2023年2月17日。根据查询第九届国际计算与人工智能会议官方发布的公告显示,会议简称ICCAI,需要在会议开始前完成论文设计,也就是2023年2月17日。论文指反映学术研究和科学探索成果的文章,是围绕一个具体问题,把研究和探索的成果以自圆其说的方式论述出来,即提出观点,摆出材料,逻辑论证,得出结论。
【1950-1956年是人工智能的诞生年】图灵测试1950Dartmouth 会议1956(1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。)【1956-1974 年是人工智能的黄金年】第一个人工智能程序LT逻辑理论家1958(西蒙和纽维尔)LISP编程语言1958(约翰麦卡锡)用于机器翻译的语义网1960(马斯特曼和剑桥大学同事)模式识别-第一个机器学习论文发表(1963)Dendral 专家系统1965基于规则的Mycin医学诊断程序1974【1974-1980年是人工智能第一个冬天】人工智能:综合调查1973(来特希尔)项目失败,列强削减科研经费【1980-1987年是人工智能繁荣期】
历史 突飞猛进1950年阿兰·图灵出版《计算机与智能》。1956年约翰·麦卡锡在美国达特矛斯电脑大会上“创造”“人工智能 ”一词。1956年美国卡内基·梅隆大学展示世界上第一个人工智能软件的工作。1958年约翰·麦卡锡在麻省理工学院发明Lisp语言———一种A.I.语言。1964年麻省理工学院的丹尼·巴洛向世人展示,电脑能掌握足够的自然语言从而解决了开发计算机代数词汇程序的难题。1965年约瑟夫·魏岑堡建造了ELIZA———一种互动程序,它能以英语与人就任意话题展开对话。1969年斯坦福大学研制出Shakey————一种集运动、理解和解决问题能力于一身的机器人。1979年第一台电脑控制的自动行走器“斯坦福车”诞生。1983年世界第一家批量生产统一规格电脑的公司“思考机器”诞生。1985年哈罗德·科岑编写的绘图软件Aaron在A.I.大会亮相。90年代A.I.技术的发展在各个领域均展示长足发展————学习、教学、案件推理、策划、自然环境认识及方位识别、翻译,乃至游戏软件等领域都瞄准了A.I.的研发。1997年IBM(国际商用机械公司)制造的电脑“深蓝”击败了国际象棋冠军加里·卡斯帕罗夫。90年代末以A.I.技术为基础的网络信息搜索软件已是国际互联网的基本构件。2000年互动机械宠物面世。麻省理工学院推出了会做数十种面部表情的机器人Kisinel。现在 流行挡不住商业上的成功,成为实验室研究工作的催化剂。A.I.的边界正一步步向人类智慧逼进。全球的高科技实验室不约而同盯上了A.I.大脑,这其中响当当的名字包括卡内基·梅隆大学,IBM和日本的本田汽车公司。在比利时,Starlab(星实验室)正开发种能取代真猫大脑工作的人工大脑。据“人工大脑网站”报道,它将拥有约7500个人工脑神经细胞。它将能自如地操控猫咪行走,玩耍毛线球。据估计它将在2002年完成。软件在将复杂决策程序化整为零方面取得突破。像外貌识别等看似简单的人类能力实际涉及广泛、复杂的认知和判断步骤。今天的电脑软件越来越精于模仿人类最精细的思维。而计算机硬件在追赶人脑能力方面亦不遗余力。目前世界上最快的超级电脑————位于美国加利福利亚州劳伦斯·立弗摩尔国家实验室的IBM制“ASCI白色”已经是有人脑0·1%的运算能力。IBM正在研制的“蓝色牛仔”(BlueJean)的每秒运算能力估计将与人脑相当。IBM研发部主管保罗·霍恩说BlueJean将在4年后开始运行。斯坦福大学A.I.领域的首席专家埃里克·霍维兹及其许多同行相信,A.I.技术迎来突破发展的日子近在眼前,那时,A.I.将细分并派生出跨越出广泛领域的学科。未来 聪明过人?关于A.I.人们最迫切希望知道的问题是,它真能和人一般聪明吗?许多科学家相信,这只是个时间上的问题。A.I.软件设计师库尔兹维尔认为迟至2020年A.I.即可聪明过人。IBM的霍恩估计比较保守,他认为A.I.赶上人还需要40—50年时间。AT&T的斯通则说他的目标是在2050前组建一只能挑战曼联的A.I.足球队。他这不是开玩笑。在许多方面,A.I.大脑比人类更有优势。