首页

> 学术论文知识库

首页 学术论文知识库 问题

高分子溶液的性质研究论文

发布时间:

高分子溶液的性质研究论文

从这说起吧:从神秘的形状记忆合金到未来能源材料之星--储氢合金古老的陶瓷--旧貌换新颜从一个古老的材料王国到现代无机材料的再度辉煌.威力无比的先进结构陶瓷到奇妙无穷的功能陶瓷.年轻的高分子材料--千姿百态20世纪新兴的材料王国--现代生活的高分子材料功能高分子各显神通先进的复合材料--巧夺天工新型功能材料--人类文明进步的阶梯生物材料,信息材料,环境材料,纳米材料,能源材料和智能材料材料-人类社会文明大厦的基石材料科学技术几个活跃领域1.生物材料:包括生物医用材料和仿生材料.2.智能材料:如压电陶瓷和形状记忆合金.3.环境材料; 4 .纳米材料5.功能高分子材料: 吸水性高分子,导电高分子,发光有机高分子,高分子形状记忆,高分子电解质,高分子压电,有机非线性光学材料,可降解高分子及高分子液晶等.6.计算机模拟与材料设计: 通过计算机模拟来预测材料的结构,性能及其间的关系,从而达到材料设计,形成了一门"计算材料科学".高分子科学既是一门应用学科,也是一门基础学科,它是建立在有机化学,物理化学,生物化学,物理学和力学等学科的基础上逐渐发展而成的一门新兴学科.高 分 子 科 学高 分 子 化 学研究聚合反应和高分子化学反应原理,选择原料,确定路线,寻找催化剂,制订合成工艺等.研究聚合物的结构与性能的关系,为设计合成预定性能的聚合物提供理论指导,是沟通合成与应用的桥梁.高 分 子 物 理高 分 子 加 工研究聚合物加工成型的原理与工艺.高分子科学l 1839年美国人Goodyear发明了天然橡胶的硫化.l 1855年英国人Parks制得赛璐璐塑料(硝化纤维+樟脑).l 1883年法国人de Chardonnet发明了人造丝.l 高分子(Macromolecular,Polymer)概念的形成和高分子科学的出现始于20世纪20年代.l 1920年德国Staudinger发表了他的划时代的文献"论聚合",提出高分子长链结构的概念.一,高分子科学的发展1909年贝克兰合成酚醛树脂1911年英国马修斯合成聚苯乙烯1912年聚氯乙烯被合成1927年合成出聚甲基丙烯酸甲酯1933年高压聚乙烯问世1938年四氟乙烯被聚合…1953年齐格勒在低压条件下合成聚乙烯,随后纳塔合成出聚丙烯,1963齐格勒,纳塔获得诺贝尔化学奖.聚合产生的奇迹塑料的发现1869年31岁的印刷工人约翰 海阿特发明赛璐珞1909年贝克兰发明酚醛树脂现代生活中的高分子材料-塑料现代生活中的高分子材料-工程塑料橡胶的发展橡树之泪丑却受宠的合成橡胶现代生活中的高分子材料-橡胶1855年瑞士人奥蒂玛斯把纤维素放在硝酸中得到硝化纤维素溶液,制得第一根人造纤维;1884年查唐纳脱把硝化纤维素放在酒精和乙醚中得到溶液,得到人造丝;纤维的发展功能高分子材料的发展功能高分子材料于20世纪60年代末开始得到发展. 功能高分子是指具有化学反应活性,催化性,光敏性,导电性,磁性,生物相容性,药理性,选择分离性,或具有转换或贮存物质,能量和信息作用等功能的高分子及其复合材料.目前已达到实用化的功能高分子有:离子交换树脂,分离功能膜,光刻胶,感光树脂,高分子缓释药物,人工脏器等等.高分子敏感元件,高导电高分子,高分辨能力分离膜,高感光性高分子,高分子太阳能电池等功能高分子材料,即将达到实用化阶段.功能高分子材料-高吸水性树脂高吸水性树脂就是一种功能高分子材料,它具有优异的吸水,保水功能,可吸收自身重量几百倍,上千倍,被冠予"超级吸附剂"的桂冠.主要类型有聚丙烯酸酯类,聚乙烯醇类,醋酸乙烯共聚物类,聚氨酯类,淀粉接校共聚物类等.聚丙烯酸酯类以丙烯酸和烧碱为主要原料,采用逆向聚合法而制得.可以做成妇女卫生巾,婴幼儿纸尿布以及纸餐巾等,此外还可用作室内空气芳香剂,蔬菜,水果的保鲜剂,防霉剂,阻燃剂,防潮剂以及吸水后体积膨胀的儿童玩具等.目前,全世界总生产能力已经超过130万吨/年,其中日本触媒化学公司是目前世界上最大的生产公司,生产能力达到25万吨/年.高分子膜是指那些由具有特殊分离功能的高分子材料制成的薄膜,能有选择地分离物质.目前应用于海水淡化,反渗透,膜萃取,膜蒸馏等技术领域.高分子分离膜建于沙特阿拉伯的基塔自来水厂,是世界上最大的海水淡化厂,日供应淡水12000吨,主要使用醋酸纤维素分离膜装置.光敏高分子材料以光敏树脂为代表,主要用于照相,印刷制版,印刷集成电路等.印刷工业应用聚乙烯醇酸酯,光照时交联而不溶而保留下来,得到凸版.光解性的光刻胶,重氮醌接到酚醛树脂上,光作用下重氮醌分解,图像被保留,分辨率达10纳米.光敏高分子材料1950年人们逐渐开始配戴材质是聚甲基丙烯酸甲酯(PMMA)的隐形眼镜,具有优越的光学特性,又能矫正角膜性散光.1960年捷克学者利用十年的时间发明了软性隐形眼镜的材料,就是一直延用至今的聚甲基丙烯酸羟乙酯(HEMA).功能高分子材料-隐形眼镜在塑料中加入蓄光型发光材料经加工就可制成发光塑料.发光塑料是近年来兴起的一种高附加值新型功能材料.其产品如:交通领域通道标识,楼梯标识,标志线;发光涂料,发光开光,发光壁纸,工艺品,玩具,体育休闲用品.功能高分子材料--发光材料导电高分子自发现之日起就成为材料科学的研究热点.目前,它已成为一门新型的多学科交叉的研究领域,并在世界范围内吸引了一大批材料设计专家.功能高分子材料-导电高分子材料液晶高分子作为一类新型的高性能材料,极大地引起了科学界和工业界的关注,得到了广泛的应用,并发展为高分子科学中最活跃的领域之一.液晶高分子竹子地板地毯则可以选择耐久的羊毛制品或者PET地毯主要采用水性涂料,粉末涂料和辐射固化涂料等用于户外美化环境的产品:可以回收的塑料做成长椅,桌子和交通标志牌.绿色建材生物降解高分子材料目前自然界的污染存在"白色"(塑料)和"黑色"(橡胶)垃圾.发展可生物降解的产品是必要而且急需的,但许多具体问题不能解决.1,可降解塑料袋承重能力低; 2,可降解塑料袋色泽暗淡发黄,透明度低;3,是价格偏高,成本难以接受.一次性医疗用品如输液管,药品瓶,医用胶粘剂等.诊断仪器如听疹器,内窥镜及各种其他诊断仪器.体外装置如人工假肢,血液透析或灌注装置等. 人体器官如心脏导管,心脏补片,人工心脏泵材料,气管导管,人工膀胱,人工脑膜,动脉补片,人工血管及人工关节等.整形外科手术材料如面部整形植入物等.生物降解材料是指那些可由体液,酶或微生物的作用而引起分解的材料,用于缝线,人体植入,控释药物等. 医用高分子材料的种类人造心脏生物材料人造关节人工肾别具特色的复合材料碳纤维复合材料玻璃钢复合材料至今高分子科学诺贝尔奖获得者H. Staudinger (德国) : 把"高分子"这个概念引进科学领域,并确立了高分子溶液的粘度与分子量之间的关系(1953年诺贝尔奖) (德国), (意大利) : 乙烯,丙烯配位聚合 (1963年诺贝尔奖)P. J. Flory (美国): 聚合反应原理,高分子物理性质与结构的关系(1974年诺贝尔奖).H. Shirakawa白川英树(日本), Alan G. MacDiarmid (美国), Alan J. Heeger (美国) :对导电聚合物的发现和发展(2000年诺贝尔奖).de Gennes(法国):软物质,普适性,标度,魔梯.2. 