI 之间的通信概率》。作者是北京师范大学天文系的宋文杰和何高。该论文发表在《天体物理学杂志》上。“作为地球上唯一先进的智慧文明,人类最困惑的问题之一是我们是否独一无二。在过去的几十年里,有很多关于地外文明的研究。”研究其他文明总是令人困惑的,因为我们只有一个数据点:地球上的人类。尽管如此,许多研究人员仍将这个问题作为一种思想实验,使用严格的科学指导方针。例如,2020 年的一项研究得出结论,银河系中可能有 36 个 CETI。“我们一直想知道以下问题的答案。首先,银河系中存在多少 CETI?这是一个具有挑战性的问题。我们只能从一个已知的数据点(我们自己)中学习。”作者写道。这就是德雷克方程的用武之地。基于我们对银河系不断增长的了解,德雷克方程试图估计我们银河系中可能有多少 CETI。但德雷克方程有其缺陷。例如,它的一些变量的取值纯粹依赖人类的直觉,所以由它估算出的文明数量是不可靠的。但德雷克方程更像是一个思想实验,而不是实际的计算工具。我们必须从某个地方开始,而德雷克方程就是一个出发点。它也是这项新研究的起点。“大多数关于费米悖论的研究都基于德雷克方程。这种方法明显的困难之处在于,要量化生命可能出现在合适的星球上并最终发展成先进的交流文明的概率是不确定和不可预测的。”那么,如果我们甚至不知道可能有多少个 CETI,又是如何得出 400000 年的答案呢?他们的论文概述了以前为了解银河系其他文明所做的一些科学努力。例如,他们引用了 2020 年的研究,估算银河系中有 36 个 CETI。这个数字来自涉及银河系恒星形成 历史 、金属丰度分布以及恒星在其宜居带内拥有类地行星的可能性的计算。那篇论文澄清说,“[T]外星智能和交流文明的主题将完全处于假设领域,直到做出任何积极的检测”。但他们也指出,科学家们仍然可以基于逻辑假设产生有价值的模型,“这至少可以产生对此类文明发生率的合理估计”。这项研究提出了一些相同的想法。它处理两个参数。第一个涉及有多少类地行星是可供居住,以及这些行星上的生命多久演变成 CETI。第二个是主星演化的哪个阶段会诞生CETI。研究人员在计算中为这些参数中的每一个都赋予了一个变量。生命出现并演化成CETI的概率为(fc),主星演化所需的阶段为(F)。宋和高 使用这些变量的不同值进行了一系列 Monte Carlo 模拟。他们得出了两种情况:乐观的前景和悲观的前景。乐观情景使用 F = 25% 和 fc = 0.1%。因此,在 CETI 出现之前,一颗恒星的生命周期必须至少达到 25%。对于每个类地行星,CETI 出现的几率只有 0.1%。这些乐观的变量取值创造了超过 42000 个 CETI,这听起来很多,但考虑同时出现的时间窗口,则大大减少了通信机会。此外,我们还需要再生存 2000 年才能实现双向通信。这听起来几乎触手可及。但这是让宇宙看起来很友好并被其他欢迎文明居住的乐观情景。也许他们中的一些人已经在互相交谈,我们只需要加入群聊。现在是悲观的情况。在悲观情景中,F = 75%,fc = 0.001%。因此,一颗恒星要到更老的时候才能拥有 CETI,并且任何单个类地行星拥有 CETI 的概率下降到微乎其微。这种悲观的计算在银河系中只产生了大约 111 个 CETI。更糟糕的是,我们还需要再活 40 万年才能与他们进行双向交流。 (从这角度来看,星际迷航开始于 22 世纪中叶。)这就是大过滤器的用武之地。大过滤器是阻碍物质变成生命然后发展成为先进文明的东西。作者提出了这个话题:“然而,有人提出,由于许多潜在的破坏,例如人口问题、核毁灭、突然的气候变化、流氓彗星、生态变化等,文明的寿命很可能是存在自我限制的。如果世界末日论点是正确,对于某些悲观的情况,人类在灭绝之前可能不会收到来自其他 CETI 的任何信号。”科学家们在他们的论文中写道:“fc 和 F 的值充满了许多未知数。”我们无法确定地知道这些东西,但我们不得不去 探索 它。这是人性的一部分。他们写道:“目前尚不确定有多少比例的类地行星可以孕育生命,而生命演化为 CETI 并能够向太空发送可探测信号的过程是高度不可预测的。”人类会遇到另一个文明吗?这是我们最引人注目的问题之一,几乎可以肯定,现在看到此文的人永远不会有答案。或者,很可能,我们永远不会有答案,而大过滤器会阻止我们找到答案。但是,如果人类需要一个目标,一个可以坚持的目标可以保持希望,那么与另一个 CETI 交流的梦想可能会实现。