人脑的学习吸收新知识的过程非常慢。要说一口流利的英语至少得半年或两三年时间(吹牛广告中的例子除外)。而要让A.I.学会讲法语,只需为它装上一个说法语软件,数秒之间一个A.I.法语专家便诞生了。另一个更难解答的问题:A.I.是否能拥有情感。目前没有人有把握回答这个问题。于是剩下一个最可怕的问题:A.I.机器人能变得比人类更聪明,并反戈一击与人类为敌?库尔兹维尔、技术学家比尔·乔伊认为这并非不可能。霍恩在这个问题上拿不太稳。霍恩认为虽然电脑的粗略运算能力可超过人类,但它不可能具备人类所有精细的特征,因为人类对自己的大脑拥有的许多微妙能力并不了解,更无从仿模相应软件。库尔维兹的看法比较乐观,他认为人类在开发超级A.I.的同时,在对它们的引导和管理方面也将相应提高,因此将永远走在前面,掌握控制权。
工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。优点:1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。3、人工智能可以提高人类认识世界、适应世界的能力。缺点:1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。2、人工智能如果不能合理利用,可能被坏人利用在犯罪上,那么人类将会陷入恐慌。3、如果我们无法很好控制和利用人工智能,我们反而会被人工智能所控制与利用,那么人类将走向灭亡,世界也将变得慌乱。
人工智能60年的历史中,一共经历了两代的发展。第一代人工智能,有时候称它作符号主义。他们提出了基于知识和经验的推理模型,用这个模型来模拟人类的理性智能行为,像推理、规划、决策等等。根据这个原理,需要在机器里面建立知识库和推理机制,利用这两者对人类的推理和思考行为进行模拟。图1 张钹院士在2020世界人工智能大会上演讲下面举一个例子,1971年左右,美国斯坦福大学根据这个原理建造的一个专家系统,叫做MYCIN系统,主要用来诊断血液传染病和开抗菌素处方。它把传染病专家的知识放在计算机里头,并且把医生诊断的过程(如何从症状推到疾病,然后进行处方)作为推理机制,也放在计算机里头。这样,计算机就可以帮助内科医生进行辅助诊断。因为内科医生一般不是传染病专家,因此利用这样的计算机辅助治疗系统可以帮助内科医生做出更好的、更准确的诊断和处方。利用这种原理做的人工智能系统,一个最有代表性的成果就是国际象棋程序IBM的深蓝。这个国际象棋程序,在1997年5月打败了世界冠军卡斯帕罗夫。图2 IBM深蓝与世界冠军卡斯帕罗夫下棋我们看一下,计算机的深蓝程序为什么可以打败人类的象棋大师呢?主要是三个要素,第一个要素是知识和经验,也就是说他利用了人类大师下过的70万盘棋局,还有全部的5-6只的残局。分析这些棋局,总结成为下棋的规则,并放进计算机。然后又通过大师和机器之间的对弈,调试评价函数中的参数,把大师的经验也放在程序里头。图3 IBM深蓝成功的原因第二个靠的是算法,使用阿尔法-贝塔剪枝算法,这个算法的速度很快。第三个是算力,IBM当时用的RS/6000SP2机器,每秒能够分析2亿步,平均每秒钟能够往前预测8-12步。一个有经验的象棋大师,一般只能往前看3-5步,机器的速度远超过人类,因此可以超过人类的下棋水平。图4 第一代人工智能的优势第一代人工智能的优势,在于它能够模仿人类的推理、思考的过程,因此是可解释的,跟人类的思考问题过程很一致。利用这个办法进行机器学习,就能够举一反三,所以这是第一代人工智能的优势。图5 第一代人工智能的局限但是第一代人工智能也存在着非常严重的缺陷,例如:这些知识都来自于专家。大家都知道专家的知识十分稀缺,也非常昂贵。而且通常要通过人工编程把它输进计算机,非常费时费力。同时有很多知识是很难表达的,比如说那些不确定的知识
2021年6月21日上海举行2021世界人工智能大会新闻发布会:由工信部等国家七个部委和上海市人民政府共同主办的2021世界人工智能大会,将于今年的7月8日-10日在上海举办。