我国高分子的科学发展l 我国高分子研究起步于50年代初,唐敖庆于1951年,发表了首篇高分子科学论文. l 长春应化所1950年开始合成橡胶工作(王佛松,沈之荃);l 冯新德50年代在北京大学开设高分子化学专业.l 何炳林50年代中期在南开大学开展了离子交换树脂的研究.l 钱人元于1952年在应化所建立了高分子物理研究组,开展了高分子溶液性质研究.l 钱保功50年代初在应化所开始了高聚物粘弹性和辐射化学的研究.l 徐僖先生50年初成都工学院(四川大学)开创了塑料工程专业.l 王葆仁先生1952年上海有机所建立了PMMA,PA6研究组.我国与高分子领域的中科院院士:王葆仁 冯新德 何炳林 钱保功 钱人元 于同隐 徐 僖 王佛松 程镕时 黄葆同 卓仁禧 沈家骢 林尚安 沈之荃 白春礼 周其凤 曹 镛 杨玉良等.二十一世纪的高分子科学在人类历史上,几乎没有什么科学技术象高分子科学这样对人类社会做出如此巨大的贡献.在二十一世纪来临之际,高分子科学及其相关技术面临着新的机遇和挑战.面临机遇和挑战的一些领域:1.催化过程和新的聚合方法2.非线性结构聚合物3.超分子组装和高度自组织的大分子4.聚合物结晶和形态工程5.刺激-响应聚合物6.聚合物的循环利用和处理高分子材料的发展方向1.高性能化2.高功能化3.复合化4.精细化 5.智能化我们应注重学习,学科交叉,独立思考,独立创新,为国民经济发展,解决生产实践中存在的学术问题,提高高分子科学的学术水平.从上面所叙述材料的发展可以看到,科学发展是无止境的,一时的满足和安于现状就会导致落后,不断进取,不断创新才更有所作为. 人类需求是推动科学发展的动力高分子物理教学内容为揭示高分子材料结构与性能之间的内在联系及其基本规律.高分子结构是高分子性能的基础,性能是高分子结构的反映,高分子的分子运动是联系结构与性能的桥梁.即通过分子运动的理解建立结构与性能的内在联系,掌握结构与性能的关系,通过合成,改性,加工改善聚合物的性能,满足需要,为聚合物的分子设计和材料设计打下科学基础,为高分子材料的合成,加工,成型,检测及应用等提供理论依据.二,高分子物理的教学内容高分子的链结构高分子的凝聚态结构高分子溶液分子量及分子量分布聚合物的转变与松弛橡胶弹性聚合物的粘弹性聚合物的屈服与断裂聚合物的流变性能聚合物的其它性能二,高分子物理的教学内容高分子的结构:包括高分子链的结构和凝聚态结构,链段,柔顺性,球晶,片晶,分子量和分子量分布, θ溶液概念.高分子材料的性能:力学性能,热,电,光,磁等性能.力学性能包括拉伸性能,冲击性能等,银纹,剪切带,强度,模量.高分子的分子运动:玻璃化转变,粘弹性,熵弹性,结晶动力学,结晶热力学,熔点,流变性能,粘度,非牛顿流体. WLF方程,Avrami方程,橡胶状态方程,Boltzmann叠加原理.高分子物理的重点内容聚合物结构与性能的关系HOW 研究方法结构:长链,柔性,缠结,链段运动性能:质轻,易着色,韧性,耐腐蚀,易加工,减震,生物兼容,易剪裁WHY 研究的目的指导大分子设计指导加工发展高分子材料1.高聚物结构的特点(与小分子相比)①高分子的链式结构:高分子是由很大数目(103—105 数量级)的结构单元组成的.②高分子链的柔顺性:高分子链的内旋转,产生非常多的构象(如:DP=100的PE,构象数1094),可以使主链弯曲而具有柔性.③高分子结构具有多分散性,不均一性.④高分子凝聚态结构的复杂性:晶态,非晶态,球晶,串晶,单晶,伸直链晶等.其聚集态结构对高分子材料的物理性能有很重要的影响.聚合物材料(塑料,橡胶,纤维,)具有以下优点:①质量轻,相对密度小.LDPE (),PTFE() ②良好的电性能和绝缘性能. ③优良的隔热保温性能,绝热材料. ④良好的化学稳定性,耐化学溶剂. ⑤良好的耐磨,耐疲劳性质.橡胶是轮胎不可替代的材料.⑥良好的自润滑性,用于轴承,齿轮. ⑦良好的透光率.树脂基光盘,树脂镜片. ⑧宽范围内的力学可选择性.⑨原料来源广泛,加工成型方便,适宜大批量生产,成本低. ⑩漂亮美观的装饰性.可任意着色,表面修饰.2.高分子材料的性能特点性 质 和 用 途塑 料纤 维橡 胶涂 料胶粘剂功能高分子以聚合物为基础,加入(或不加)各种助剂和填料,经加工形成的塑性材料或刚性材料.具有可逆形变的高弹性材料.纤细而柔软的丝状物,长度至少为直径的100倍.涂布于物体表面能成坚韧的薄膜,起装饰和保护作用的聚合物材料能通过粘合的方法将两种以上的物体连接在一起的聚合物材料具有特殊功能与用途但用量不大的精细高分子材料3、汽车工业:塑料件,仪表盘,保险机,油箱内饰件,坐垫等军工工业:飞机和火箭固体燃料(低聚物),复合纤维等3. 高分子材料的应用高分子材料遍及各行各业,各个领域:包装,农林牧渔,建筑,电子电气,交通运输,家庭日用,机械,化工,纺织,医疗卫生,玩具,文教办公,家具等等.电气工业:①绝缘材料(导热性,电阻率)等,导电高分子②电子:通讯光纤,电缆,电线,光盘,手机,电话③家用电器:外壳,内胆(电视,电脑,空调)等医疗卫生中的应用: 人工心脏,人工脏器,人工肾(PU),人工肌肉,输液管,血袋,注射器,可溶缝合线,药物释放等.防腐工程:耐腐蚀性,防腐结构材料.如水管阀门(PTFE):230~260℃长期工作,适合温度高腐蚀严重的产品.功能高分子:离子交换树脂,高分子分离膜,高吸水性树脂,光刻胶,感光树脂,医用高分子,液晶高分子,高导电高分子,电致发光高分子等. 3. 高分子材料的应用4.高分子物理知识解决实际生产问题①分子量,分子量分布影响高分子材料性能:分子量大:材料强度大,但加工流动性变差,分子量要适中.分子量分布:a纤维,分布窄些,高分子量组分对强度性能不利.b橡胶:平均分子量大,加工困难,所以经过塑炼,降低分子量,使分布变宽起增塑作用.②凝聚态结构影响高分子材料性能: 结晶使材料强度↑,脆,韧性↓.另外球晶大小也影响性能,球晶不能过大.可加成核剂,减小球晶尺寸;改变结晶温度,多成核.③ 加工工艺影响高分子材料性能:粘度低,加工容易. 聚碳酸酯,改变温度,降低粘度.而聚乙烯:改变螺杆转速,提高注射压力和剪切力→降低粘度.5.如何学好高分子物理 高分子物理内容多,概念多,头绪多,关系多,数学推导多.紧紧抓住高聚物结构与性能关系这一主线,将分子运动和热转变作为联系结构与性能关系的桥梁,把零散的知识融合成一体.课堂内认真听讲,注意概念,方法,总结规律.我们要注重培养自学能力,在课堂上和课外能够认真看书.独立思考,亲自动手推演例题和习题.以启发式为主导的教学方法,废除以往注入式的教学方法 .[1]何曼君,陈维孝,董西侠,《高分子物理》,上海,复旦大学出版社,1990年.[2]马德柱,何平笙等,《高聚物的结构与性能》,北京,科学出版社,1995年.[3], Macromolecular Physics, Academic Press, New York, 1973.[4]P. J. Flory, Principles of Polymer Chemistry, Cornell Uni. Press, New York, 1953. [5]de Genes P. G., Scaling Concepts in Polymer Physics, Cornell Uni. Press, New York, 1979.[6]G. R. Strobl, The Physics of Polymer, Springer,1996.谢谢O(∩_∩)O.