天体物理学论文的发表

刊号:CN31-1385/N 出版:上海科学技术出版社《科学》编辑部 地址:上海钦州南路71号 邮编:200235 《空间科学学报》空间科学是当代高科技发展的前沿领域之一,《空间科学学报》是我国空间研究界有影响综合性刊物。所刊载的内容由以空间本身为研究对象的研究成果和与空间环境有关的基础研究,应用研究及技术研究成果构成,报道的主要学科分支包括空间天文学、空间物理学、空间化学与地质学、空间生命科学、微动科学、空间材料科学和空间地球科学等。主要栏目有:理论研究、探测与实验、综述、研究简报,学报动态等等。 期刊分类: 双月刊 创刊年份: 1981 国内刊号: CN 11-1783/V 国际刊号: ISSN 0254-6124 邮发代号: 2-562 定价: 20元/期 主管单位: 中国科学院 主办单位: 中国科学院空间科学与应用研究中心 中国空间科学学会 编辑单位: 《空间科学学报》编辑部 天体物理学报(英文版)Chinese Journal of Astronomy and Astrophysics简 介: 创刊时为中文期刊,2001年改为英文刊。主要刊登天文学和天体物理学领域的原创性研究论文。主要栏目和报道范围:“研究快报”用来报道天文观测的新结果及新理论;“特约综述”聘请国际知名天文学家就某些热点问题进行专题评述。 期刊分类: 双月刊 创刊年份: 1981 国内刊号: CN 11-4631/P 国际刊号: ISSN 1009-9271 邮发代号: 2-187 定价: 20元/期 主管单位: 中国科学院 主办单位: 中国科学院北京天文台 编辑单位: CJAA编辑部

宇宙发展都是从黑暗走向光明。恒星中的文明以是高文明,地球文明从原始文明到初级现在是初级文明到中级文明的,过渡期,人类走向了真正的和平,才会进入中级阶段,地球变成了恒星,就进入了高级阶段

