首页

职称论文知识库

首页 职称论文知识库 问题

美国天体物理杂志发表论文

发布时间:

美国天体物理杂志发表论文

新华社北京7月30日新媒体专电 外媒称,当地时间周二发表于美国《天体物理学杂志通讯》的一篇论文说,天文学家首次捕捉到围绕一颗类太阳恒星的多行星系统的图像。 据合众国际社网站7月22日报道,欧洲南方天文台的甚大望远镜拍摄到了这颗名为TYC 8998-760-1的恒星的照片。科学家通过对这颗距地球300光年的类太阳恒星的观测,发现了两颗巨型系外行星。 荷兰莱顿大学博士研究生亚历山大·博恩在一篇新闻稿中说:“这一发现展现了一个与我们的太阳系非常相似的环境,但它的进化阶段要早得多。” 报道称,虽然天文学家已经确认了数千颗系外行星,但几乎从未直接拍摄到它们的图像。研究人员说,此前曾两次直接拍摄到拥有两颗或两颗以上系外行星的行星系统的图像,但这两个系统中的恒星与太阳截然不同。 天文学家发现的两颗巨大的系外行星,沿着围绕恒星的宽而长的轨道运行。这些行星比木星或土星离太阳更远。 在这两颗行星中,距离恒星较近的一颗距恒星的距离为地球与太阳距离的160倍。较远的一颗距TYC 8998-760-1的距离为地球与太阳距离的320倍。 研究人员说,这两颗系外行星的体积都大大超过在我们的太阳系中发现的气态巨行星。靠近恒星的那颗系外行星的质量是木星的14倍,另一颗行星的质量是木星的6倍。 报道称,天文学家利用甚大望远镜的高对比度光谱偏振法系外行星搜索仪(SPHERE),直接观测到了这两颗巨型系外行星。SPHERE使用星冕仪来阻挡来自遥远恒星的明亮光线,从而显示出遥远系外行星微弱的光芒。 科学家用一年的时间用SPHERE观测这两颗巨型系外行星,并将数据与过去的观测数据进行比较,希望确认这两颗行星与TYC 8998-760-1之间的关系。 科学家希望,在今后的类似研究中能使用更强大的SPHERE。 博恩说:“未来的仪器——例如极大望远镜上现有的仪器——或许能够探测到这颗恒星周围质量更小的行星,这将是了解多行星系统的一个重要里程碑,对了解太阳系的 历史 也有潜在意义。”

恒星形成是宇宙物质由暗(光学意义)到明(恒星及星系)的关键步骤。从1796年拉普拉斯的星云假说开始,过去了两个多世纪后,恒星形成领域终于在20世纪的第一个十年通过E.E.Barnard开创的宽视场成像(Barnard,1907,1919,ApJ)进入实测(靠谱+有钱)学科。

Barnard认证的“暗云”,至今都是本领域研究的重要对象,例如著名的B68 (Alves et al., 2001,Nature)被揭示具有经典的流体力学压力平衡密度结构Bonnor-Ebert轮廓。又例如基于我们首次捕获到的正在诞生的暗云B227(Zuo et al., 2018 ,ApJ “Catching the Birth of a Dark Molecular Cloud for the First Time”)。这两个工作分别研究了Barnard认证的第68个和第227个暗云。

拉普拉斯及其太阳系星云起源假说示意图

暗云之为暗,是由于尘埃消光,但其主要成分是气体。1951年星际中性原子氢气(HI)的发现,确立了其为星际介质的主要成分之一。20世纪60年代,Hollenbach和Salpeter的研究明确了氢原子在星际尘埃表面‘复合’成为分子氢。60年代四大天文发现之一的星际一氧化碳(CO)分子,使得难以探测的分子氢气得以现形,揭示暗云都是分子云。七八十年代,空间天文兴起,红外巡天确定了年轻恒星诞生于分子云。至此一个恒星诞生的完整图景基本完成。

恒星诞生过程

分子的辐射集中在毫米射电波段。恒星形成领域的天文学家从80年代初就开始推动大型毫米波阵列(MMA),经过几次10年规划、多边国际谈判、无数次高原反应,MMA演化、成长为当今地面天文设备的巨无霸——ALMA。到目前为止,ALMA观测用时最多的领域是恒星形成及星际介质,由最初的新兴成为主流显学。

90年代末,我在纽约上州的农村苦读学位,一把剪刀对付一月头发。现在回想起来,那时的手艺为今年的COVID-19疫情宅做了准备。村里有让胡适挂科的农场,自产牛奶和冰激凌。村边有“手指湖”(Finger Lakes),古冰川凿穿岩石深达数百米,与秋光一起烂漫至天际,非常适合思考恒星形成之三大经典问题:磁场问题、湍流问题、角动量问题。

至今,三大问题无一解决!

三大问题的本质是多数量级尺度跨越中的能量转移机制。从几千光年的弥散星际介质到百万公里腰围的太阳,缩水了几百亿倍。如果星际介质中的磁场在具有一定电离度的气体中冻结,其能量密度将远高于分子云所拥有的重力势能。磁场将阻止恒星形成。星际介质中遍布超音速的湍流。湍动对抗质量相吸的重力,直到在数万天文单位或更小的尺度,热运动才达到或超过湍动,使所谓的致密云核可能整体塌缩,开启新一代太阳的星途。

星际介质包裹中的太阳系

磁场、湍流如何耗散缺乏实证,数值模拟里面普遍直接忽略或者做生硬的量纲假设。人类距离物理解释恒星形成尚远。角动量问题是三大问题中相对简单的一个。大尺度的星际介质包含或者演化成为许多子结构。宏观的角动量不必等于局域角动量之和。

90年代以来,特别是哈佛大学天体物理中心Myers和Goodman关于暗分子云核的系列工作,确立了从分子云核中心向外延展5万亿公里左右(这个尺度范围被称为亚光年尺度),在这个范围内角动量已经远远小于重力势能或磁场能或湍动能,而后三者处于能量均分状态。