分子量大!^_^

高分子溶液的行为与理想溶液有很大偏离,偏离主要表现在高分子溶液的混合熵比小分子理想溶液的混合熵要大很多。高分子溶液的性质存在着分子量依赖性,而高聚物分子量又具有不均匀性的特点,因此增加了高分子溶液性质的复杂性。

1.高分子电解质水溶液带电大分子离子为阴离子者带负电荷如海藻酸,而大分子离子为阳离子者带正电荷,如琼脂等。两性电解质具有等电点,其带电情况与介质的pH有关,如明胶类,pH值<等电点时,带正电;反之,则带负电。2.亲水性高分子溶液渗透压亲水性高分子溶液与相同摩尔浓度的低分子溶液比较,表现出较高的渗透压。3.高分子溶液的黏度与分子量高分子溶液的粘性在低浓度时与浓度无关,并可通过粘度法测高分子的分子量,【η】=KMa4.高分子溶液的稳定性高分子的溶剂化是高分子溶液稳定的主要原因,影响高分子溶液稳定性的因素有:(1)溶液中加入大量电解质、破坏水化膜,使其溶解性能降低,这一过程称为盐析,主要是阴离子起作用。(2)溶液中加入脱水剂如乙醇、丙酮等,可使其溶解性能降低,脱水析出。(3)长期放置发生凝结而沉淀,医|学教育网搜集整理称之为陈化现象。(4)由于盐、pH、絮凝剂等因素影响,发生凝结而沉淀,称为絮凝现象。(5)线性高分子溶液在一定条件下产生胶凝,形成凝胶。(6)相反电荷的两种高分子溶液混合,会因相反电荷中和而产生凝结,这是制备微囊的根据。