2018年,引力波天文台LIGO宣布,他们探测到了有史以来观测到的最远、质量最大的时空涟漪源:由一对黑洞在深空碰撞引发的波。直到2015年,我们才能够观察到这些无形的天体,它们只能通过引力来探测。我们寻找这些神秘物体的 历史 可以追溯到18世纪,但关键阶段发生在人类 历史 上一个相当黑暗的时期—第二次世界大战。18世纪,自然哲学家约翰·米歇尔(John Michell)和后来的皮埃尔-西蒙·拉普拉斯(Pierre-Simon Laplace)首先提出了一种可以捕获光,从而使宇宙其他部分看不见的物体的概念。他们利用牛顿引力定律来计算光粒子从物体中逃逸的速度,预测恒星的存在,这些恒星的密度大到光都无法逃逸。米歇尔称它们为“暗星”。但是在1801年发现光以波的形式存在之后,人们就不清楚光会如何受到牛顿引力场的影响,所以暗星的想法就被抛弃了。人们花了大约115年的时间才理解波形式的光在引力场的影响下是如何运动的,阿尔伯特·爱因斯坦1915年的广义相对论,以及卡尔·史瓦西一年后对这个问题的解答。史瓦西也预言了一个物体的临界周长的存在,超过这个临界周长光将无法穿过:史瓦西半径。这个想法和米歇尔的相似,但现在这个关键的周长被理解为一个不可逾越的障碍。直到1933年,乔治•勒梅特才证明,这种不可穿透性只是一个遥远的观察者会产生的幻觉。利用现在著名的爱丽丝和鲍勃的插图,物理学家假设,如果当爱丽丝跳进黑洞时鲍勃站着不动,鲍勃会看到爱丽丝的图像在到达史瓦西半径之前变慢直到冻结。Lemaitre还指出,在现实中,爱丽丝会跨越这个障碍:鲍勃和爱丽丝只是体验到事件的不同而已。尽管有这个理论,当时还没有已知的这么大的物体,甚至没有接近黑洞的物体。所以没有人相信像米歇尔假设的那样存在类似于暗星的东西。事实上,没有人敢认真对待这种可能性。直到第二次世界大战。1939年9月1日,纳粹德国军队入侵波兰,引发了一场永远改变了世界 历史 的战争。值得注意的是,就在同一天,第一篇关于黑洞的学术论文发表了。两位美国物理学家J罗伯特奥本海默(J Robert Oppenheimer)和哈特兰斯奈德(Hartland Snyder)撰写了一篇关于引力持续收缩的文章,现在广受好评。这篇文章是黑洞 历史 上的一个关键点。当你考虑到第二次世界大战的其他部分在黑洞理论发展中的中心地位时,这个时间似乎特别奇怪。这是奥本海默的第三篇也是最后一篇天体物理学论文。在这篇文章中,他和斯奈德预测了恒星在自身引力场的影响下会持续收缩,从而形成一个具有强大吸引力的天体,甚至连光都无法从它身上逃脱。这是现代黑洞概念的第一个版本,黑洞是一种质量如此之大的天体,只能通过其引力来探测。在1939年,这仍然是一个难以置信的奇怪想法。20年后,这个概念才发展到足以让物理学家开始接受奥本海默所描述的持续收缩的结果。第二次世界大战本身在它的发展中发挥了关键作用,因为美国政府投资研究原子弹。当然,奥本海默不仅仅是黑洞 历史 上的一个重要人物。后来,他成为曼哈顿计划(Manhattan Project)的负责人,这个研究中心后来发展出了原子武器。政治家们明白投资科学以带来军事优势的重要性。因此,在战争相关的革命性物理研究、核物理和新技术的开发等方面,得到了广泛的投资。各种各样的物理学家都致力于这类研究,其直接结果是,宇宙学和天体物理学领域几乎被遗忘,包括奥本海默的论文。尽管大规模天文学研究失去了10年的时间,物理学作为一个整体却因为战争而繁荣起来!事实上,军事物理学最终扩大了天文学,美国把战争作为现代物理学的中心。博士的数量直线上升,建立了博士后教育的新传统。战争结束时,对宇宙的研究重新开始。一度被低估的广义相对论出现了复兴。战争改变了我们研究物理学的方式:最终,这使得宇宙学和广义相对论领域得到了应有的承认。这是接受和理解黑洞的基础。普林斯顿大学后来成为新一代相对论主义者的中心。正是在那里,核物理学家约翰·A·惠勒(John A Wheeler)第一次接触了广义相对论,并重新分析了奥本海默的工作。惠勒后来推广了“黑洞”这个名字。起初,他持怀疑态度,受到密切相对论者的影响,计算模拟和无线电技术在战争期间取得的新进展,使他成为奥本海默在1939年9月1日战争爆发那天所作预言的最狂热追随者。从那时起,新的性质和类型的黑洞被理论化和发现,但这一切直到2015年才达到顶峰。对黑洞双星系统中产生的引力波的测量是黑洞存在的第一个具体证明。