目前,人工智能是一个快速发展的领域,对人才的需求很大。和其他技术岗位相比,竞争低,工资相对高。所以现在是进入人工智能领域的好时机。研究还表明,三项技能以上的人才对企业更有吸引力,而且趋势越来越明显。所以IT技术人员需要在掌握一门技术的同时掌握更多的技能!人工智能人才目前处于明显短缺状态,这种状况还存在扩大的趋势。当前社会技术环境下,需要兼顾扎实的专业技术和复合型背景的人才。在互联网企业中,人工智能的薪酬排在第三位,其中薪酬最高的是声音识别方向的从业者。
中国人工智能技术起步较晚,但是发展迅速,目前在专利数量以及企业数量等指标上已经处于世界领先地位。2013-2018年,全球人工智能领域的论文文献产出共30.5万篇,其中,中国发表7.4万篇,美国发表5.2万篇。在数量占比方面,2017年中国人工智能论文数量占比全球已经达27.7%。当前中美两国之间人工智能科研论文合作规模最大,是全球人工智能合作网络的中心,中美两国合作深刻影响全球人工智能发展。2019年中国AI芯片市场规模约为115.5亿元,在5G商用的普及和政策、技术等各因素的推动下,AI芯片有望在云计算、安防、消费电子、机器人等领域实现大规模商用,预计2021年AI芯片市场规模将达到436.8亿元。但值得注意的是,随着人工智能技术的加速普及,下游应用领域对AI算力和能耗的要求越来越高,传统冯诺依曼架构式芯片的瓶颈逐渐显露,AI芯片将朝着存算一体化方向发展。有分析师认为,存算一体AI芯片的发展前景虽受到广泛认可,但整体仍处在发展的起步阶段。从实现计算与存储的融合设计,到技术的落地、量产、规模化商用,还有较长阶段。能够率先实现技术、产品突破的企业将更容易获得资本、人才、市场的支持。世纪浪人:智慧筑基,源聚强国,深度分析中国人工智能发展概况我国人工智能发展全球论文占比情况(数据来源:艾媒数据中心)相关调查机构数据显示, 截至2017年12月31日,中国人工智能专利申请数达46284件。随着国家大力提倡、投入研发逐渐增加,人工智能运用到越来越多的行业领域,未来相关专利数量应当会持续增加,人工智能技术产业化发展前景向好。世纪浪人:智慧筑基,源聚强国,深度分析中国人工智能发展概况截止2017年我国人工智能专利申请数量(数据来源:艾媒数据中心)2018年中国人工智能领域共融资1311亿元,增长率超过100%,投资者看好人工智能行业的发展前景,资本将助力行业更好地发展。随着人工智能技术的进一步发展和落地,深度学习、数据挖掘、自动程序设计等领域也将在更多的应用场景中得到实现,人工智能技术产业化发展前景向好。1.中国步入技术驱动增长的高质量发展阶段,政策将持续加码推动芯片全面国产化中国数字经济产业已经成为驱动经济增长的新动能,2019年数字经济规模占GDP的比重达36.2%;作为数字经济产业底层基础的集成电路,却严重依赖进口,2020年前八个月,中国集成电路进口金额超过万亿元;未来政策将持续加码发展集成电路产业,实现芯片全面国产化。2.中国AI芯片有望引领国产芯片实现弯道超车,预计2023年中国AI芯片市场规模将突破千亿元5G基站、大数据中心、人工智能等新型基础建设的完善,促使AI芯片成为引领芯片行业未来发展的重要方向;政策、资本、技术、市场等多重因素将驱动AI芯片这一新赛道快速发展,中国芯片有望实现弯道超车;预计2023年中国AI芯片市场规模将超过千亿元。3.存算一体化AI芯片是未来主流方向,受益于下游需求的强劲驱动力而快速发展人工智能产业的成熟化发展驱动AI芯片由通用型向专用型发展,急剧增长的数据量对AI芯片的性能以及能耗提出了更高要求;能够兼具性能和成本的存算一体化AI芯片符合未来发展趋势,在下游需求的推动下有望快速发展。世纪浪人:智慧筑基,源聚强国,深度分析中国人工智能发展概况AI芯片概念描述直观图(来源:艾媒咨询)人工智能,作为计算机科学最前沿的发展方向,同时也是新一轮产业变革的核心驱动力,具有巨大的市场前景。面向人工智能应用的AI算法,除具有传统算法一般的性能特征,还具备处理大量非结构化数据、处理过程计算量大、参数量大等新特质,亟须强大的运算能力和高效的访存能力支撑。世纪浪人:智慧筑基,源聚强国,深度分析中国人工智能发展概况人工智能相关学科及关联关系(来源:艾媒咨询)4.中国人工智能未来热度持续目前中国整个人工智能产业规模仍在保持增长,同时国家也在不断出台各类人工智能产业扶持政策,资本市场对人工智能行业的投资热情不减,技术方面不断突破是产业增长的核心驱动力。