能量均分也可能是暗云磁流体的一个基本性质。我们刚刚发表了对北天6个分子暗云中云核角动量的研究(Xu et al., 2020,ApJ)。在计算过程中,考虑了此前同类工作忽视的云核密度分布,因而导出了更为真实、数值更小的角动量,进一步验证了在亚光年尺度角动量已经不再影响云核整体塌缩的动力学。从亚光年尺度到恒星尺度(百万公里),角动量虽然不再影响整体塌缩的动力学,但是依然需要被大量耗散,才能加速物质吸积。一般认为外向流是角动量耗散的重要途径。

星际介质,特别是分子暗云中,各个层级的结构逐步紧实,最终小宇宙爆发点燃核聚变成为恒星。这一句话的星途,包含了多种基本物理、化学过程和环境变化:磁场、湍流、重力、热运动、等离子体、辐射转移、宇宙线、尘埃演化、无机-有机化学等等相互耦合,纠缠不休。

经过了一个世纪和多次新设备之重大突破,恒星形成的科学描述还主要是唯像的:巨分子云集群(Giant molecular cloud complex)到分子云(cloud)到云块(clump)到云核(core)到年轻星周盘(protostellar disk)加外向流(outflow),最终由于某种神秘力量阻止吸积确定原恒星质量,并且整体达成那个统一的更为神秘的初始质量函数(IMF)。

恒星形成的唯像描述

星际云的形状柔弱多变,但是到了即将塌缩踏上星途的云核,就圆润起来,在物理学家眼里都是球,亦如物理学家眼里的牛。这个叙事过程朴素可爱:“现在的日子是鸡,长大了就变成了鹅;鹅长大了, 就变成了羊;羊长大了, 就变成了牛;等牛长大了, 就是共产主义了......”

物理牛

如何实现太阳诞生这样“共产主义”的理想?2009年,人类 历史 上最大的单体空间望远镜(大过但是轻于哈勃)赫歇尔天文台的发射升空,带来了革命性的进步。

作者近期相关论文发表于:

美国《天体物理杂志快报》Xu et al. 2020, ApJL,DOI:10.3847/2041-8213/ab8ad7,作者:徐雪芳,李菂, 戴昱等

美国《天体物理杂志》Xu et al. 2020, ApJ,arXiv:2006.04309,作者:徐雪芳,李菂, 戴昱等

中国《天文与天体物理研究》 Yue et al. 2020, RAA,arXiv:2006.04168,作者:岳楠楠,李菂, 张其洲等

英国《皇家天文学会月报》 Zhang et al. 2020, MNRAS accepted, arXiv:2006.13410, 作者:张超,任志远, 吴京文等

参考文献:

Alves, J.F., Lada, C.J., & Lada, E.A. Internal structure of a cold dark molecular cloud inferred from the extinction of background starlight. 2001, nature, 409, 159

Barnard E.E. On a nebulous groundwork in the constellation Taurus. ApJ, 1907, 25:218-225.

Barnard E.E. On the dark markings of the sky, with a catalogue of 182 such objects. ApJ, 1919, 49:1-24.

Hacar, A., Tafalla, M., Forbrich, J., et al. An ALMA study of the Orion Integral Filament. I. Evidence for narrow fibers in a massive cloud. 2018, ApJ, 610, A77

Hollenbach, D., Salpeter, E.E. Molecular Hydrogen Formation on Grains in H I Regions. 1969, BAAS, 1, 244

Li, H.-X., Li, D., Qian L. et al. 2015, Outflows and Bubbles in Taurus: Star-formation Feedback Sufficient to Maintain Turbulence, ApJS, 219, 20

Tan, J. C., & McKee, C. F. 2004, The Formation of the First Stars. I. Mass Infall Rates, Accretion Disk Structure, and Protostellar Evolution, ApJ, 603, 383

Xu, X., Li, D., Dai, Y.S., et al. Independent Core Rotation in Massive Filaments in Orion. 2020, ApJL, 894, L20

Xu, X., Li, D., Dai, Y.S., et al. Rotation of Two Micron All Sky Survey Clumps in Molecular Clouds. 2020, ApJ, arXiv:2006.04309

Yue, N., Li, D., Zhang, Q., et al. Resolution-dependent Subsonic Non-thermal Line Dispersion Revealed by ALMA, 2020, accepted by RAA, arXiv:2006.04168

Zuo P., Li D., Peek J.E. G., et al. Catching the Birth of a Dark Molecular Cloud for the First Time. ApJ, 2018, 867:13.

作者简介:李菂,国家天文台研究员,从事天体物理和天文技术研究,撰写关于猎户座大质量“宁静”云核的系列论文,在美国天体物理杂志(ApJ)发表。

[ 责编:赵宇豪 ]

在我们得印象中,宇宙中所有的元素,从最轻到最重,它们的来源问题貌似都已经解决了。

我们现在知道宇宙的基本元素(氢和氦)来自于大爆炸阶段的核合成,然后这些元素在恒星中被聚变为重元素,大质量恒星死亡时所经历的Ⅱ型超新星爆发会将这些重元素返回到宇宙空间中;

并且在这个过程中还会通过中子捕获过程大量产生核聚变中无法生成的重元素。可以这么说,Ⅱ型超新星的爆发基本上已经把元素周期表中的重元素包圆了。

剩下的一些缺失的部分或者缺失的比例,我们还可以从中子星的碰撞中找到。

重元素的问题是解决了,但是我们常常却忽略了一些较轻元素的产生,如锂、铍、硼。相信你没有听说过,至少很少会看到有文章介绍这三种元素在恒星聚变中是怎样形成的?

其实恒星在将氢元素聚变为氦以后,如果它的质量足够大的话,直接会进入碳、氮、氧的聚变,然后是硫、硅,直到铁、钴、镍这些元素。

恒星聚变的中间过程很少会经历锂、铍、硼这三种元素,就算是它们被有幸生成,也会因为高温立刻被电离成为氢、氦和中子,也很难保存在恒星中。

简单点说,恒星聚变不能产生这三种元素。那么问题就来了,这三种元素不能在恒星中产生,但在宇宙中确实存在,那它们是怎么来的呢?