天体物理论文发表

这是天文学的又一创举。 近日,天文学家首次实时拍摄到一颗红超巨星生命结束时的图像。他们目睹了这颗恒星在最后爆炸成为超新星之前的垂死挣扎。观察结果与之前关于红巨星爆炸前行为的理论有出入。 一组天文学家通过夏威夷的两个天文台:位于毛伊岛哈雷阿卡拉的泛星(Pan-STARRS)天文台和位于夏威夷岛莫纳基亚的W. M. Keck天文台,观察了这一戏剧性的变化。他们的观测是“年轻超新星实验(YSE)”瞬态观测的一部分。他们在爆炸前的最后130天里观察了这颗名为SN 2020tlf的超新星爆炸。 介绍这一发现的论文标题是“最后时刻:发光的II型超新星2020tlf在质量损失增强之前的前体发射和表层膨胀”。这篇论文发表在《天体物理学杂志》上,主要作者是Wynn Jacobson-Galán,加州大学伯克利分校的NSF研究生研究员。 Jacobson-Galán在一份新闻稿中说:“这是我们在理解大质量恒星死亡前会做什么方面的一个突破。”“在一颗红超巨星中直接探测到超新星爆发前的活动,以前从来没有在一颗普通的II型超新星中观测到过。我们第一次看到了一颗红超巨星爆炸!” 这一发现可以追溯到2020年的夏天。那时,这颗原恒星的光度急剧上升。Pan-STARRS探测到这一变亮现象,当秋天到来时,这颗恒星爆炸成了现在的SN 2020tlf。这颗超新星属于II型超新星,在II型超新星中,一颗大质量恒星经历了快速坍缩,然后爆炸。 研究小组使用Keck天文台的低分辨率成像光谱仪(LRIS)捕捉到这颗超新星的第一个光谱。LRIS的数据显示,当恒星爆炸时,它周围出现了环绕恒星的物质。这些物质很可能是泛星观测系统在恒星爆炸前的夏天所看到的。 “Keck在提供大质量恒星转变为超新星爆炸的直接证据方面发挥了重要作用,”资深作者Raffaella Margutti说,他是加州大学伯克利分校天文学副教授。“这就像看着一颗滴答作响的定时炸弹。我们从未在一颗垂死的红巨星中确认过如此剧烈的活动,我们看到它产生如此明亮的发射,然后坍塌和燃烧,直到现在。”爆炸后,研究小组转向其他Keck仪器继续观测。来自深度成像和多目标光谱仪(DEIMOS)和近红外梯队光谱仪(NIRES)的数据显示,这颗前恒星的质量是太阳的10倍。这颗恒星位于大约1.2亿光年外的NGC 5731星系中。 该团队的观察结果对II型超新星及其前恒星有了一些新的认识。在这些观测之前,没有人看到过红超巨星在爆炸前呈现出这样的亮度峰值和如此强大的喷发。通常认为他们在最后的日子里应该相对比较平静。 红超巨星在核心坍缩之前喷射出物质。但这种物质喷射的时间尺度比SN 2020tlf要长得多。这颗超新星在坍缩前的130天里会发射环恒星物质(CSM),这让它有点令人困惑。这颗恒星爆炸前的明亮闪光在某种程度上与喷射出的环恒星物质有关,但研究团队并不确定它们是如何相互作用的。 恒星内部导致坍缩的显著变异性令人费解。这颗恒星在爆炸前强烈的光爆表明,在它的内部结构中发生了未知的事情。无论这些变化是什么,它们都会在恒星坍缩和爆炸之前导致巨大的气体喷射。 在他们的论文中,作者讨论了可能导致气体喷射的原因。一种可能是波驱动的质量损失,这发生在恒星演化的晚期阶段。他们写道:“在SN能够将能量注入到外层恒星层之前的最后几年里,氧或氖的燃烧激发了引力波,导致了表层膨胀和爆发的质量损失。”但目前的波驱动模型与前恒星的气体喷射并不相符。它们与前恒星最后130天的半径一致,但与亮度爆发不一致。 在论文的结束语中,作者做了简要的总结:“鉴于从星云光谱中得出的前恒星质量范围,质量损失和前恒星辐射的增强,很可能是恒星内部深层不稳定的结果,最有可能与最后的核燃烧阶段有关。无论是在氖/氧燃烧阶段产生的引力波,还是在前恒星最后130天的硅闪光中产生的能量沉积,都可能喷射出恒星物质,然后在爆炸前通量和早期SN光谱中能被检测到。” “我对这一发现所解开的所有新的‘未知’感到非常兴奋,”Jacobson-Galán说。“探测更多像SN 2020tlf这样的事件将极大地影响我们如何定义恒星演化的最后几个月,将观测人员和理论人员联系起来,寻求解决大质量恒星如何度过它们生命的最后时刻的谜题。”