高分子溶液的性质研究论文目录

ML28-1 杯芳烃化合物的合成及其在氟化反应中的相转移催化作用ML28-2 高效液相色谱分离硝基甲苯同分异构体ML28-3 甲烷部分氧化反应的密度泛函研究ML28-4 硝基吡啶衍生物的结构及其光化学的研究ML28-5 酰胺衍生的P,O配体参与的Suzuki偶联反应及其在有机合成中的应用ML28-6 磺酰亚胺的新型加成反应的研究ML28-7 纯水相Reformatsky反应的研究ML28-8 一个合成邻位氨基醇化合物的绿色新反应ML28-9 恶二唑类双偶氮化合物的合成与光电性能研究ML28-10 CO气相催化偶联制草酸二乙酯的宏观动力学研究ML28-11 三芳胺类空穴传输材料及其中间体的合成研究ML28-12 光敏磷脂探针的合成、表征和光化学性质研究ML28-13 脱氢丙氨酸衍生物的合成及其Michael加成反应研究ML28-14 5-(4-硝基苯基)-10,15,20-三苯基卟啉的亲核反应研究ML28-15 醇烯法合成异丙醚的研究ML28-16 手性螺硼酸酯催化的前手性亚胺的不对称硼烷还原反应研究ML28-17 甾类及相关化合物的结构与生物活性关系研究ML28-18 金属酞菁衍生物的合成与其非线性光学性能的研究ML28-19 新型手性氨基烷基酚的合成及其不对称诱导ML28-20 水滑石类化合物催化尿素醇解法合成有机碳酸酯研究ML28-21 膜催化氧化正丁烷制顺酐ML28-22 甲醇选择性催化氧化制早酸甲酯催化剂的研制与反应机理研究ML28-23 甲酸甲酯水解制甲酸及其动力学的研究ML28-24 催化甲苯与甲醇侧链烷基化反应制取苯乙烯和乙苯的研究ML28-25 烯胺与芳基重氮乙酸酯的新反应研究 ML28-26 核酸、蛋白质相互作用研究及毛细管电泳电化学发光的应用ML28-27 H-磷酸酯在合成苄基膦酸和肽衍生物中的应用ML28-28 微波辐射下三价锰离子促进的2-取代苯并噻唑的合成研究ML28-29 铜酞菁—苝二酰亚胺分子体系的光电转换特性研究ML28-30 新型膦配体的合成及烯烃氢甲酰化反应研究ML28-31 肼与羰基化合物的反应及其机理研究ML28-32 离子液体条件下杂环化合物的合成研究ML28-33 超声波辐射、离子液体以及无溶剂合成技术在有机化学反应中的应用研究ML28-34 有机含氮小分子催化剂的设计、合成及在不对称反应中的应用ML28-35 金属参与的不对称有机化学反应研究ML28-36 黄酮及噻唑类衍生物的合成研究ML28-37 钐试剂产生卡宾的新方法及其在有机合成中的应用ML28-38 琥珀酸酯类内给电子体化合物的合成与性能研究ML28-39 3-甲基-4-芳基-5-(2-吡啶基)-1,2,4-三唑铜(II)配合物的合成、晶体结构及表征ML28-40 直接法合成二甲基二氯硅烷的实验研究ML28-41 中性条件下傅氏烷基化反应的初步探索IIβ-溴代醚新合成方法的初步探索ML28-42 几种氧化苦参jian类似物的合成ML28-43 环丙烷和环丙烯类化合物的合成研究ML28-44 基于甜菜碱的超分子设计与研究ML28-45 新型C2轴对称缩醛化合物合成研究ML28-46 环状酰亚胺光化学性质研究及消毒剂溴氯甘脲的制备ML28-47 蛋白质吸附的分子动力学模拟ML28-48 富硫功能化合物的分子设计与合成ML28-49 ABEEM-σπ模型在Diels-Alder反应中的应用ML28-50 快速确定丙氨酸-α-多肽构象稳定性的新方法ML28-51 SmI2催化合成含氮杂环化合物的研究及负载化稀土催化剂的探索ML28-52 新型金属卟啉化合物的合成及用作NO供体研究ML28-53 磁性微球载体的合成及其对酶的固定化研究ML28-54 甾体—核苷缀合物的合成及其性质研究ML28-55 非键作用和库仑模型预测甘氨酸-α-多肽构象稳定性ML28-56 多酸基有机-无机杂化材料的合成和结构表征ML28-57 5-芳基-2-呋喃甲醛-N-芳氧乙酰腙类化合物的合成、表征及生物活性研究ML28-58 氟喹诺酮类化合物的合成、表征及其生物活性研究ML28-59 手性有机小分子催化剂催化的Baylis-Hillman反应和直接不对称Aldol反应ML28-60 多核铁配合物通过水解途径识别蛋白质a螺旋ML28-61 一种简洁地获取结构参数的方法及应用ML28-62 水杨酸甲酯与硝酸钇的反应性研究及其应用ML28-63 脯氨酸及其衍生物催化丙酮与醛的不对称直接羟醛缩合反应的量子化学研究ML28-64 新型荧光分子材料的合成及其发光性能研究ML28-65 枸橼酸西地那非中间体1-甲基-3-丙基-4-硝基吡唑-5-羧酸的合成研究ML28-66 具有生物活性的含硅混合二烃基锡化合物的研究ML28-67 直接法合成三乙氧基硅烷的研究ML28-68 具有生物活性的含硅混合三烃基锡化合物的研究ML28-69 过氧钒有机配合物的合成及其对水中有机污染物氧化降解的催化性能研究ML28-70 查耳酮化合物的合成与晶体化学研究ML28-71 二唑衍生物的合成研究ML28-72 2-噻吩甲酸-2,2’-联吡啶二元、三元稀土配合物的合成、表征及光致发光ML28-73 3’,5’-二硫代脱氧核苷的合成及其聚合性质的研究ML28-74 β-烷硫基丁醇和丁硫醇类化合物及其衍生物的合成研究ML28-75 新型功能性单体丙烯酰氧乙基三甲基氯化铵合成与研究ML28-76 5-取代吲哚衍生物结构和性能的量子化学研究ML28-77 新型水溶性手性胺膦配体的合成和在芳香酮不对称转移氢化中的应用ML28-78 大豆分离蛋白的接枝改性及其溶液行为研究ML28-79 N-(4-乙烯基苄基)-1-氮杂苯并-34-冠-11的合成和其自由基聚合反应的研究ML28-80 稀土固体超强酸催化合成酰基二茂铁ML28-81 硒(硫)杂环化合物与金属离子的合成与表征ML28-82 新型二阶非线性光学发色团分子的设计、合成与性能研究ML28-83 对△~4-烯-3-酮结构的甾体选择性脱氢生成△~(4,6)-二烯-3-酮结构的研究ML28-84 对苯基苯甲酸稀土二元、三元配合物的合成、表征及荧光性能研究ML28-85 D-π-A共轭结构有机分子的设计合成及理论研究ML28-86 羧酸酯一步法嵌入式烷氧基化反应研究ML28-87 分子内电荷转移化合物溶液及超微粒分散体系的光学性质研究ML28-88 手性氨基烷基酚的合成ML28-89 酪氨酸酶的模拟及酚的选择性邻羟化反应研究ML28-90 单分子膜自组装结构与性质的研究ML28-91 氯苯三价阳离子离解势能面的理论研究ML28-92 香豆素类化合物的合成与晶体化学研究ML28-93 离子液体的合成及离子液体中的不对称直接羟醛缩合反应研究ML28-94 五元含氮杂环化合物的合成研究ML28-95 ONOO~-对胰岛素的硝化和一些因素对硝化影响的体外研究ML28-96 酶解多肽一级序列分析与反应过程建模及结构变化初探ML28-97 一系列二茂铁二取代物的合成和表征ML28-98 N2O4-N2O5-HNO3分析和相平衡及硝化环氧丙烷研究ML28-99 光催化甲烷和二氧化碳直接合成乙酸的研究ML28-100 N-取代-4-哌啶酮衍生物的合成研究ML28-101 电子自旋标记方法对天青蛋白特征分析ML28-102 材料中蛋白质含量测定及蛋白质模体分析ML28-103 具有不同取代基的偶氮芳烃化合物的合成及其性能研究ML28-104 非光气法合成六亚甲基二异氰酸酯(HDI)ML28-105 邻苯二甲酸的溶解度测定及其神经网络模拟ML28-106 甲壳多糖衍生物的合成及其应用研究ML28-107 吲哚类化合物色谱容量因子构致关系ab initio方法研究ML28-108 全氯代富勒烯碎片的亲核取代反应初探ML28-109 自催化重组藻胆蛋白结构与功能的关系ML28-110 