未来人工智能产业的走向取决于算法的进步,由于算法的技术突破是决定人工智能上限的,所以未来人工智能企业拉开差距就在算法的技术突破上,谁能先在算法上取得成功,谁就能取得资本市场青睐,同时产业落地也会进一步提速。在算法方面,目前已经有深度学习和神经网络这样优秀的模型,但就目前国内人工智能算法的总体发展而言,工程学算法虽已取得阶段性突破,但基于认知层面的算法水平还亟待提高,这也是未来竞争的核心领域。虽然算法决定人工智能上限,但是目前的算法短时间内可能很难有所突破,所以算力也是目前人工智能企业竞争的一个重点方向,以目前的算力水平,主要实现商业化的人工智能技术为计算机视觉、智能语音等,未来若算力进一步突破包括算力的提升、生产成本的降低都会使人工智能技术的产业化进一步深入。
第九届国际计算机与人工智能会议论文投稿截止时间为2002-10-13。天津市图象图形学学会和天津市体视学学会支持的2023年第九届计算与人工智能国际会议将于2023年3月17-20日在中国天津市举行。
人工智能的第一个浪潮是由著名的英国数学家、逻辑学家和计算机科学家阿兰·图灵(Alan Turing)掀起的。
1936年,阿兰·图灵在英国伦敦大学学院发表了一篇论文,他提出了一个抽象的计算机模型,即图灵机。他用这个模型来探索计算机的可能性。他提出,计算机可以完成任何人类可以完成的任务,这一想法引发了人工智能的研究。
此后,阿兰·图灵发表了一系列论文,其中最重要的是1950年发表的《计算机与智能》,他在这篇论文中提出了“图灵测试”的概念,即一个机器能够像人一样思考。这一概念引发了人工智能的第一个浪潮,人们开始研究如何让机器具有人类智能。
因此,可以说,人工智能的第一个浪潮是由阿兰·图灵掀起的,他的论文开创了人工智能的先河,为人工智能的发展奠定了基础。
AI(Artificial Intelligence,人工智能) 。“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的, 现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确, 因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展, 一方面又转向更有意义、更加困难的目标。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。 人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。谓词逻辑是演绎推理的基础。结构化表示下的继承性能推理是非演绎性的。由于知识处理的需要,近几年来提出了多种非演泽的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有A*、AO*算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。 `
阿兰-图灵(Alan Turing)英国数学家、逻辑学家,被称为计算机之父,人工智能之父。1931年图灵进入剑桥大学国王学院,毕业后到美国普林斯顿大学攻读博士学位,二战爆发后回到剑桥,后曾协助军方破解德国的著名密码系统Enigma,帮助盟军取得了二战的胜利。图灵对于人工智能的发展有诸多贡献,提出了一种用于判定机器是否具有智能的试验方法,即图灵试验,至今,每年都有试验的比赛。此外,图灵提出的著名的图灵机模型为现代计算机的逻辑工作方式奠定了基础。1912年6月23日,出生于英国伦敦。1931年-1934年,在英国剑桥大学国王学院(King’s College)学习。 1932年-1935年,主要研究量子力学、概率论和逻辑学。 1935年,年仅23岁的图灵,被选为剑桥大学国王学院院士。 1936年,主要研究可计算理论,并提出“图灵机”的构想。 1936年-1938年,主要在美国普林斯顿大学做博士研究,涉及逻辑学、代数和数论等领域。 1938-1939年,返回剑桥从事研究工作,并应邀加入英国政府破译二战德军密码的工作。 