尤其是我们对锂元素在大自然、太阳系、甚至是在银河系中相对比较高的含量更是无法解释。这个问题困扰了天体物理学将近60年的时间。

不过在最近,由天体物理学家萨姆纳·斯塔尔菲尔德领导的新研究解决了锂元素来源这个难题。找到了缺失的那一部分,这篇论文发表在《美国天文学会天体物理杂志》上。

今天我们就着重说下锂元素是怎么来的?

上文说了锂元素很难保存在高温的恒星中,但可以存在与行星、小行星或者陨石中,通过测量太阳系陨石中锂元素的含量,我们就能知道在太阳系形成的时候星云中锂元素的含量。

然后通过对银河系大量的恒星进行观测,测量它们的质量、大小、颜色、重元素丰度,然后跟我们的太阳进行比较,并且太阳系测量出来的锂元素丰度,推广至整个银河系。

最后的出来的结果是,在银河系中锂元素的量相当于1000个太阳质量。

以前我们认为锂元素的来源有三种:

138亿年前的大爆炸核合成。 早期大爆炸的过程中,宇宙空间虽然在膨胀,但是在很短的时间内温度和密度非常高,足以引起类似于恒星中发生的核聚变。

这个发生在整个宇宙中氢元素到重元素的过程就是我们所说的大爆炸核合成,其在很短的时间内将宇宙中所有的质子和中子转化为了大约75%的氢,也就是单个质子;25%的氦;0.00000007%的铍-7。

由于铍-7非常不稳定会在很短的时间内通过捕获一个电子会将质子转化为中子,变为稳定的锂-7。大爆炸合成的锂-7,按比例来说在银河系中只相当于80个太阳质量。

宇宙射线(高能粒子)撞击重元素使其重核分裂为轻核。 宇宙射线大家非常熟悉,它常常来自于大质量恒星、中子星、黑洞这类高能量天体。

它撞击重元素以后会产生锂、铍、硼这三种元素,这个过程其实就是地球上这三种元素的主要来源。但它所生成的绝大部分是锂-6,只能产生微不足道的锂-7。

以及非常特殊的恒星聚变过程。 在一些质量较小的恒星中,类似于太阳,或者比太阳质量更小,它们在末期会经历红巨星阶段,恒星外层温度会大幅降低。

但是这样的温度依然是无法直接制造锂-7,因为它十分脆弱,但可以像大爆炸的时候制造出铍-7,然后将这些元素对流到外层温度更低的地方,直到它衰变为锂-7。

所以说在低温、低质量恒星的末期中我们会发现锂-7的含量会大幅增加,并在死亡以后将这些锂-7返回到宇宙中。

但是通过将以上三种来源所产生的锂元素加起来,却低于我们星系锂元素总量的20%。也就是说有大约800个太阳质量的锂-7无法解释。所以说一定有锂元素其他未知的来源。

这次的研究结果发现了以前被我们忽视的新星,这里需要注意的是,它不是Ⅱ型超新星、也不是1a型超新星。

它爆发的过程就产生了我们苦苦寻找的锂-7。那么这种新星是什么?

新星的爆发需要一颗白矮星和恒星组成的双星系统,白矮星来自于类似太阳恒星死亡以后的残骸,一般它的质量和太阳差不多,但体积只有地球的大小,所以说这种天体的引力非常强,且温度还很高。

当它周围有一颗处于主序星阶段的恒星时,这颗白矮星就会缓慢的吸积这颗伴星未燃烧的氢气。当质量达到一定程度,不过整体质量肯定会低于1.4倍的太阳质量,不然这颗白矮星会点燃内部的氦聚变,爆发1a型超新星。

也就是说,新星的产生吸积物质的速度要相对缓慢,不然就会失控摧毁整颗白矮星,当这个缓慢的过程使得白矮星周围的氢元素变得足够多,就会点燃边缘氢元素的聚变。

这个过程中会发生爆炸,产生大量的能量,形成新星。更重要的是,这个过程中会产生大量的铍-7,直接被抛洒到宇宙中。

产生新星爆发的白矮星并不会在爆炸中被摧毁,而是会消耗小它吸积的物质,使得质量回到刚开始的时候,然后它会继续缓慢吸积伴星的物质,然后产生下一次表面核聚变,发生爆炸。

这次科学家团队在新星的爆发过程中发现了大量的铍-7,而且丰度远高于红巨星中的铍-7。

所以所这次的观测发现解释了长期以来星系中,乃至宇宙中锂-7来源确实的问题。它来自于频繁爆发的新星之中。

天体物理学杂志论文发表

外面有那么多的星系、恒星和行星,就真的没有一个外星人吗?为什么我们还没有发现他们存在的迹象?

这是费米悖论的核心问题。在一篇新论文里,两位研究人员提出了下一个显而易见的问题:人类文明需要存活多久才能收到另一个外星文明的消息?

他们的答案是 40万年 。

对于一个只存在了几十万年、大约在 12000 年前才发明农业的物种来说,400000 年是一段很漫长的时光。

这是根据对交流地外智能文明(CETI)的一些新研究得出的。

论文题为《我们银河系中可能的 CETI 的数量和这些 CETI 之间的通信概率》。作者是北京师范大学天文系的宋文杰和何高。该论文发表在《天体物理学杂志》上。

“作为地球上唯一先进的智慧文明,人类最困惑的问题之一是我们是否独一无二。在过去的几十年里,有很多关于地外文明的研究。”

研究其他文明总是令人困惑的,因为我们只有一个数据点:地球上的人类。尽管如此,许多研究人员仍将这个问题作为一种思想实验,使用严格的科学指导方针。例如,2020 年的一项研究得出结论,银河系中可能有 36 个 CETI。

“我们一直想知道以下问题的答案。首先,银河系中存在多少 CETI?这是一个具有挑战性的问题。我们只能从一个已知的数据点(我们自己)中学习。”作者写道。

这就是德雷克方程的用武之地。基于我们对银河系不断增长的了解,德雷克方程试图估计我们银河系中可能有多少 CETI。

但德雷克方程式有其缺陷。例如,它的一些变量的取值纯粹依赖人类的直觉,所以由它估算出的文明数量是不可靠的。但德雷克方程更像是一个思想实验,而不是实际的计算工具。我们必须从某个地方开始,而德雷克方程就是一个出发点。

它也是这项新研究的起点。

“大多数关于费米悖论的研究都基于德雷克方程。这种方法明显的困难之处在于,要量化生命可能出现在合适的星球上并最终发展成先进的交流文明的概率是不确定和不可预测的。”

那么,如果我们甚至不知道可能有多少个 CETI,又是如何得出 400000 年的答案呢?