二茂铁衍生的硫膦配体的合成及在喹啉不对称氢化中的应用ML28-111 离子交换电色谱纯化蛋白质的研究ML28-112 氨基酸五配位磷化合物的合成、反应机理及其性质研究ML28-113 手性二茂铁配体的合成及其在碳—碳键形成反应中的应用研究ML28-114 水溶性氨基卟啉和磺酸卟啉的合成研究ML28-115 金属卟啉催化空气氧化对二甲苯制备对甲基苯甲酸和对苯二甲酸ML28-116 简单金属卟啉催化空气氧化环己烷和环己酮制备己二酸的选择性研究ML28-117 四苯基卟啉锌掺杂8-羟基喹啉铝与四苯基联苯二胺的电致发光性能研究ML28-118 可降解聚乳酸/羟基磷灰石有机无机杂化材料的制备及性能研究ML28-119 大豆分离蛋白接枝改性及应用研究ML28-120 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-121 常压非热平衡等离子体用于甲烷转化的研究ML28-122 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-123 蛋白质在晶体界面上吸附的分子动力学模拟ML28-124 微乳条件下氨肟化反应的探索性研究ML28-125 微波辅助串联Wittig和Diels-Alder反应的研究ML28-126 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-127 3-乙基-4-苯基-5-(2-吡啶基)-1,2,4-三唑配合物的合成、晶体结构及表征ML28-128 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-129 具有生物活性的1,2,4-恶二唑类衍生物的合成研究ML28-130 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-131 PhSeCF2TMS的合成及转化ML28-132 离子液体中脂肪酶催化(±)-薄荷醇拆分的研究ML28-133 脂肪胺取代蒽醌衍生物及其前体化合物合成ML28-134 萘酰亚胺类一氧化氮荧光探针的设计、合成及光谱研究ML28-135 微波条件下哌啶催化合成取代的2-氨基-2-苯并吡喃的研究ML28-136 镍催化的有机硼酸与α,β-不饱和羰基化合物的共轭加成反应研究ML28-137 茚满二酮类光致变色化合物的制备与表征ML28-138 新型手性螺环缩醛(酮)化合物的合成ML28-139 芳醛的合成及凝胶因子的设计及合成ML28-140 固定化酶柱与固定化菌体柱耦联—高效拆分乙酰-DL-蛋氨酸ML28-141 苯酚和草酸二甲酯酯交换反应产品的减压歧化反应研究ML28-142 有机物临界性质的定量构性研究ML28-143 3-噻吩丙二酸的合成及卤代芳烃亲核取代反应ML28-144 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-145 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-146 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-147 功能性离子液的合成及在有机反应中的应用ML28-148 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-149 气相色谱研究β-二酮酯化合物的互变异构ML28-150 二元烃的混合物过热极限的测定与研究ML28-151 芳杂环取代咪唑化合物的合成及洛汾碱类过氧化物化学发光性能测定ML28-152 卤代苯基取代的咪唑衍生物的合成及其荧光性能的研究ML28-153 取代并四苯衍生物的合成及其应用ML28-154 苯乙炔基取代的杂环及稠环化合物的合成ML28-155 吸收光谱在有机发光材料研发材料中的应用ML28-156 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-157 苯并噻吩-3-甲醛的合成研究ML28-158 微波辅助串联Wittig和Diels-Alder反应的研究ML28-159 超声辐射下过渡金属参与的药物合成反应研究ML28-160 呋喃酮关键中间体—3,4-二羟基-2,5-己二酮的合成研究ML28-161 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-162 吡咯双希夫碱及其配合物的制备与表征ML28-163 负载型Lewis酸催化剂的制备及催化合成2,6-二甲基萘的研究ML28-164 PhSeCF2TMS的合成及转化ML28-165 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-166 多取代β-CD衍生物的合成及其对苯环类客体分子识别ML28-167 多取代_CD衍生物的合成及其对苯环类客体分子识别ML28-168 柿子皮中类胡萝卜素化合物的分离鉴定及稳定性研究ML28-169 毛细管电泳研究致癌物3-氯-1,2-丙二醇ML28-170 超临界水氧化苯酚体系的分子动力学模拟ML28-171 甲烷和丙烷无氧芳构化反应研究ML28-172 2-取代咪唑配合物的合成、晶体结构及表征ML28-173 气相色谱研究β-二酮酯化合物的互变异构ML28-174 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-175 二元烃的混合物过热极限的测定与研究ML28-176 氨基酸在多羟基化合物溶液中的热力学研究ML28-177 分子印迹膜分离水溶液中苯丙氨酸异构体研究ML28-178 杯[4]芳烃酯的合成及中性条件下对醇的酯化反应研究ML28-179 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-180 双氨基甲酸酯化合物的合成及分子自组装研究ML28-181 由芳基甲基酮合成对应的半缩水合物的新方法ML28-182 取代芳烃的选择性卤代反应研究ML28-183 吡啶脲基化合物的合成、分子识别及配位化学研究ML28-184 丙烯(氨)氧化原位漫反射红外光谱研究ML28-185 嘧啶苄胺二苯醚类先导结构的发现和氢化铝锂驱动下邻位嘧啶参与的苯甲酰胺还原重排反应的机理研究ML28-186 酰化酶催化的Markovnikov加成与氮杂环衍生物的合成ML28-187 多组分反应合成嗪及噻嗪类化合物的研究ML28-188 脂肪酶构象刻录及催化能力考察ML28-189 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-190 烯基铟化合物与高碘盐偶联反应的研究及其在有机合成中的应用ML28-191 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-192 邻甲苯胺的电子转移机理及组分协同效应研究ML28-193 负载型非晶态Ni-B及Ni-B-Mo合金催化剂催化糠醛液相加氢制糠醇的研究ML28-194 含吡啶环套索冠醚及配合物的合成与性能研究ML28-195 芳烃侧链分子氧选择性氧化反应研究ML28-196 多组分复合氧化物对异丁烯制甲基丙烯醛氧化反应的催化性能研究ML28-197 多孔甲酸盐[M3(HCOO)6]及其客体包合物的合成、结构和性质ML28-198 纳米修饰电极的制备及其应用于蛋白质电化学的研究ML28-199 对于几种蛋白质模型分子的焓相互作用的研究ML28-200 氨基酸、酰胺、多羟基醇化合物相互作用的热力学研究......