1940年-1942年,作为主要参与者和贡献者之一,在破译纳粹德国通讯密码的工作上成就杰出,并成功破译了德军U-潜艇密码,为扭转二战盟军的大西洋战场战局立下汗马功劳。 1943年-1945年,担任英美密码破译部门的总顾问。 1945年,应邀在英国国家物理实验室从事计算机理论研究工作。 1946年,这个时候,图灵在计算机和程序设计原始理论上的构思和成果,已经确定了他的理论开创者的地位。由于图灵的杰出贡献,年轻的他被英国皇室授予OBE爵士勋衔。 1947年-1948年,主要从事计算机程序理论的研究,并同时在神经网络和人工智能领域做出开创性的理论研究。 1948年,应邀加入英国曼彻斯特大学从事研究工作,担任曼彻斯特大学计算实验室副主任。 1949年,成为世界上第一位把计算机实际用于数学研究的科学家。 1950年,发表论文“计算机器与智能”,为后来的人工智能科学提供了开创性的构思。提出著名的“图灵测试”理论。 1951年,从事生物的非线性理论研究。年仅39岁的图林,被选为英国皇家学会会员。 1952年,在当年保守愚昧和冷战的时代,当警察得知图灵与同性朋友密切交往的消息之后,同性恋倾向的图灵被逮捕入狱。在法庭审判过程中,图灵明确告知人们,他认为自己没有做错什么事。在那个观念落后的年代,为了避免被判刑入狱,图灵被迫选择了为期一年的雌性激素注射的所谓“治疗”,才得以重新返回研究工作。 1953年-1954年,继续在生物和物理学等方面的研究。被迫承受的对同性恋倾向的“治疗”,致使原本热爱体育运动的图灵在身心上受到极大的伤害。 1954年6月7日,图灵被发现死于家中的床上。死因是氰化物中毒,警方调查结论是自杀。一代英灵,就此过早离去,成为人类科学史上的一大遗憾。
个人认为是——骨灰瓷。这种东西可是英国贵族中最为推崇的。只是从这一个方面来说,其他的重大发明我还真不知道
历史 突飞猛进1950年阿兰·图灵出版《计算机与智能》。1956年约翰·麦卡锡在美国达特矛斯电脑大会上“创造”“人工智能 ”一词。1956年美国卡内基·梅隆大学展示世界上第一个人工智能软件的工作。1958年约翰·麦卡锡在麻省理工学院发明Lisp语言———一种A.I.语言。1964年麻省理工学院的丹尼·巴洛向世人展示,电脑能掌握足够的自然语言从而解决了开发计算机代数词汇程序的难题。1965年约瑟夫·魏岑堡建造了ELIZA———一种互动程序,它能以英语与人就任意话题展开对话。1969年斯坦福大学研制出Shakey————一种集运动、理解和解决问题能力于一身的机器人。1979年第一台电脑控制的自动行走器“斯坦福车”诞生。1983年世界第一家批量生产统一规格电脑的公司“思考机器”诞生。1985年哈罗德·科岑编写的绘图软件Aaron在A.I.大会亮相。90年代A.I.技术的发展在各个领域均展示长足发展————学习、教学、案件推理、策划、自然环境认识及方位识别、翻译,乃至游戏软件等领域都瞄准了A.I.的研发。1997年IBM(国际商用机械公司)制造的电脑“深蓝”击败了国际象棋冠军加里·卡斯帕罗夫。90年代末以A.I.技术为基础的网络信息搜索软件已是国际互联网的基本构件。2000年互动机械宠物面世。麻省理工学院推出了会做数十种面部表情的机器人Kisinel。现在 流行挡不住商业上的成功,成为实验室研究工作的催化剂。A.I.的边界正一步步向人类智慧逼进。全球的高科技实验室不约而同盯上了A.I.大脑,这其中响当当的名字包括卡内基·梅隆大学,IBM和日本的本田汽车公司。在比利时,Starlab(星实验室)正开发种能取代真猫大脑工作的人工大脑。据“人工大脑网站”报道,它将拥有约7500个人工脑神经细胞。它将能自如地操控猫咪行走,玩耍毛线球。据估计它将在2002年完成。软件在将复杂决策程序化整为零方面取得突破。像外貌识别等看似简单的人类能力实际涉及广泛、复杂的认知和判断步骤。今天的电脑软件越来越精于模仿人类最精细的思维。而计算机硬件在追赶人脑能力方面亦不遗余力。目前世界上最快的超级电脑————位于美国加利福利亚州劳伦斯·立弗摩尔国家实验室的IBM制“ASCI白色”已经是有人脑0·1%的运算能力。IBM正在研制的“蓝色牛仔”(BlueJean)的每秒运算能力估计将与人脑相当。