他们的论文概述了以前为了解银河系其他文明所做的一些科学努力。例如,他们引用了 2020 年的研究,估算银河系中有 36 个 CETI。

这个数字来自涉及银河系恒星形成 历史 、金属丰度分布以及恒星在其宜居带内拥有类地行星的可能性的计算。

那篇论文澄清说,“[T]外星智能和交流文明的主题将完全处于假设领域,直到做出任何积极的检测”。

但他们也指出,科学家们仍然可以基于逻辑假设产生有价值的模型,“这至少可以产生对此类文明发生率的合理估计”。

这项研究提出了一些相同的想法。它处理两个参数。第一个涉及有多少类地行星是可供居住,以及这些行星上的生命多久演变成 CETI。第二个是主星演化的哪个阶段会诞生CETI。

研究人员在计算中为这些参数中的每一个都赋予了一个变量。生命出现并演化成CETI的概率为(fc),主星演化所需的阶段为(F)。

宋和高 使用这些变量的不同值进行了一系列 Monte Carlo 模拟。他们得出了两种情况:乐观的前景和悲观的前景。

乐观情景使用 F = 25% 和 fc = 0.1%。因此,在 CETI 出现之前,一颗恒星的生命周期必须至少达到 25%。对于每个类地行星,CETI 出现的几率只有 0.1%。

这些乐观的变量取值创造了超过 42000 个 CETI,这听起来很多,但考虑同时出现的时间窗口,则大大减少了通信机会。此外,我们还需要再生存 2000 年才能实现双向通信。这听起来几乎触手可及。

但这是让宇宙看起来很友好并被其他欢迎文明居住的乐观情景。也许他们中的一些人已经在互相交谈,我们只需要加入群聊。

现在是悲观的情况。

在悲观情景中,F = 75%,fc = 0.001%。因此,一颗恒星要到更老的时候才能拥有 CETI,并且任何单个类地行星拥有 CETI 的概率下降到微乎其微。

这种悲观的计算在银河系中只产生了大约 111 个 CETI。更糟糕的是,我们还需要再活 40 万年才能与他们进行双向交流。 (从这角度来看,星际迷航开始于 22 世纪中叶。)

这就是大过滤器的用武之地。大过滤器是阻碍物质变成生命然后发展成为先进文明的东西。

“然而,有人提出,由于许多潜在的破

坏,例如人口问题、核毁灭、突然的气候变化、流氓彗星、生态变化等,文明的寿命很可能是存在自我限制的。如果世界末日论点是正确,对于某些悲观的情况,人类在灭绝之前可能不会收到来自其他 CETI 的任何信号。”

科学家们在他们的论文中写道:“fc 和 F 的值充满了许多未知数。”

我们无法确定地知道这些东西,但我们不得不去 探索 它。这是人性的一部分。

他们写道:“目前尚不确定有多少比例的类地行星可以孕育生命,而生命演化为 CETI 并能够向太空发送可探测信号的过程是高度不可预测的。”

人类会遇到另一个文明吗?这是我们最引人注目的问题之一,几乎可以肯定,现在看到此文的人永远不会有答案。

或者,很可能,我们永远不会有答案,而大过滤器会阻止我们找到答案。

但是,如果人类需要一个目标,一个可以坚持的目标可以保持希望,那么与另一个 CETI 交流的梦想可能会实现。

天文学中许多问题的答案都隐藏在深时间的面纱后面。其中一个问题是关于超新星在早期宇宙中所扮演的角色。早期超新星的任务是锻造出在大爆炸中没有锻造的更重的元素。这个过程是如何进行的?早期的恒星爆炸是如何发生的? 三名研究人员转向超级计算机模拟来寻找答案。 他们的研究结果发表在一篇题为“镍-56衰变加热对不稳定超新星的气体动力学”的论文中。论文的主要作者是来自台湾天文学与天体物理研究所的中央研究院的陈克俊。这篇论文发表在《天体物理学杂志》上。 这项工作是关于一种特殊类型的超新星。超新星的能量大约是花园型超新星的100倍,只有太阳质量130到250倍的恒星才会出现。 科学家们对超新星进行了大量的研究。研究人员了解它们是如何工作的,以及它们的类型。他们知道如何制造比氢和氦重的元素,并在爆炸时将这些元素送入宇宙。但是在我们的理解上有一些重要的差距,特别是在早期宇宙中。 这三位研究人员想研究超新星,因为他们认为这可能给他们提供宇宙中第一颗超新星的线索,以及早期元素是如何产生的。在早期宇宙中,恒星往往质量更大,因此可能有更多的超新星。但超新星现在极为罕见。所以他们转向超级计算机模拟。通过他们的模拟,他们模拟超新星的核心,观察爆炸开始300天后爆炸恒星的样子。 超新星的形成有两种方式:核心崩塌和成对不稳定。 在一颗核心塌陷的超新星中,一颗大质量恒星已经到了生命的尽头,燃料也快用完了。随着聚变的减少,聚变的向外压力也随之下降。由于缺乏向外的压力,恒星自身的引力能会向下推动核心。最终,引力能导致核心坍塌,恒星以超新星的形式爆炸。根据恒星的质量,它可以留下一个中子星残骸,或者一个黑洞。 不稳定超新星发生在质量约为130至250倍太阳质量的超大质量恒星中。当电子和它们的反物质对应物正电子在恒星中产生时,就会发生这种情况。这就在恒星的核心产生了不稳定性,并降低了内部辐射压力,而这种压力是支持如此巨大的恒星对抗其自身巨大引力所需要的。不稳定性引发部分坍塌, 从而引发失控的热核爆炸。最终,恒星被一场大爆炸摧毁,没有留下任何残余。该团队专注于对不稳定超新星。作出这一选择的原因之一是对不稳定超新星可能产生大量的镍-56。 镍-56是镍的放射性同位素,在我们对超新星的观测中起着重要作用。镍-56的衰变是产生超新星余辉的原因。如果没有它,超新星就只是一个明亮的闪光,没有余光。 该团队使用日本国家天文台(NAOJ)计算天体物理中心(CfCA)的超级计算机进行模拟。这是一台Cray XC50,2018年开始运行,它是世界上用于天体物理模拟的最快超级计算机。这么强大的超级计算机能否帮助我们了解早期宇宙的一些情况? 据主要作者Chen介绍,整个项目极具挑战性。在一份翻译好的新闻稿中,Chen说:"模拟规模越大,要保持较高的分辨率,整个计算就会变得非常困难,对计算能力的要求也会提高很多,更何况涉及的物理学也很复杂。" 为了应对这些,Chen说,他们最大的优势就是 "精心编写的代码和强大的程序结构"。研究人员三人组有长期模拟超新星的经验,所以他们有条件做这项工作。 这不是第一次模拟超新星。其他研究人员也很想了解它们,并做了自己的模拟。但以往的模拟都是在爆炸后30天内运行,而这次的模拟却运行了300天。其中一个关键原因是镍-56。事实证明,镍-56的作用不仅仅是制造超新星的长寿光芒。它在爆炸中起到了持续的作用。为了彻底了解超新星爆炸,研究小组对三颗不同的原生星进行了模拟。一个超新星需要一个非常巨大的原星,有时超过200个太阳质量。该超新星可以制造大量的镍-56。根据论文,它们可以合成0.1-30个太阳质量的放射性镍-56。除了创造这些光之外,镍-56还能做其他事情。作者在他们的论文中写道,所有这些镍-56 "还可能在喷出物深处驱动重要的动力效应,这些效应能够混合元素并影响这些事件的观测信号。" 研究小组想要探究 "超新星内部的气体运动和能量辐射之间的关系"。他们发现,在镍-56衰变的初始阶段,被加热的气体膨胀,并形成了具有薄壳的结构。 在解释模拟结果之一时,陈建国说:"气体外壳内的温度极高,从计算中我们了解到,应该有~30%的能量用于气体运动,那么剩下的~70%的能量就有可能成为超新星的发光体了。"。早期的模型都忽略了气体动态效应,所以超新星光度结果都被高估了。"