上边仁兄回答不完善,如环状高分子的流动性就比较高,而且高分子溶液的溶解性较低,

1.高分子电解质水溶液带电大分子离子为阴离子者带负电荷如海藻酸,而大分子离子为阳离子者带正电荷,如琼脂等。两性电解质具有等电点,其带电情况与介质的pH有关,如明胶类,pH值<等电点时,带正电;反之,则带负电。2.亲水性高分子溶液渗透压亲水性高分子溶液与相同摩尔浓度的低分子溶液比较,表现出较高的渗透压。3.高分子溶液的黏度与分子量高分子溶液的粘性在低浓度时与浓度无关,并可通过粘度法测高分子的分子量,【η】=KMa4.高分子溶液的稳定性高分子的溶剂化是高分子溶液稳定的主要原因,影响高分子溶液稳定性的因素有:(1)溶液中加入大量电解质、破坏水化膜,使其溶解性能降低,这一过程称为盐析,主要是阴离子起作用。(2)溶液中加入脱水剂如乙醇、丙酮等,可使其溶解性能降低,脱水析出。(3)长期放置发生凝结而沉淀,医|学教育网搜集整理称之为陈化现象。(4)由于盐、pH、絮凝剂等因素影响,发生凝结而沉淀,称为絮凝现象。(5)线性高分子溶液在一定条件下产生胶凝,形成凝胶。(6)相反电荷的两种高分子溶液混合,会因相反电荷中和而产生凝结,这是制备微囊的根据。

溶液褪色机理研究论文

焰色:钠——黄色,铜——绿色,钡——黄绿色,铷——浅紫色,铯——天蓝色,锂——深红色,钙——砖红色,锶——洋红色,············记不住了,见谅。卤素的颜色规律·以及其他反应都有自己的颜色变化,应注意收集。

。。鲅鱼圈的?。。

品红的结构,14号标记碳使得分子形成一个大的共轭体系。

二氧化硫通入品红溶液发生了的反应,分子的大共轭体系被破坏了,颜色发生褪色现象,可见共轭体系的存在与否是很多有机物能否表现出颜色的关键结构。

品红溶于水呈蓝光红色至品红色,微溶于乙醇、丙酮和溶纤素,不溶于其他有机溶剂。遇浓硫酸呈蓝光红色,稀释后呈亮红色,遇浓硝酸为绯红色溶液后转橙色。

该品的水溶液加浓盐酸呈品红色。加氢氧化钠液呈橙棕色。染色时遇铜、铁离子其色泽前者微蓝暗,后者略浅,遇铬离子很少影响。匀染性好。

扩展资料

物质产生颜色的本质实际上是电子跃迁。不同频率(或者说不同波长)的光子中含有不同的能量,物质中的电子吸收了特定波长光子的能量,跃迁到能量更高的轨道,如果说这个吸收光恰好落在人眼可见的范围内,那么物质就可以呈现出颜色——与吸收光互补的颜色。

一般来说,最容易吸收光的能量并产生跃迁的是原子或分子中最活跃、受束缚最小的电子,对于分子,这样的电子一般都是参与成键的电子。

参考资料来源:百度百科-品红溶液

1. 测盐酸与氢氧化钠的体积比时,用Hcl溶液滴定NaoH溶液,用甲基橙做指示剂。甲基橙由黄色变橙色小结:甲基橙(对氨基苯磺酸()、亚硝酸钠()、N,N-二甲基苯胺(,)组成)的变色范围是pH<的变红, 的呈橙色,pH>的变黄。检验碱的话用酚酞现象会比较明显,因为肉眼对红色会比较敏感。酚酞是一种弱有机酸,在pH<的溶液里为无色的内酯式结构,当醌式结构。酚酞的变色范围是 ~ ,所以酚酞只能检验碱而不能检验酸。 (浅红色)(红色)2.盐酸标准溶液的标定用Na2CO3做基准物质。用甲基橙做指示剂滴定终点。由黄色变为橙色。3.食醋中的总酸量的测定。(酚酞指示剂 无→浅粉红色)用NaoH滴定醋酸,滴定突越在碱性范围内,理论终点在Ph 左右,选用酚酞做指示剂。由无色滴定至粉红色。30秒不退色。4.混合碱的测定(采用双指示剂法)(酚酞 红→无、甲基橙黄→橙色)P206 变色 即是测定混合物中NaoH与Na2CO3的量,NaoH为第一强碱,与盐酸反应很剧烈,反应程度高,突越范围大,很容易准确滴定,以酚酞为指示剂,滴定至红色恰好消失,NaoH被完全滴定。而Na2CO3先被滴定至NaHCO3滴定反应到达第一化学计量点,第二计量点用甲基橙滴定,由黄色变为橙色。5.水的硬度的滴定(测定水中的Ca . Mg离子)(EDTA标定,金属指示剂:铬黑T,酒红→纯蓝)测Ca 与Mg离子总量时,用缓冲液调节Ph为10左右,以铬黑T为指示剂,用EDTA标准溶液滴定,铬黑T能与Ca 与Mg离子形成配合物,稳定性Ca>Mg,因此加入铬黑T后,先与Mg生成酒红色配合物,当滴定EDTA标准溶液时,EDTA先与游离出来的Ca离子配位,其次与游离的Mg离子配位,最后争夺酒红色配合物的的Mg离子,使得铬黑T游离出来,溶液由酒红色变为纯蓝色,指示达到终点。(Ca离子测定:用钙指示剂,再用EDTA滴定,溶液由红色——紫色——蓝色。Ca 与Mg离子总量的滴定:加入少量的铬黑T,用EDTA滴定,溶液由红色——纯蓝色,滴定至终点)6.高锰酸钾标准溶液的配制与标定(紫色→微红色) 称取草酸钠 ,加入硫酸,趁热用高锰酸钾滴定至微红色,即可。7.草酸钙的制备 先碳酸钙用盐酸溶解,再加入草酸铵,再往溶液中加入甲基橙,此时显红色,慢慢加入氨水,溶液由 红色——白色——乳黄色——黄色。滴定终点。8.草酸钙中钙含量的测定 用硫酸先溶解草酸钙,再在75~85°下用高锰酸钾标准溶液滴定至粉红色。30秒不退色。9.用分光光度法测定铁的时候 亚铁离子与邻菲罗啉生成橘红色的配合物,配合物的最大吸收波长为510。主要化学试剂无色酚酞(遇酸不变色,遇碱变红色),紫色石蕊(遇酸变红色,遇碱变蓝色),碘(鉴别淀粉), 三氯化铁(鉴别苯酚),溴水(鉴别三溴苯酚),氧化剂:KMnO4 HClO KCrO4 双氧水酸:HCL H2SO4 HNO3王水 浓硝酸、浓盐酸(1:3)碱: NaOH KOH Ca(OH)2 CaO 氨水盐: Na2CO3 CuSO4 KI另外还有络和物,如氢氧化二氨合银,可鉴别醛基, 氢氧化铜也可鉴别醛基.