IBM研发部主管保罗·霍恩说BlueJean将在4年后开始运行。斯坦福大学A.I.领域的首席专家埃里克·霍维兹及其许多同行相信,A.I.技术迎来突破发展的日子近在眼前,那时,A.I.将细分并派生出跨越出广泛领域的学科。未来 聪明过人?关于A.I.人们最迫切希望知道的问题是,它真能和人一般聪明吗?许多科学家相信,这只是个时间上的问题。A.I.软件设计师库尔兹维尔认为迟至2020年A.I.即可聪明过人。IBM的霍恩估计比较保守,他认为A.I.赶上人还需要40—50年时间。AT&T的斯通则说他的目标是在2050前组建一只能挑战曼联的A.I.足球队。他这不是开玩笑。在许多方面,A.I.大脑比人类更有优势。人脑的学习吸收新知识的过程非常慢。要说一口流利的英语至少得半年或两三年时间(吹牛广告中的例子除外)。而要让A.I.学会讲法语,只需为它装上一个说法语软件,数秒之间一个A.I.法语专家便诞生了。另一个更难解答的问题:A.I.是否能拥有情感。目前没有人有把握回答这个问题。于是剩下一个最可怕的问题:A.I.机器人能变得比人类更聪明,并反戈一击与人类为敌?库尔兹维尔、技术学家比尔·乔伊认为这并非不可能。霍恩在这个问题上拿不太稳。霍恩认为虽然电脑的粗略运算能力可超过人类,但它不可能具备人类所有精细的特征,因为人类对自己的大脑拥有的许多微妙能力并不了解,更无从仿模相应软件。库尔维兹的看法比较乐观,他认为人类在开发超级A.I.的同时,在对它们的引导和管理方面也将相应提高,因此将永远走在前面,掌握控制权。
人工智能60年的历史中,一共经历了两代的发展。第一代人工智能,有时候称它作符号主义。他们提出了基于知识和经验的推理模型,用这个模型来模拟人类的理性智能行为,像推理、规划、决策等等。根据这个原理,需要在机器里面建立知识库和推理机制,利用这两者对人类的推理和思考行为进行模拟。图1 张钹院士在2020世界人工智能大会上演讲下面举一个例子,1971年左右,美国斯坦福大学根据这个原理建造的一个专家系统,叫做MYCIN系统,主要用来诊断血液传染病和开抗菌素处方。它把传染病专家的知识放在计算机里头,并且把医生诊断的过程(如何从症状推到疾病,然后进行处方)作为推理机制,也放在计算机里头。这样,计算机就可以帮助内科医生进行辅助诊断。因为内科医生一般不是传染病专家,因此利用这样的计算机辅助治疗系统可以帮助内科医生做出更好的、更准确的诊断和处方。利用这种原理做的人工智能系统,一个最有代表性的成果就是国际象棋程序IBM的深蓝。这个国际象棋程序,在1997年5月打败了世界冠军卡斯帕罗夫。图2 IBM深蓝与世界冠军卡斯帕罗夫下棋我们看一下,计算机的深蓝程序为什么可以打败人类的象棋大师呢?主要是三个要素,第一个要素是知识和经验,也就是说他利用了人类大师下过的70万盘棋局,还有全部的5-6只的残局。分析这些棋局,总结成为下棋的规则,并放进计算机。然后又通过大师和机器之间的对弈,调试评价函数中的参数,把大师的经验也放在程序里头。图3 IBM深蓝成功的原因第二个靠的是算法,使用阿尔法-贝塔剪枝算法,这个算法的速度很快。第三个是算力,IBM当时用的RS/6000SP2机器,每秒能够分析2亿步,平均每秒钟能够往前预测8-12步。一个有经验的象棋大师,一般只能往前看3-5步,机器的速度远超过人类,因此可以超过人类的下棋水平。图4 第一代人工智能的优势第一代人工智能的优势,在于它能够模仿人类的推理、思考的过程,因此是可解释的,跟人类的思考问题过程很一致。利用这个办法进行机器学习,就能够举一反三,所以这是第一代人工智能的优势。图5 第一代人工智能的局限但是第一代人工智能也存在着非常严重的缺陷,例如:这些知识都来自于专家。大家都知道专家的知识十分稀缺,也非常昂贵。而且通常要通过人工编程把它输进计算机,非常费时费力。同时有很多知识是很难表达的,比如说那些不确定的知识
你好:
《自然》(Nature)期刊发表的一篇文章,从论文影响力、核心应用、硬件、人才等方面,详细地对中国当前的AI发展现状进行了分析。
2017年,我国制定了《新一代人工智能发展规划》,描绘了未来十几年我国人工智能发展的宏伟蓝图,确立了 “三步走” 目标:
人工智能专业发展前景怎么样?哪些高校适合报考?