天体物理杂技增刊发表论文

天体物理学家周又元院士发表论文100余篇,而且还估算了中心黑洞的质量,发现了短时标变化规律新类型等等贡献,他自己的一生都献给了教育事业和国家科研工作。我们都知道能当上国家院士的人必定是百里无一的人才。国家也因此花费了很多财力物力培养,他们的一生都在为祖国强大而奉献着,所以每一位人才的逝世都是国家的一大损失,对国家来说是痛失了一大批宝藏,他们对国家的作用是真的是很大。

周又元院士所涉及的领域普通人看起来会很深奥,说起来会涉及到很多人的知识盲区。他的身份有很多,当过教授,也当过博士生的导师,他还是物理学家,还是中国科学院国家天文台的研究员,无论是哪一个身份,单独拿出来讲都是非常的厉害,然而周又元院士一点都不在乎,对于这些头衔如粪土一般的默默地贡献着自己的一生,他的科研成就也是拿到了不少奖项,他曾获得中国科学技术大学教学成果一等奖,国家教学成果二等奖等,在21世纪初的时候成为了中国科学院院士。

在2018年9月25日,国际天文学联合会小天体联合会小天体命名委员会批准,把宇宙中的一颗小行星命名为“周又元星”,可见周又元院士在这一领域上有着很大的贡献,就连国际的天文学联合会都认可他的付出。周又元院士曾经赠言后背,他曾说“要好好做人,做好事”。这一句话很好的教育了后辈,让他们得到了思考醒悟。对周又元院士的逝世表示惋惜,一路走好。

各位看官,如果你们还知道周又元院士有其它哪些重大贡献的话,欢迎在下方评论留言。

天体物理学是应用物理学的技术、方法和理论,研究天体的形态、结构、化学组成、物理状态和演化规律的天文学分支学科。

天体物理学专业培养符合国家建设需要,为祖国和人民服务的,具有良好道德品质和科学素质的,具有集体主义精神,实事求是,追求真理,献身科学教育事业的,具有宽厚和扎实基础知识和良好实验科研能力的天体专门人才和高等院校师资。

获得本专业硕士学位的研究生应掌握天体物理学科坚实、宽厚的基础知识 ,较全面和深入的专业知识,熟悉本专业研究方向的发展前沿和热点。硕士论文选题时,应对国内外研究现状进行较全面的调研和分析,在此基础上,完成具有创造性的研究成果。熟练掌握一门外语,包括专业阅读和写作,以及能用外语进行简单的学术交流。

补充资料:

1、天体物理学具体专攻包括。

行星天文学:以行星为研究目标,除了物理学外也要涉及大气科学、地质学和生物学的知识。

恒星天文学:研究恒星、星云和黑洞。

太阳天文学:专门深入研究太阳。

星系天文学:研究星系。

宇宙学:研究大尺度上的宇宙,及大爆炸之后的宇宙演化史。

天体测量学:研究天体运行的精确计算,预测日食或流星雨等现象,是天文学最古老的分支。

2、天体物理学专业的研究方向。

本专业分六个方向。方向一:引力效应,研究的内容为经典引力效应和量子引力效应;方向二:黑洞,研究的内容为黑洞可观测效应,黑洞演化和黑洞热力学;方向三:宇宙学。研究的内容为暴涨宇宙学和量子宇宙学;方向四:相对天体物理,研究的内容为致密天体引力性质;方向五:星系形成和演化,研究的内容为星系的形成,星系的演化;方向六:致密天体,研究的内容为白矮星和中子星。