质性研究论文的分析

一、质性研究方法的定义及特点“质性研究”这个词在台湾、港、澳地区用得比较多,在大陆有的称其为“质的研究”、“质化研究”;还有的为将其与定性研究、定量研究相比较,称为“定质研究”。1.质性研究的定义所谓质性研究,就是“以研究者本人为研究工具、在自然情境下采用多种资料收集方法对社会现象进行整体性探究、使用归纳法分析资料和形成理论、通过与研究对象互动对其行为和意义建构获得解释性理解的一种活动”。 2.质性研究的特点:1) 自然主义的探究传统质性研究是在自然情境下,研究者与被研究者直接接触,通过面对面的交往,实地考察被研究者的日常生活状态和过程,了解被研究者所处的环境以及环境对他们产生的影响。自然探究的传统要求研究者注重社会现象的整体性和关系性。在对一个事件进行考察时,不仅要了解事件本身,而且要了解事件发生和变化时的社会文化背景以及对该实践与其他事件之间的联系。2) 对意义的“解释性理解”质性研究的主要目的是对被研究者的个人经验和意义建构作“解释性理解”,从他们的角度理解他们的行为及其意义解释。由于理解是双方互动的结果,研究者需要对自己的“前设”和“偏见”进行反省,了解自己与对方达到理解的机制和过程。3) 研究是一个演化的过程随着实际情况的变化,研究者要不断调整自己的研究设计,收集和分析资料的方法,建构理论的方式。因此对研究的过程必须加以细致的反省和报道。4) 使用归纳法,自下而上分析资料质性研究中的资料分析主要采纳归纳的方法,自下而上在资料的基础上建立分析类别和理论假设,然后通过相关检验得到充实和系统化。因此,“质性研究”的结果只适用于特定的情境和条件,不能推广到样本之外。5) 重视研究关系由于注重解释性理解,质性研究对研究者与被研究者之间的关系非常重视,特别是伦理道德问题。研究者必须事先征求被研究者的同意,对他们所提供的信息严格保密,与他们保持良好的关系,并合理回报他们所给予的帮助。 “质性研究”就是一种“情境中”的研究。质性研究的特点决定了这是一种非常适合教育领域的研究。如何选择研究的方法从实际操作的层面看,研究方法主要由如下几个方面组成:进入现场的方式、收集资料的方法、整理和分析资料的方法、建构理论的方式、研究结果的成文方式。

一、哲学研究:哲学研究也称为思辨研究或理论研究。从论证的方式来看,哲学研究分为演绎法、归纳法和类比法。从研究的主题来看,哲学研究常用的方法有:本质研究(是什么)、价值研究(为什么)和对策研究(怎么办)。 (一)、价值研究的主题一般表述为“论……的价值”,与之类似的主题还有“论……的意义”、 “论……的作用”,与之相关的另一种表述方式为“……最有价值”、 “……有什么用”。此类价值研究直接讨论某事或某物的价值,此类研究似乎理所当然是有意义的,但是,某些研究虽然有实践意义,却没有理论意义,某项研究是否有理论意义,主要取决于研究者是否提供了有说服力的理论辩护。价值研究往往呈现为“有立场的研究”或“强立场的研究”,甚至显示为强烈的价值判断的研究。价值研究主要包括评价研究和批判研究。其中,批判研究是价值研究的核心方法或核心精神。 (二)、本质研究的主题一般表述为“论……的本质”,与之类似的主题还有“论……的特征”本质研究相关的语法结构为“是什么”或“有什么”。与“是”相关的表述形式包括“何谓……” “……意味着……”。选择本质研究需要有一个前提那就是,研究者需要掌握本质研究的论证技术或技巧。 (三)、批判研究也称为元研究。元研究主要是对已有研究的研究,而且主要聚焦于方法论的反思和批判,也主要是对研究自身的方法论的反思,“元研究”主要呈现为教育认识论、教育研究方法论的反思和教育语言分析。批判研究也是哲学的本性,批判研究可能导致某种“重建”或“整体转型”,主要立足于系统的反思和前提性的批判。 论文: 此类研究方法中,选择的是《南国农先生现代化教育思想的理论价值与实践意义》,作者是新疆师范大学现代教育技术系的任榜坤和新疆电化教育馆的马升明。文章伊始,就对南国农先生提出的现代教育思想做了背景的铺垫,接下来讨论了现代教育思想的基本内涵以及现代化教育思想的历史背景,接着文章讨论了现代化教育思想的理论价值与实践意义,文章直接讨论了现代化教育思想的价值,文章从四个方面进行了理论价值的探讨。作者认为南先生的现代化教育思想,首先不仅会对实施素质教育进程中关于教育思想、模式、方法、评价的改革和教育环境条件建设产生积极影响;第二,它会对学校特别是中小学校的现代化建设发挥具体指导作用,第三,它会对电化教育――教育技术的内涵发展起到有力推动作用。 二、实践研究:实践研究主要表现为日常的教育改革、经验总结和教育对策。 (一)、教育改革类似教育实验,如果教育改革落实到某种具体的课程或者课标中,那么这种实践性的研究就称为“教学研究”或“课例研究”。如果教育改革的主体是老师或者其他教育工作者,那么这类研究就可以称为“实践的行动研究”。一般代课老师的“课堂教学研究”,班主任的“班级管理研究”,以及涉及到学校课程开发的“校本课程开发研究”以及“地方课程开发研究”等。 (二)、经验总结也可称之为“教育反思”,这种研究方法适合一线教师的课程论文写作,如果教师以反思的方式改进自己教学的不足,这种教学称之为“反思性教学”。这种经验总结可以分为短期的教育经验总结、季度经验总结、以及年度经验总结。短期的经验总结比如:班主任工作日志、教育管理日志,这种工作总结对于教学效果的影响显著,能够及时发现教学中的不足,以便及时弥补。教育经验总结从宏观上可以分为自我教育经验总结和他人教育经验总结。 (三)、某种对策研究或教育理想、方案设计都属于实践研究。对策研究的主题一般表述为“论……的对策”或“论……的策略”或“论……的发展方向”等。教育对策研究或教育理想、方案设计只是研究者比较随意的“设想”、“看法”,而并不为这些设想、看法提供系统的论证。实践研究中的对策研究虽然也需要对所提出的策略和方案作比较周全的考虑,但它只提供条款式的、文件式的实施建议或实施方案,而不提供“为什么这样做”的批判性分析或系统论证,这与哲学研究有所区别。实践研究还可以将教育对策或教育理想、方案设计转化为调查研究或实证研究的“假设”,并使之在调查或实验中获得验证和讨论,此时,实践研究转化成为实证研究。 论文: 三、实证研究中的量化研究  量的调查研究主要包括问卷法、内容分析法和元分析,与之相关的方法还包括测量法、话语分析法等等,量的研究主要采用数字和量度来提交研究报告。 (一)、问卷法 问卷法和测量法都属于调查研究,一般用于大样本的调查研究,并辅以观察法和访谈法,牵扯抽样和统计,与教育统计学有关。 (二)、内容分析法 内容分析法是对传播内容所隐含的相关趋势或倾向进行归纳话而分析,一般显示为量的研究,并有学者提出应该与质化的内容分析相互补充,内容分析一般包括文本分析、言语行为的互动分析和话语分析。 (三)、元分析法 元分析定义为:为了整合已有结论,而对大量的分析结果进行统计分析,量的元分析主要是收集并整合某个主题的研究数据,并以统计的方式从已有的资料中归纳出新的结论。量的元分析主要有三个步骤:确定研究的问题、数据的搜集、统计分析和解释、研究结果的呈现。 论文: 四、实证研究中的质性研究:质的研究主要采用文字叙述的方式提交研究报告,质的调查研究主要包括人类学研究(访谈法、观察法和档案法)、现象学研究(体验研究)和自传法。 (一)、人类学研究 人类学研究的研究对象一般是普通意义上的人或某一类群体,学习研究对象的语言和行为,收集研究对象的实物、照片、日志等等,实证研究中的历史研究,“三角互证法”是为从多角度收集资料并验证资料的可靠性而使用的方法,是指运用同一种方法去调查不同的对象,也指采用多种渠道、多种方法,比如访谈法、观察法、问卷法等等,去获取不同类型的信息,以便相互印证。 论文: 《基于Moodle平台的混合式学习教学设计研究——以高中信息技术课程为例》  作者阔宇 从论文整体结构来看,论文首先是理论背景的研究,作者从问题的研究背景、研究意义、相关概念的界定以及国内外的研究现状,研究方法和内容,混合式学习教学设计的理论基础等方面为中小学Moodle平台的混合式学习教学设计研究提供基础。接下来作者对基于Moodle平台的教学案例进行分析,这里边包括教学内容、教学目的、学生情况、Moodle模块功能进行分析。从课堂真实模块进行分析总结经验,在实践研究的基础上进行实证研究。 五、实证研究中的历史研究  教育研究主要以“人”为研究对象,这使历史研究可能成为教育研究中最重要的方法, 历史研究因其叙述历史事实而更容易显示出深切著明的效应,历史研究所面对的研究对象是比较稳定的文本,它既不像试验研究那样容易受到无关因素的干扰,也不像调查研究那样因缺乏资料而无话可说,而且从历史研究的角度看,“现实”是一个相对概念,一切现代都正在成为过去,历史研究可以理解为当代史,从研究主题看,历史研究分为思想研究、制度史研究和学术研究,从研究方法上看,历史研究可以分为历史的考证研究、历史的叙述研究和历史的解释研究。 (一)、历史的考证研究 考证研究和叙述研究其实就是历史的调查研究,更多依赖于研究者个人的判断及其选择的视角,不同的研究者会存在不同的研究视角和观点,因此不同于其他实证研究那样显示出毋庸置疑的客观性,历史的解释研究在提出解释时仍然重视解释的理由和证据,以便使自己的解释令人信服。历史考证研究分为校勘法和三重证据法,校勘法是寻找适合阅读的文献,做注释或参考文献,以及撰写文献综述的前提条件。 (二)、历史的叙事研究 与哲学研究论文相比,历史的叙事研究主要有三个特点:一是关注个人生活史以及相关的日记、书信、实物、档案等日常生活资料,二是重视个人心理体验和心理分析,三是在写作中重视讲故事的技巧,尤其重视故事的情节。从收集资料的途径来看,叙事研究主要包括三种:一是历史的叙事研究,二是调查的叙事研究,三是试验或行动的叙事研究。历史人类学研究意味着研究者需要进入教育现场,同时以档案法或口述史的方式收集与教育现象相关的历史资料。 (三)、历史的解释研究 历史的解释研究主要显示为传统解释研究、隐微解释研究和比较研究,传统的解释研究包括简述、评述和翻译。隐微解释学研究往往有三个视角,一是指正文本的字面意义与隐含意义的差异,二是从整体与部分的解释学循环的思路更正已有研究的误解。三是指正某个教育思想或教育制度改革的早期、中期和晚期思想是否出现断裂,或者貌似出现了断裂实际上却隐含了某种内在的统一性。历史的比较研究主要显示为两种比较:一是求同取向,在看似差异的背后寻找相同,二是求异取向,在看似相同的背后寻找不同。常见的比较研究的主题有:……与……的比较或者是从……的视角看……