加利福尼亚州新兹威基瞬态设施的研究人员分析了 SpaceX的 星链卫星 星座 对地面天文观测的影响程度。结果好坏参半。 这篇新论文发表在《天体物理学杂志快报》上,由前加州理工学院博士后学者 Przemek Mróz 领导,提供了一些好消息和一些坏消息。好消息是,星链目前并未给使用新兹维基瞬态装置(ZTF) 的科学家带来问题,该设施位于圣地亚哥附近的加州理工学院帕洛玛天文台。ZTF每两天 使用光学和红外波长波段扫描一次整个夜空,以检测天体的突然变化,例如以前看不见的小行星和彗星、突然变暗的恒星或碰撞的中子星。 但这并不意味着从低地球轨道提供宽带互联网的 星链卫星没有产生影响。这项新完成的成果研究了2019年11月至2021年9月的 历史 数据,发现直接产生于 星链 的 5,301 颗卫星条纹。“这毫不奇怪,随着 SpaceX 部署更多卫星,受影响的图像数量随着时间的推移而增加,但到目前为止,ZTF 的观测业务尚未受到卫星条纹的严重影响,尽管在分析图像观察到卫星条纹数量有所增加的时期,”天文学家在他们的研究中写道。 坏消息与未来形势有关,庞大的卫星 星座 将如何影响未来几年的天文观测,尤其是在黄昏时分进行的观测。事实上,受 星链影响最大的图像是在黎明或黄昏时拍摄的。在 2019 年,卫星条纹在所有暮光图像中不到 0.5%,但到 2019 年 8 月,这一比例已上升至 18%。星链卫星在大约 550 公里的低轨道运行,导致它们在日落和日出时反射更多的阳光,这给黄昏时观测的天文台带来了影响。 天文学家在黎明和黄昏时进行观测,以寻找从我们的角度来看可能出现在太阳旁边的近地小行星。两年前,ZTF 天文学家使用这项技术探测到2020 AV2——第一颗完全在金星轨道内的小行星。新论文中表达的一个担忧是,当 星链达到 10,000 颗卫星时(SpaceX 预计到 2027 年将实现这一目标)在帕洛玛山天文台拍摄的所有 ZTF 图像都将包含至少一个卫星条纹。1月18日发射猎鹰 9 号火箭之后,星链 星座 将由2,000 多颗卫星组成。 波兰华沙大学的 Mróz 表示,他“预计 星链卫星不会影响非暮光图像,但如果其他公司的卫星 星座 进入更高的轨道,这可能会导致问题用于非暮光观察。” 例如,由英国一网卫星 星座 将在1,200 公里的运行高度运行。 研究人员还估计了由于单个卫星条纹而丢失的像素比例,发现它并不大。” 不大是指单个 ZTF 图像中所有像素的 0.1%。也就是说,“仅计算受卫星条纹影响的像素并不能捕捉到问题的全部,例如识别卫星条纹并将其掩盖所需的资源,或者错过第一次检测到物体的机会,”科学家写道. 事实上,正如加州理工学院的天文学家和该研究的合作者托马斯·普林斯在文章中指出的那样,存在很小的机会,即“我们会错过隐藏在卫星条纹后面的小行星或其他事件,但与天气的影响相比,例如多云的天空,这些对 ZTF 的影响相当小。” 科学家们还研究了 SpaceX 为降低星链卫星的亮度而采取的措施。这些措施于 2020 年实施,包括防止阳光过多照射卫星表面的遮阳板。这些措施已将 星链卫星的亮度降低了 4.6 倍,现在的亮度为 6.8 等(最亮的恒星以 1 等亮度发光,而人眼看不到更暗的物体6.0)。 目前的研究仅考虑了 星链对新兹维基瞬态装置的影响。每个天文台都会受到星链和其他卫星的不同影响,包括即将到来的薇拉.鲁宾天文台,预计它将受到庞大卫星 星座 的严重影响。由于无线电干扰、幽灵般的伪影的出现以及其他潜在问题,预计其他天文台也会遇到问题。