高能天体物理学(high-energyastrophysics)是研究发生在宇宙天体上的高能现象和高能过程的学科,是理论天体物理学的一个分支学科。这里的高能现象或高能过程一般是指下述两种情形:①所涉及的能量同物体的静止质量相对应的能量来比,不是一个可忽略的小量;②有高能粒子或高能光子参与的现象或过程。随着类星体、脉冲星、宇宙X射线源、宇宙γ射线源等的相继发现,空间技术和基本粒子探测技术在天文观测中的广泛应用,以及高能物理学对天体物理学的不断渗透,对宇宙中高能现象和高能过程的研究便日益活跃起来。20世纪60年代人造地球卫星被送上太空以后,对宇宙天体的辐射过程的研究从可见光、射电扩展到X射线、γ射线等高能电磁辐射波段。在高能辐射波段,电磁辐射的波长短到接近或小于一个原子的大小,此时的辐射可像粒子一样深入到物质深层而不再具有光波的反射、折射等波动特性,从而又被称为高能光子。公式E=hν=hc/λ描述了这种电磁辐射的波粒二象性,适用于整个电磁波谱上光子的能量E、波长λ和频率ν之间的关系。如一个波长为4,000埃(1埃=0.1纳米)的蓝光光子的能量为3.1电子伏;一个波长为1埃的X射线光子能量则为12.4千电子伏;而一个波长小于原子核大小(十万分之一埃)的高能γ射线光子,能量可高于1.24千兆电子伏。因此,这里所说的“高能”,首先是指单个光子的能量高,其次是指辐射的总能量比一般恒星、星系的辐射要大的多,如活动星系核、宇宙γ射线暴等。中文名:高能天体物理学外文名:high-energyastrophysics特征:研究宇宙天体高能现象和高能过程大类:物理学

天体物理学现在正处于迅速发展的阶段,也是物理学有可能做出重大突破的方面。20世纪的三分之二个世纪,天文没有人获诺贝尔 奖。1967年实现零的突破,从此短短40年内就有15位天体物理学家获得 诺贝尔物理奖,显见其蓬勃发展的辉煌程度!现在,暗物质、暗能量、 致密星、黑洞、全波段天文学等已展现出天文甚至对最基础的科学也起 到了极大的促进作用。在二十一世纪,物理学有两大“乌云”,“暗物质”和“暗能量”,都属于天体物理学范畴,可见当今天体物理学的重要性。1974年诺贝尔物理学奖----射电综合孔径技术1983年诺贝尔物理学奖----恒星结构和演化(包括白矮星结构)1983年诺贝尔物理学奖----元素形成的核合成1974年诺贝尔物理学奖----脉冲星的发现1978年诺贝尔物理学奖----宇宙微波背景辐射的发现1993年诺贝尔物理学奖----脉冲双星的发现(间接验证了广义相对论)2002年诺贝尔物理学奖----宇宙中微子;2002年诺贝尔物理学奖----宇宙X射线2006年诺贝尔物理学奖----宇宙微波背景辐射黑体谱以及各项异性2011年诺贝尔物理学奖----宇宙加速膨胀。总的来说:是个好发展。

天体物理论文发表

这是天文学的又一创举。 近日,天文学家首次实时拍摄到一颗红超巨星生命结束时的图像。他们目睹了这颗恒星在最后爆炸成为超新星之前的垂死挣扎。观察结果与之前关于红巨星爆炸前行为的理论有出入。 一组天文学家通过夏威夷的两个天文台:位于毛伊岛哈雷阿卡拉的泛星(Pan-STARRS)天文台和位于夏威夷岛莫纳基亚的W. M. Keck天文台,观察了这一戏剧性的变化。他们的观测是“年轻超新星实验(YSE)”瞬态观测的一部分。他们在爆炸前的最后130天里观察了这颗名为SN 2020tlf的超新星爆炸。 介绍这一发现的论文标题是“最后时刻:发光的II型超新星2020tlf在质量损失增强之前的前体发射和表层膨胀”。这篇论文发表在《天体物理学杂志》上,主要作者是Wynn Jacobson-Galán,加州大学伯克利分校的NSF研究生研究员。 Jacobson-Galán在一份新闻稿中说:“这是我们在理解大质量恒星死亡前会做什么方面的一个突破。”“在一颗红超巨星中直接探测到超新星爆发前的活动,以前从来没有在一颗普通的II型超新星中观测到过。我们第一次看到了一颗红超巨星爆炸!” 这一发现可以追溯到2020年的夏天。那时,这颗原恒星的光度急剧上升。Pan-STARRS探测到这一变亮现象,当秋天到来时,这颗恒星爆炸成了现在的SN 2020tlf。这颗超新星属于II型超新星,在II型超新星中,一颗大质量恒星经历了快速坍缩,然后爆炸。 研究小组使用Keck天文台的低分辨率成像光谱仪(LRIS)捕捉到这颗超新星的第一个光谱。LRIS的数据显示,当恒星爆炸时,它周围出现了环绕恒星的物质。这些物质很可能是泛星观测系统在恒星爆炸前的夏天所看到的。 “Keck在提供大质量恒星转变为超新星爆炸的直接证据方面发挥了重要作用,”资深作者Raffaella Margutti说,他是加州大学伯克利分校天文学副教授。“这就像看着一颗滴答作响的定时炸弹。我们从未在一颗垂死的红巨星中确认过如此剧烈的活动,我们看到它产生如此明亮的发射,然后坍塌和燃烧,直到现在。”爆炸后,研究小组转向其他Keck仪器继续观测。来自深度成像和多目标光谱仪(DEIMOS)和近红外梯队光谱仪(NIRES)的数据显示,这颗前恒星的质量是太阳的10倍。这颗恒星位于大约1.2亿光年外的NGC 5731星系中。 该团队的观察结果对II型超新星及其前恒星有了一些新的认识。在这些观测之前,没有人看到过红超巨星在爆炸前呈现出这样的亮度峰值和如此强大的喷发。通常认为他们在最后的日子里应该相对比较平静。 红超巨星在核心坍缩之前喷射出物质。但这种物质喷射的时间尺度比SN 2020tlf要长得多。这颗超新星在坍缩前的130天里会发射环恒星物质(CSM),这让它有点令人困惑。这颗恒星爆炸前的明亮闪光在某种程度上与喷射出的环恒星物质有关,但研究团队并不确定它们是如何相互作用的。 恒星内部导致坍缩的显著变异性令人费解。这颗恒星在爆炸前强烈的光爆表明,在它的内部结构中发生了未知的事情。无论这些变化是什么,它们都会在恒星坍缩和爆炸之前导致巨大的气体喷射。 在他们的论文中,作者讨论了可能导致气体喷射的原因。一种可能是波驱动的质量损失,这发生在恒星演化的晚期阶段。他们写道:“在SN能够将能量注入到外层恒星层之前的最后几年里,氧或氖的燃烧激发了引力波,导致了表层膨胀和爆发的质量损失。”但目前的波驱动模型与前恒星的气体喷射并不相符。它们与前恒星最后130天的半径一致,但与亮度爆发不一致。 在论文的结束语中,作者做了简要的总结:“鉴于从星云光谱中得出的前恒星质量范围,质量损失和前恒星辐射的增强,很可能是恒星内部深层不稳定的结果,最有可能与最后的核燃烧阶段有关。无论是在氖/氧燃烧阶段产生的引力波,还是在前恒星最后130天的硅闪光中产生的能量沉积,都可能喷射出恒星物质,然后在爆炸前通量和早期SN光谱中能被检测到。” “我对这一发现所解开的所有新的‘未知’感到非常兴奋,”Jacobson-Galán说。“探测更多像SN 2020tlf这样的事件将极大地影响我们如何定义恒星演化的最后几个月,将观测人员和理论人员联系起来,寻求解决大质量恒星如何度过它们生命的最后时刻的谜题。”