文/陈根
人工智能,已经成为中美两国竞争的着力点 。
作为一种变革性技术,人工智能是现代工业发展的产物,具有推动产业革新、提升经济效益和促进 社会 发展的巨大潜力。正是由于具备主导技术发展和推动 社会 形态转变的基本潜质, 因此,人工智能不仅被视为未来创新范式的“技术基底”,更是被世界各国视为推动新一轮 科技 革命和产业变革的关键力量 。
纵观 历史 ,每一次 科技 革命、产业革命及军事变革的耦合与互动,都深刻影响乃至重塑了全球竞争格局。在人工智能的全球博弈中,中美两国作为领先大国,成为人工智能发展最为瞩目的两个国家。而中美两国对于人工智能高地的抢占,更关系着未来国际格局的重塑和全球人工智能的治理。
美国领先,中国跟进
2019年,美信息技术与创新基金会(ITIF)的数据创新中心曾发布百页研究报告《谁将在人工智能角逐中胜出:中国、欧盟或美国?》。报告对中、美、欧人工智能发展现状进行比较测算—— 美国以44.2分领先,中国以32.3分位居第二,欧盟则以23.5分位居第三 。美国的人工智能领先地位彰显无疑,而中国则以追赶之势跟进。
事实上,美国之所以能够占据人工智能全球领先地位,与人工智能在美国的发展密切相关。 1956年,人工智能正式在美国诞生。卡内基梅隆天学、麻省理工学院、IBM公司成为美国最初的3个核心人工智能研究机构。
60年代至90年代初,美国人工智能相关程序设计语言、专家系统等已取得重大进展,产品化方面取得重要成就。 比如,1983年,世界第一家批量生产统一规格电脑的公司诞生。并且,美国开始尝试应用Al研究成果,比如,利用矿藏勘探专家系统PROSPECTOR在华盛顿发现一处矿藏。
而同期的中国,人工智能才刚进入萌芽阶段 。1978年,中国科学大会在北京召开。科学事业思想解放,为中国人工智能产业发展提供基础。同年,“智能模拟”被纳入国家研究计划,中国人工智能产业在国家层面的推动下正式发展。
从研究成果来看,美国在人工智能方面的研究成果在全球处于领先地位 。根据全球最大的引文数据库Scopus的检索结果,2018年美国共发表了16233篇与人工智能有关的同行评审论文。论文数量的快速增长主要发生在2013年之后,5年内增长了2.7倍。
尽管同期中国和欧盟的人工智能论文数量也有类似的快速增长,并且每年发表论文的数量明显超过美国。 但是,就论文质量而言,美国人工智能论文的质量一直大幅度领先于其他地区。 2018年,美国平均每篇论文被引用的次数为2.23次,而中国为1.36 次。美国每个作者被引用的次数也比全球平均水平高出 40%。
尤其是在深度学习领域,美国的发表论文数量远超过其他国家。2015至2018 年,美国共在预印本文库网站arXiv发表了3078篇相关论文,是中国同期的两倍。 近几年,美国每年取得的人工智能专利数量更是占到全球总量的一半左右,专利引证数量占到全球的 60% 。
在关键技术上,美国的研究成果依旧居于世界领先地位 。比如,在计算机视觉领域,谷歌公司和卡内基梅隆大学开发的 Noisy Student方法对图片进行分类的Top-1准确率达到 88.4%,比6年前提高了35个百分点;在云基础设施上训练大型图像分类系统所需的时间,已经从2017年的3个小时减少到 2019年的88 秒,训练费用也从 1112美元下降到12.6美元。
从产业发展来看,根据中国信息通信研究院数据研究中心的《全球人工智能产业数据报告(2019Q1)》研究报告, 截至2019年3月底,全球活跃人工智能企业注达5386家。仅美国就多达2169家,数量远超过其他国家 。中国大陆达1189家,排名第三的英国则为404家。
而从企业 历史 统计来看,美国人工智能企业的发展也早于中国5年。美国人工智能企业最早从1991年萌芽,1998进入发展期,2005后开始高速成长期,2013后发展趋稳。而中国人工智能企业则诞生于1996年,2003年产业进入发展期,在2015年达到峰值后进入平稳期。