外面有那么多的星系、恒星和行星,就真的没有一个外星人?为什么我们还没有发现他们存在的迹象?这是费米悖论的核心问题。在一篇新论文里,两位研究人员提出了下一个显而易见的问题:人类文明需要存活多久才能收到另一个外星文明的消息?他们的答案是 40万年。对于一个只存在了几十万年、大约在 12000 年前才发明农业的物种来说,400000 年是一段很漫长的时光。这是根据对交流地外智能文明(CETI)的一些新研究得出的。论文题为《我们银河系中可能的 CETI 的数量和这些 CETI 之间的通信概率》。作者是北京师范大学天文系的宋文杰和何高。该论文发表在《天体物理学杂志》上。“作为地球上唯一先进的智慧文明,人类最困惑的问题之一是我们是否独一无二。在过去的几十年里,有很多关于地外文明的研究。”研究其他文明总是令人困惑的,因为我们只有一个数据点:地球上的人类。尽管如此,许多研究人员仍将这个问题作为一种思想实验,使用严格的科学指导方针。例如,2020 年的一项研究得出结论,银河系中可能有 36 个 CETI。“我们一直想知道以下问题的答案。首先,银河系中存在多少 CETI?这是一个具有挑战性的问题。我们只能从一个已知的数据点(我们自己)中学习。”作者写道。这就是德雷克方程的用武之地。基于我们对银河系不断增长的了解,德雷克方程试图估计我们银河系中可能有多少 CETI。但德雷克方程有其缺陷。例如,它的一些变量的取值纯粹依赖人类的直觉,所以由它估算出的文明数量是不可靠的。但德雷克方程更像是一个思想实验,而不是实际的计算工具。我们必须从某个地方开始,而德雷克方程就是一个出发点。它也是这项新研究的起点。“大多数关于费米悖论的研究都基于德雷克方程。这种方法明显的困难之处在于,要量化生命可能出现在合适的星球上并最终发展成先进的交流文明的概率是不确定和不可预测的。”那么,如果我们甚至不知道可能有多少个 CETI,又是如何得出 400000 年的答案呢?他们的论文概述了以前为了解银河系其他文明所做的一些科学努力。例如,他们引用了 2020 年的研究,估算银河系中有 36 个 CETI。这个数字来自涉及银河系恒星形成 历史 、金属丰度分布以及恒星在其宜居带内拥有类地行星的可能性的计算。那篇论文澄清说,“[T]外星智能和交流文明的主题将完全处于假设领域,直到做出任何积极的检测”。但他们也指出,科学家们仍然可以基于逻辑假设产生有价值的模型,“这至少可以产生对此类文明发生率的合理估计”。这项研究提出了一些相同的想法。它处理两个参数。第一个涉及有多少类地行星是可供居住,以及这些行星上的生命多久演变成 CETI。第二个是主星演化的哪个阶段会诞生CETI。研究人员在计算中为这些参数中的每一个都赋予了一个变量。生命出现并演化成CETI的概率为(fc),主星演化所需的阶段为(F)。宋和高 使用这些变量的不同值进行了一系列 Monte Carlo 模拟。他们得出了两种情况:乐观的前景和悲观的前景。乐观情景使用 F = 25% 和 fc = 0.1%。因此,在 CETI 出现之前,一颗恒星的生命周期必须至少达到 25%。对于每个类地行星,CETI 出现的几率只有 0.1%。这些乐观的变量取值创造了超过 42000 个 CETI,这听起来很多,但考虑同时出现的时间窗口,则大大减少了通信机会。此外,我们还需要再生存 2000 年才能实现双向通信。这听起来几乎触手可及。但这是让宇宙看起来很友好并被其他欢迎文明居住的乐观情景。也许他们中的一些人已经在互相交谈,我们只需要加入群聊。现在是悲观的情况。在悲观情景中,F = 75%,fc = 0.001%。因此,一颗恒星要到更老的时候才能拥有 CETI,并且任何单个类地行星拥有 CETI 的概率下降到微乎其微。这种悲观的计算在银河系中只产生了大约 111 个 CETI。更糟糕的是,我们还需要再活 40 万年才能与他们进行双向交流。 (从这角度来看,星际迷航开始于 22 世纪中叶。)这就是大过滤器的用武之地。大过滤器是阻碍物质变成生命然后发展成为先进文明的东西。作者提出了这个话题:“然而,有人提出,由于许多潜在的破坏,例如人口问题、核毁灭、突然的气候变化、流氓彗星、生态变化等,文明的寿命很可能是存在自我限制的。如果世界末日论点是正确,对于某些悲观的情况,人类在灭绝之前可能不会收到来自其他 CETI 的任何信号。”科学家们在他们的论文中写道:“fc 和 F 的值充满了许多未知数。”我们无法确定地知道这些东西,但我们不得不去 探索 它。这是人性的一部分。他们写道:“目前尚不确定有多少比例的类地行星可以孕育生命,而生命演化为 CETI 并能够向太空发送可探测信号的过程是高度不可预测的。”人类会遇到另一个文明吗?这是我们最引人注目的问题之一,几乎可以肯定,现在看到此文的人永远不会有答案。或者,很可能,我们永远不会有答案,而大过滤器会阻止我们找到答案。但是,如果人类需要一个目标,一个可以坚持的目标可以保持希望,那么与另一个 CETI 交流的梦想可能会实现。

天体物理学杂志论文发表

外面有那么多的星系、恒星和行星,就真的没有一个外星人吗?为什么我们还没有发现他们存在的迹象?

这是费米悖论的核心问题。在一篇新论文里,两位研究人员提出了下一个显而易见的问题:人类文明需要存活多久才能收到另一个外星文明的消息?

他们的答案是 40万年 。

对于一个只存在了几十万年、大约在 12000 年前才发明农业的物种来说,400000 年是一段很漫长的时光。

这是根据对交流地外智能文明(CETI)的一些新研究得出的。

论文题为《我们银河系中可能的 CETI 的数量和这些 CETI 之间的通信概率》。作者是北京师范大学天文系的宋文杰和何高。该论文发表在《天体物理学杂志》上。

“作为地球上唯一先进的智慧文明,人类最困惑的问题之一是我们是否独一无二。在过去的几十年里,有很多关于地外文明的研究。”

研究其他文明总是令人困惑的,因为我们只有一个数据点:地球上的人类。尽管如此,许多研究人员仍将这个问题作为一种思想实验,使用严格的科学指导方针。例如,2020 年的一项研究得出结论,银河系中可能有 36 个 CETI。