加利福尼亚州新兹威基瞬态设施的研究人员分析了 SpaceX的 星链卫星 星座 对地面天文观测的影响程度。结果好坏参半。 这篇新论文发表在《天体物理学杂志快报》上,由前加州理工学院博士后学者 Przemek Mróz 领导,提供了一些好消息和一些坏消息。好消息是,星链目前并未给使用新兹维基瞬态装置(ZTF) 的科学家带来问题,该设施位于圣地亚哥附近的加州理工学院帕洛玛天文台。ZTF每两天 使用光学和红外波长波段扫描一次整个夜空,以检测天体的突然变化,例如以前看不见的小行星和彗星、突然变暗的恒星或碰撞的中子星。 但这并不意味着从低地球轨道提供宽带互联网的 星链卫星没有产生影响。这项新完成的成果研究了2019年11月至2021年9月的 历史 数据,发现直接产生于 星链 的 5,301 颗卫星条纹。“这毫不奇怪,随着 SpaceX 部署更多卫星,受影响的图像数量随着时间的推移而增加,但到目前为止,ZTF 的观测业务尚未受到卫星条纹的严重影响,尽管在分析图像观察到卫星条纹数量有所增加的时期,”天文学家在他们的研究中写道。 坏消息与未来形势有关,庞大的卫星 星座 将如何影响未来几年的天文观测,尤其是在黄昏时分进行的观测。事实上,受 星链影响最大的图像是在黎明或黄昏时拍摄的。在 2019 年,卫星条纹在所有暮光图像中不到 0.5%,但到 2019 年 8 月,这一比例已上升至 18%。星链卫星在大约 550 公里的低轨道运行,导致它们在日落和日出时反射更多的阳光,这给黄昏时观测的天文台带来了影响。 天文学家在黎明和黄昏时进行观测,以寻找从我们的角度来看可能出现在太阳旁边的近地小行星。两年前,ZTF 天文学家使用这项技术探测到2020 AV2——第一颗完全在金星轨道内的小行星。新论文中表达的一个担忧是,当 星链达到 10,000 颗卫星时(SpaceX 预计到 2027 年将实现这一目标)在帕洛玛山天文台拍摄的所有 ZTF 图像都将包含至少一个卫星条纹。1月18日发射猎鹰 9 号火箭之后,星链 星座 将由2,000 多颗卫星组成。 波兰华沙大学的 Mróz 表示,他“预计 星链卫星不会影响非暮光图像,但如果其他公司的卫星 星座 进入更高的轨道,这可能会导致问题用于非暮光观察。” 例如,由英国一网卫星 星座 将在1,200 公里的运行高度运行。 研究人员还估计了由于单个卫星条纹而丢失的像素比例,发现它并不大。” 不大是指单个 ZTF 图像中所有像素的 0.1%。也就是说,“仅计算受卫星条纹影响的像素并不能捕捉到问题的全部,例如识别卫星条纹并将其掩盖所需的资源,或者错过第一次检测到物体的机会,”科学家写道. 事实上,正如加州理工学院的天文学家和该研究的合作者托马斯·普林斯在文章中指出的那样,存在很小的机会,即“我们会错过隐藏在卫星条纹后面的小行星或其他事件,但与天气的影响相比,例如多云的天空,这些对 ZTF 的影响相当小。” 科学家们还研究了 SpaceX 为降低星链卫星的亮度而采取的措施。这些措施于 2020 年实施,包括防止阳光过多照射卫星表面的遮阳板。这些措施已将 星链卫星的亮度降低了 4.6 倍,现在的亮度为 6.8 等(最亮的恒星以 1 等亮度发光,而人眼看不到更暗的物体6.0)。 目前的研究仅考虑了 星链对新兹维基瞬态装置的影响。每个天文台都会受到星链和其他卫星的不同影响,包括即将到来的薇拉.鲁宾天文台,预计它将受到庞大卫星 星座 的严重影响。由于无线电干扰、幽灵般的伪影的出现以及其他潜在问题,预计其他天文台也会遇到问题。