美国公司在专利和主导性人工智能收购方面表现更为强劲 。比如,在15个机器学习子类别中,微软和IBM在8个子类别中申请了比其他任何实体公司都更多的专利,包括监督学习和强化学习类。美国公司在20个领域中的12个领域的专利申请处于领先地位,包括农业(迪尔公司)、安全(IBM公司)以及个人设备、计算机和人机互动(微软公司)。
人才储备是美国在人工智能得以领先的又一关键原因。人工智能产业的竞争,可以说,就是人才和知识储备的竞争。 只有投入更多的科研人员,不断加强基础研究,才会获得更多的智能技术 。
根据 MacroPolo 智库的研究,在报告所圈定的顶级人工智能研究人才中,59% 在美国工作,中国占了 11%,与美国有四五倍的差距。剩下的人工智能人才则分布在欧洲、加拿大和英国,人才差异显而易见。
中美角逐,追赶和超越
尽管美国在研究成果和人才储备上具有先发优势,但中国作为后起之秀,在政策的引导和宽松的环境下,正以追赶之势加快跟进美国人工智能产业的发展。
经过多年的积累,中国已在人工智能领域取得了一系列重要成果,形成了自身独特的发展优势。 不论是顶层的设计还是研发资源的投入,亦或是产业的发展,都呈加快追赶的态势,甚至在部分人工智能核心技术领域已可与美国比肩。尽管欲见成效仍需时日,但中美两国对于人工智能高地的抢占,已经开始。
从顶层设计来看,中美有近乎相仿的重视程度。 美国和中国政府都已经把人工智能的发展上升至国家战略,出台发展战略规划,从国家战略层面进行整体推进 。
早在2016 年 10 月,奥巴马政府就发布了两份与人工智能发展相关的重要文件,即《国家人工智能研发战略规划》和《为未来人工智能做准备》。中国政府也在2017年3月,将“人工智能”首次写入全国政府工作报告,并于同年7月发布《新一代人工智能发展规划》,人工智能全面上升为国家战略。
美国人工智能报告体现了美国政府对新时代维持自身领先优势的战略导向。作为最大的发展中国家,中国也在战略引导和项目实施上做了整体规划和部署。并且,美国和中国都在国家层面建立了相对完整的研发促进机制,整体推进人工智能发展。
从研发资源的投入来看,美国政府对研发的资金投入相对不足。 纵向来看,在过去的几十年中,联邦政府用于研发的支出占国内生产总值(GDP)的百分比从1964年的1.86%下降到2018年的0.7%。
目前,美国联邦政府的年度财政赤字已超过1万亿美元,累积的政府债务相当于 GDP的107%。 这些因素都会限制美国政府对人工智能及其相关基础研究的长期资金投入。
横向上看,美国政府对研发的投入正在被中国和欧盟追赶 。美国在全球研发投入中所占的份额从1960年的69%下降到2016年的28%。2000-2015年,美国只占全球研发投入增长的 19%,而中国占到了31%。
2019年8月 31日,上海宣布设立人工智能产业投资基金,仅首期就投入了100亿元人民币,最终规模将达到千亿元人民币,美国联邦政府的投资则是相形见绌。
从产业发展来看,尽管中国AI产业基础层整体实力较弱,少有全球领先的芯片公司,但各大厂商正加快布局追赶,包括百度、阿里、腾讯及华为等厂商在基础层软硬件的加快布局 。
对于技术层来说,中国企业则发展势头良好。 百度、阿里、腾讯和华为等综合型厂商在计算机视觉、自然语言处理、语音识别等核心技术领域均有布局,同时创业独角兽在垂直领域迅速发展。
应用层上,人工智能应用场景多样,中国人工智能企业已在教育、医疗、新零售等领域实现广泛布局,而金融、医疗、零售、安防、教育、机器人等行业亦有为数较多的人工智能企业参与竞争。
着眼未来,我国在人工智能发展方面仍然具有一定优势, 包括对基础理论研究的重视、丰富的技术应用场景、完善的创新生态链、企业数量的规模优势,以及我国在发展人工智能方面的人才优势。
此外,大数据优势是中国发展人工智能的重要优势,人工智能技术发展需要有大量的数据积累进行训练。中国较为完备的工业体系和庞大的人口基数,也使得中国人工智能发展在数据积累方面优势明显。
人工智能的未来难以预测,但可以看到的是,世界的竞争格局将因人工智能而改变。在巨变的环境里,只有通过创新发展以人工智能为代表的新一轮战略前沿技术,成为新竞赛规则的重要制定者、新竞赛领域的重要主导者、新竞赛范式的重要引领者,才能制胜未来而不是尾随未来。