“我们一直想知道以下问题的答案。首先,银河系中存在多少 CETI?这是一个具有挑战性的问题。我们只能从一个已知的数据点(我们自己)中学习。”作者写道。

这就是德雷克方程的用武之地。基于我们对银河系不断增长的了解,德雷克方程试图估计我们银河系中可能有多少 CETI。

但德雷克方程式有其缺陷。例如,它的一些变量的取值纯粹依赖人类的直觉,所以由它估算出的文明数量是不可靠的。但德雷克方程更像是一个思想实验,而不是实际的计算工具。我们必须从某个地方开始,而德雷克方程就是一个出发点。

它也是这项新研究的起点。

“大多数关于费米悖论的研究都基于德雷克方程。这种方法明显的困难之处在于,要量化生命可能出现在合适的星球上并最终发展成先进的交流文明的概率是不确定和不可预测的。”

那么,如果我们甚至不知道可能有多少个 CETI,又是如何得出 400000 年的答案呢?

他们的论文概述了以前为了解银河系其他文明所做的一些科学努力。例如,他们引用了 2020 年的研究,估算银河系中有 36 个 CETI。

这个数字来自涉及银河系恒星形成 历史 、金属丰度分布以及恒星在其宜居带内拥有类地行星的可能性的计算。

那篇论文澄清说,“[T]外星智能和交流文明的主题将完全处于假设领域,直到做出任何积极的检测”。

但他们也指出,科学家们仍然可以基于逻辑假设产生有价值的模型,“这至少可以产生对此类文明发生率的合理估计”。

这项研究提出了一些相同的想法。它处理两个参数。第一个涉及有多少类地行星是可供居住,以及这些行星上的生命多久演变成 CETI。第二个是主星演化的哪个阶段会诞生CETI。

研究人员在计算中为这些参数中的每一个都赋予了一个变量。生命出现并演化成CETI的概率为(fc),主星演化所需的阶段为(F)。

宋和高 使用这些变量的不同值进行了一系列 Monte Carlo 模拟。他们得出了两种情况:乐观的前景和悲观的前景。

乐观情景使用 F = 25% 和 fc = 0.1%。因此,在 CETI 出现之前,一颗恒星的生命周期必须至少达到 25%。对于每个类地行星,CETI 出现的几率只有 0.1%。

这些乐观的变量取值创造了超过 42000 个 CETI,这听起来很多,但考虑同时出现的时间窗口,则大大减少了通信机会。此外,我们还需要再生存 2000 年才能实现双向通信。这听起来几乎触手可及。

但这是让宇宙看起来很友好并被其他欢迎文明居住的乐观情景。也许他们中的一些人已经在互相交谈,我们只需要加入群聊。

现在是悲观的情况。

在悲观情景中,F = 75%,fc = 0.001%。因此,一颗恒星要到更老的时候才能拥有 CETI,并且任何单个类地行星拥有 CETI 的概率下降到微乎其微。

这种悲观的计算在银河系中只产生了大约 111 个 CETI。更糟糕的是,我们还需要再活 40 万年才能与他们进行双向交流。 (从这角度来看,星际迷航开始于 22 世纪中叶。)

这就是大过滤器的用武之地。大过滤器是阻碍物质变成生命然后发展成为先进文明的东西。

“然而,有人提出,由于许多潜在的破

坏,例如人口问题、核毁灭、突然的气候变化、流氓彗星、生态变化等,文明的寿命很可能是存在自我限制的。如果世界末日论点是正确,对于某些悲观的情况,人类在灭绝之前可能不会收到来自其他 CETI 的任何信号。”

科学家们在他们的论文中写道:“fc 和 F 的值充满了许多未知数。”

我们无法确定地知道这些东西,但我们不得不去 探索 它。这是人性的一部分。

他们写道:“目前尚不确定有多少比例的类地行星可以孕育生命,而生命演化为 CETI 并能够向太空发送可探测信号的过程是高度不可预测的。”