外面有那么多的星系、恒星和行星,就真的没有一个外星人?为什么我们还没有发现他们存在的迹象?这是费米悖论的核心问题。在一篇新论文里,两位研究人员提出了下一个显而易见的问题:人类文明需要存活多久才能收到另一个外星文明的消息?他们的答案是 40万年。对于一个只存在了几十万年、大约在 12000 年前才发明农业的物种来说,400000 年是一段很漫长的时光。这是根据对交流地外智能文明(CETI)的一些新研究得出的。论文题为《我们银河系中可能的 CETI 的数量和这些 CETI 之间的通信概率》。作者是北京师范大学天文系的宋文杰和何高。该论文发表在《天体物理学杂志》上。“作为地球上唯一先进的智慧文明,人类最困惑的问题之一是我们是否独一无二。在过去的几十年里,有很多关于地外文明的研究。”研究其他文明总是令人困惑的,因为我们只有一个数据点:地球上的人类。尽管如此,许多研究人员仍将这个问题作为一种思想实验,使用严格的科学指导方针。例如,2020 年的一项研究得出结论,银河系中可能有 36 个 CETI。“我们一直想知道以下问题的答案。首先,银河系中存在多少 CETI?这是一个具有挑战性的问题。我们只能从一个已知的数据点(我们自己)中学习。”作者写道。这就是德雷克方程的用武之地。基于我们对银河系不断增长的了解,德雷克方程试图估计我们银河系中可能有多少 CETI。但德雷克方程有其缺陷。例如,它的一些变量的取值纯粹依赖人类的直觉,所以由它估算出的文明数量是不可靠的。但德雷克方程更像是一个思想实验,而不是实际的计算工具。我们必须从某个地方开始,而德雷克方程就是一个出发点。它也是这项新研究的起点。“大多数关于费米悖论的研究都基于德雷克方程。这种方法明显的困难之处在于,要量化生命可能出现在合适的星球上并最终发展成先进的交流文明的概率是不确定和不可预测的。”那么,如果我们甚至不知道可能有多少个 CETI,又是如何得出 400000 年的答案呢?他们的论文概述了以前为了解银河系其他文明所做的一些科学努力。例如,他们引用了 2020 年的研究,估算银河系中有 36 个 CETI。这个数字来自涉及银河系恒星形成 历史 、金属丰度分布以及恒星在其宜居带内拥有类地行星的可能性的计算。那篇论文澄清说,“[T]外星智能和交流文明的主题将完全处于假设领域,直到做出任何积极的检测”。但他们也指出,科学家们仍然可以基于逻辑假设产生有价值的模型,“这至少可以产生对此类文明发生率的合理估计”。这项研究提出了一些相同的想法。它处理两个参数。第一个涉及有多少类地行星是可供居住,以及这些行星上的生命多久演变成 CETI。第二个是主星演化的哪个阶段会诞生CETI。研究人员在计算中为这些参数中的每一个都赋予了一个变量。生命出现并演化成CETI的概率为(fc),主星演化所需的阶段为(F)。宋和高 使用这些变量的不同值进行了一系列 Monte Carlo 模拟。他们得出了两种情况:乐观的前景和悲观的前景。乐观情景使用 F = 25% 和 fc = 0.1%。因此,在 CETI 出现之前,一颗恒星的生命周期必须至少达到 25%。对于每个类地行星,CETI 出现的几率只有 0.1%。这些乐观的变量取值创造了超过 42000 个 CETI,这听起来很多,但考虑同时出现的时间窗口,则大大减少了通信机会。此外,我们还需要再生存 2000 年才能实现双向通信。这听起来几乎触手可及。但这是让宇宙看起来很友好并被其他欢迎文明居住的乐观情景。也许他们中的一些人已经在互相交谈,我们只需要加入群聊。现在是悲观的情况。在悲观情景中,F = 75%,fc = 0.001%。因此,一颗恒星要到更老的时候才能拥有 CETI,并且任何单个类地行星拥有 CETI 的概率下降到微乎其微。这种悲观的计算在银河系中只产生了大约 111 个 CETI。更糟糕的是,我们还需要再活 40 万年才能与他们进行双向交流。 (从这角度来看,星际迷航开始于 22 世纪中叶。)这就是大过滤器的用武之地。大过滤器是阻碍物质变成生命然后发展成为先进文明的东西。作者提出了这个话题:“然而,有人提出,由于许多潜在的破坏,例如人口问题、核毁灭、突然的气候变化、流氓彗星、生态变化等,文明的寿命很可能是存在自我限制的。如果世界末日论点是正确,对于某些悲观的情况,人类在灭绝之前可能不会收到来自其他 CETI 的任何信号。”科学家们在他们的论文中写道:“fc 和 F 的值充满了许多未知数。”我们无法确定地知道这些东西,但我们不得不去 探索 它。这是人性的一部分。他们写道:“目前尚不确定有多少比例的类地行星可以孕育生命,而生命演化为 CETI 并能够向太空发送可探测信号的过程是高度不可预测的。”人类会遇到另一个文明吗?这是我们最引人注目的问题之一,几乎可以肯定,现在看到此文的人永远不会有答案。或者,很可能,我们永远不会有答案,而大过滤器会阻止我们找到答案。但是,如果人类需要一个目标,一个可以坚持的目标可以保持希望,那么与另一个 CETI 交流的梦想可能会实现。

中国天体物理学期刊投稿

可以给《天文爱好者》、《中国国家天文》这两个投稿。《天文爱好者》,目前国内最有名、历史最久的天文杂志;《中国国家天文》,刚发行的;《天文爱好者》杂志,由中国科学技术协会主管,中国天文学会、北京天文馆主办,是我国创刊最早、影响最大的天文科普期刊。《中国国家天文》杂志以传播科学知识、弘扬科学精神为基本宗旨,以天文与人文结合为办刊理念,以加大原创性、提高可读性、不断扩大社会影响为发展目标,通过天文学学科延伸和与其它学科的交叉,集天文、人文于一体,以公众喜闻乐见的方式全方位地展示天文学及其相关科学的发展和最新成就,办成一本富有时代精神,高品位、综合性、多角度、大视野、印刷精美、图文并茂的现代科普杂志,同时兼具艺术欣赏性和珍藏实用价值。编辑部现位于北京中国国家天文台。杂志内容涵盖天文、地理、历史、考古等诸多学科。旨在传播科学知识,弘扬人文精神。

aymi曰:即使知道了,一般人也订阅不到,更不说投稿资格。所以问这个是白问了的。

著名期刊--天体物理学杂志网站:

宇宙发展都是从黑暗走向光明。恒星中的文明以是高文明,地球文明从原始文明到初级现在是初级文明到中级文明的,过渡期,人类走向了真正的和平,才会进入中级阶段,地球变成了恒星,就进入了高级阶段

相关百科

热门百科

首页
发表服务