人类会遇到另一个文明吗?这是我们最引人注目的问题之一,几乎可以肯定,现在看到此文的人永远不会有答案。

或者,很可能,我们永远不会有答案,而大过滤器会阻止我们找到答案。

但是,如果人类需要一个目标,一个可以坚持的目标可以保持希望,那么与另一个 CETI 交流的梦想可能会实现。

天文学中许多问题的答案都隐藏在深时间的面纱后面。其中一个问题是关于超新星在早期宇宙中所扮演的角色。早期超新星的任务是锻造出在大爆炸中没有锻造的更重的元素。这个过程是如何进行的?早期的恒星爆炸是如何发生的? 三名研究人员转向超级计算机模拟来寻找答案。 他们的研究结果发表在一篇题为“镍-56衰变加热对不稳定超新星的气体动力学”的论文中。论文的主要作者是来自台湾天文学与天体物理研究所的中央研究院的陈克俊。这篇论文发表在《天体物理学杂志》上。 这项工作是关于一种特殊类型的超新星。超新星的能量大约是花园型超新星的100倍,只有太阳质量130到250倍的恒星才会出现。 科学家们对超新星进行了大量的研究。研究人员了解它们是如何工作的,以及它们的类型。他们知道如何制造比氢和氦重的元素,并在爆炸时将这些元素送入宇宙。但是在我们的理解上有一些重要的差距,特别是在早期宇宙中。 这三位研究人员想研究超新星,因为他们认为这可能给他们提供宇宙中第一颗超新星的线索,以及早期元素是如何产生的。在早期宇宙中,恒星往往质量更大,因此可能有更多的超新星。但超新星现在极为罕见。所以他们转向超级计算机模拟。通过他们的模拟,他们模拟超新星的核心,观察爆炸开始300天后爆炸恒星的样子。 超新星的形成有两种方式:核心崩塌和成对不稳定。 在一颗核心塌陷的超新星中,一颗大质量恒星已经到了生命的尽头,燃料也快用完了。随着聚变的减少,聚变的向外压力也随之下降。由于缺乏向外的压力,恒星自身的引力能会向下推动核心。最终,引力能导致核心坍塌,恒星以超新星的形式爆炸。根据恒星的质量,它可以留下一个中子星残骸,或者一个黑洞。 不稳定超新星发生在质量约为130至250倍太阳质量的超大质量恒星中。当电子和它们的反物质对应物正电子在恒星中产生时,就会发生这种情况。这就在恒星的核心产生了不稳定性,并降低了内部辐射压力,而这种压力是支持如此巨大的恒星对抗其自身巨大引力所需要的。不稳定性引发部分坍塌, 从而引发失控的热核爆炸。最终,恒星被一场大爆炸摧毁,没有留下任何残余。该团队专注于对不稳定超新星。作出这一选择的原因之一是对不稳定超新星可能产生大量的镍-56。 镍-56是镍的放射性同位素,在我们对超新星的观测中起着重要作用。镍-56的衰变是产生超新星余辉的原因。如果没有它,超新星就只是一个明亮的闪光,没有余光。 该团队使用日本国家天文台(NAOJ)计算天体物理中心(CfCA)的超级计算机进行模拟。这是一台Cray XC50,2018年开始运行,它是世界上用于天体物理模拟的最快超级计算机。这么强大的超级计算机能否帮助我们了解早期宇宙的一些情况? 据主要作者Chen介绍,整个项目极具挑战性。在一份翻译好的新闻稿中,Chen说:"模拟规模越大,要保持较高的分辨率,整个计算就会变得非常困难,对计算能力的要求也会提高很多,更何况涉及的物理学也很复杂。" 为了应对这些,Chen说,他们最大的优势就是 "精心编写的代码和强大的程序结构"。研究人员三人组有长期模拟超新星的经验,所以他们有条件做这项工作。 这不是第一次模拟超新星。其他研究人员也很想了解它们,并做了自己的模拟。但以往的模拟都是在爆炸后30天内运行,而这次的模拟却运行了300天。其中一个关键原因是镍-56。事实证明,镍-56的作用不仅仅是制造超新星的长寿光芒。它在爆炸中起到了持续的作用。为了彻底了解超新星爆炸,研究小组对三颗不同的原生星进行了模拟。一个超新星需要一个非常巨大的原星,有时超过200个太阳质量。该超新星可以制造大量的镍-56。根据论文,它们可以合成0.1-30个太阳质量的放射性镍-56。除了创造这些光之外,镍-56还能做其他事情。作者在他们的论文中写道,所有这些镍-56 "还可能在喷出物深处驱动重要的动力效应,这些效应能够混合元素并影响这些事件的观测信号。" 研究小组想要探究 "超新星内部的气体运动和能量辐射之间的关系"。他们发现,在镍-56衰变的初始阶段,被加热的气体膨胀,并形成了具有薄壳的结构。 在解释模拟结果之一时,陈建国说:"气体外壳内的温度极高,从计算中我们了解到,应该有~30%的能量用于气体运动,那么剩下的~70%的能量就有可能成为超新星的发光体了。"。早期的模型都忽略了气体动态效应,所以超新星光度结果都被高估了。"

相关百科

热门百科

首页
发表服务