质性研究论文评价包括的特征有前提假设,思维定势和价值倾向。根据查询相关公开信息得知。古典文学常见论文一词,谓交谈辞章或交流思想。当代,论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等。

高分子液晶合成方法研究论文题目

首先鄙视一下一楼的然后感觉这个问题很好编啊比如由其结构说明为何高分子具有粘弹性啊,具体点比如为啥会剪切变稀挤出胀大一类的编一遍呗

因为高分子分类很细,你的专业方向具体我是给你说不太清楚,但是你给出的3个题目,第一个范围面最广,设计制作合成的路线,操作细节,以及实验的配比对合成产物性能的影响,不光要探讨制备,还要分析性能与结构,与和合成工艺的关系,但是数据应该较多,文章写好的话,对你的实验以及论文的写作都是不错的锻炼,而2,3课题只是单纯的某一化合物的制备,或者某个材料某个性能的影响,其合成方案,还有研究手法都相对固定,实验部分应该还算简单,但是对于打算好写文章的话,1更推荐一下。如果觉得麻烦,2,3随便选择一个号了,作为题目,力求简洁,抓住课题的主要思想即可,不必太具体也可,以上建议仅做参考!!

金属材料--长盛不衰金属材料与人类文明从神秘的形状记忆合金到未来能源材料之星--储氢合金古老的陶瓷--旧貌换新颜从一个古老的材料王国到现代无机材料的再度辉煌.威力无比的先进结构陶瓷到奇妙无穷的功能陶瓷.年轻的高分子材料--千姿百态20世纪新兴的材料王国--现代生活的高分子材料功能高分子各显神通先进的复合材料--巧夺天工新型功能材料--人类文明进步的阶梯生物材料,信息材料,环境材料,纳米材料,能源材料和智能材料材料-人类社会文明大厦的基石材料科学技术几个活跃领域1.生物材料:包括生物医用材料和仿生材料.2.智能材料:如压电陶瓷和形状记忆合金.3.环境材料; 4 .纳米材料5.功能高分子材料: 吸水性高分子,导电高分子,发光有机高分子,高分子形状记忆,高分子电解质,高分子压电,有机非线性光学材料,可降解高分子及高分子液晶等.6.计算机模拟与材料设计: 通过计算机模拟来预测材料的结构,性能及其间的关系,从而达到材料设计,形成了一门"计算材料科学".高分子科学既是一门应用学科,也是一门基础学科,它是建立在有机化学,物理化学,生物化学,物理学和力学等学科的基础上逐渐发展而成的一门新兴学科.高 分 子 科 学高 分 子 化 学研究聚合反应和高分子化学反应原理,选择原料,确定路线,寻找催化剂,制订合成工艺等.研究聚合物的结构与性能的关系,为设计合成预定性能的聚合物提供理论指导,是沟通合成与应用的桥梁.高 分 子 物 理高 分 子 加 工研究聚合物加工成型的原理与工艺.高分子科学l 1839年美国人Goodyear发明了天然橡胶的硫化.l 1855年英国人Parks制得赛璐璐塑料(硝化纤维+樟脑).l 1883年法国人de Chardonnet发明了人造丝.l 高分子(Macromolecular,Polymer)概念的形成和高分子科学的出现始于20世纪20年代.l 1920年德国Staudinger发表了他的划时代的文献"论聚合",提出高分子长链结构的概念.一,高分子科学的发展1909年贝克兰合成酚醛树脂1911年英国马修斯合成聚苯乙烯1912年聚氯乙烯被合成1927年合成出聚甲基丙烯酸甲酯1933年高压聚乙烯问世1938年四氟乙烯被聚合…1953年齐格勒在低压条件下合成聚乙烯,随后纳塔合成出聚丙烯,1963齐格勒,纳塔获得诺贝尔化学奖.聚合产生的奇迹塑料的发现1869年31岁的印刷工人约翰 海阿特发明赛璐珞1909年贝克兰发明酚醛树脂现代生活中的高分子材料-塑料现代生活中的高分子材料-工程塑料橡胶的发展橡树之泪丑却受宠的合成橡胶现代生活中的高分子材料-橡胶1855年瑞士人奥蒂玛斯把纤维素放在硝酸中得到硝化纤维素溶液,制得第一根人造纤维;1884年查唐纳脱把硝化纤维素放在酒精和乙醚中得到溶液,得到人造丝;纤维的发展功能高分子材料的发展功能高分子材料于20世纪60年代末开始得到发展. 功能高分子是指具有化学反应活性,催化性,光敏性,导电性,磁性,生物相容性,药理性,选择分离性,或具有转换或贮存物质,能量和信息作用等功能的高分子及其复合材料.目前已达到实用化的功能高分子有:离子交换树脂,分离功能膜,光刻胶,感光树脂,高分子缓释药物,人工脏器等等.高分子敏感元件,高导电高分子,高分辨能力分离膜,高感光性高分子,高分子太阳能电池等功能高分子材料,即将达到实用化阶段.功能高分子材料-高吸水性树脂高吸水性树脂就是一种功能高分子材料,它具有优异的吸水,保水功能,可吸收自身重量几百倍,上千倍,被冠予"超级吸附剂"的桂冠.主要类型有聚丙烯酸酯类,聚乙烯醇类,醋酸乙烯共聚物类,聚氨酯类,淀粉接校共聚物类等.聚丙烯酸酯类以丙烯酸和烧碱为主要原料,采用逆向聚合法而制得.可以做成妇女卫生巾,婴幼儿纸尿布以及纸餐巾等,此外还可用作室内空气芳香剂,蔬菜,水果的保鲜剂,防霉剂,阻燃剂,防潮剂以及吸水后体积膨胀的儿童玩具等.目前,全世界总生产能力已经超过130万吨/年,其中日本触媒化学公司是目前世界上最大的生产公司,生产能力达到25万吨/年.高分子膜是指那些由具有特殊分离功能的高分子材料制成的薄膜,能有选择地分离物质.目前应用于海水淡化,反渗透,膜萃取,膜蒸馏等技术领域.高分子分离膜建于沙特阿拉伯的基塔自来水厂,是世界上最大的海水淡化厂,日供应淡水12000吨,主要使用醋酸纤维素分离膜装置.光敏高分子材料以光敏树脂为代表,主要用于照相,印刷制版,印刷集成电路等.印刷工业应用聚乙烯醇酸酯,光照时交联而不溶而保留下来,得到凸版.光解性的光刻胶,重氮醌接到酚醛树脂上,光作用下重氮醌分解,图像被保留,分辨率达10纳米.光敏高分子材料1950年人们逐渐开始配戴材质是聚甲基丙烯酸甲酯(PMMA)的隐形眼镜,具有优越的光学特性,又能矫正角膜性散光.1960年捷克学者利用十年的时间发明了软性隐形眼镜的材料,就是一直延用至今的聚甲基丙烯酸羟乙酯(HEMA).功能高分子材料-隐形眼镜在塑料中加入蓄光型发光材料经加工就可制成发光塑料.发光塑料是近年来兴起的一种高附加值新型功能材料.其产品如:交通领域通道标识,楼梯标识,标志线;发光涂料,发光开光,发光壁纸,工艺品,玩具,体育休闲用品.功能高分子材料--发光材料导电高分子自发现之日起就成为材料科学的研究热点.目前,它已成为一门新型的多学科交叉的研究领域,并在世界范围内吸引了一大批材料设计专家.功能高分子材料-导电高分子材料液晶高分子作为一类新型的高性能材料,极大地引起了科学界和工业界的关注,得到了广泛的应用,并发展为高分子科学中最活跃的领域之一.液晶高分子竹子地板地毯则可以选择耐久的羊毛制品或者PET地毯主要采用水性涂料,粉末涂料和辐射固化涂料等用于户外美化环境的产品:可以回收的塑料做成长椅,桌子和交通标志牌.绿色建材生物降解高分子材料目前自然界的污染存在"白色"(塑料)和"黑色"(橡胶)垃圾.发展可生物降解的产品是必要而且急需的,但许多具体问题不能解决.1,可降解塑料袋承重能力低; 2,可降解塑料袋色泽暗淡发黄,透明度低;3,是价格偏高,成本难以接受.一次性医疗用品如输液管,药品瓶,医用胶粘剂等.诊断仪器如听疹器,内窥镜及各种其他诊断仪器.体外装置如人工假肢,血液透析或灌注装置等. 人体器官如心脏导管,心脏补片,人工心脏泵材料,气管导管,人工膀胱,人工脑膜,动脉补片,人工血管及人工关节等.整形外科手术材料如面部整形植入物等.生物降解材料是指那些可由体液,酶或微生物的作用而引起分解的材料,用于缝线,人体植入,控释药物等. 医用高分子材料的种类人造心脏生物材料人造关节人工肾别具特色的复合材料碳纤维复合材料玻璃钢复合材料至今高分子科学诺贝尔奖获得者H. Staudinger (德国) : 把"高分子"这个概念引进科学领域,并确立了高分子溶液的粘度与分子量之间的关系(1953年诺贝尔奖) (德国), (意大利) : 乙烯,丙烯配位聚合 (1963年诺贝尔奖)P. J. Flory (美国): 聚合反应原理,高分子物理性质与结构的关系(1974年诺贝尔奖).H. Shirakawa白川英树(日本), Alan G. MacDiarmid (美国), Alan J. Heeger (美国) :对导电聚合物的发现和发展(2000年诺贝尔奖).de Gennes(法国):软物质,普适性,标度,魔梯.2. 我国高分子的科学发展l 我国高分子研究起步于50年代初,唐敖庆于1951年,发表了首篇高分子科学论文. l 长春应化所1950年开始合成橡胶工作(王佛松,沈之荃);l 冯新德50年代在北京大学开设高分子化学专业.l 何炳林50年代中期在南开大学开展了离子交换树脂的研究.l 钱人元于1952年在应化所建立了高分子物理研究组,开展了高分子溶液性质研究.l 钱保功50年代初在应化所开始了高聚物粘弹性和辐射化学的研究.l 徐僖先生50年初成都工学院(四川大学)开创了塑料工程专业.l 王葆仁先生1952年上海有机所建立了PMMA,PA6研究组.我国与高分子领域的中科院院士:王葆仁 冯新德 何炳林 钱保功 钱人元 于同隐 徐 僖 王佛松 程镕时 黄葆同 卓仁禧 沈家骢 林尚安 沈之荃 白春礼 周其凤 曹 镛 杨玉良等.二十一世纪的高分子科学在人类历史上,几乎没有什么科学技术象高分子科学这样对人类社会做出如此巨大的贡献.在二十一世纪来临之际,高分子科学及其相关技术面临着新的机遇和挑战.面临机遇和挑战的一些领域:1.催化过程和新的聚合方法2.非线性结构聚合物3.超分子组装和高度自组织的大分子4.聚合物结晶和形态工程5.刺激-响应聚合物6.聚合物的循环利用和处理高分子材料的发展方向1.高性能化2.高功能化3.复合化4.精细化 5.智能化我们应注重学习,学科交叉,独立思考,独立创新,为国民经济发展,解决生产实践中存在的学术问题,提高高分子科学的学术水平.从上面所叙述材料的发展可以看到,科学发展是无止境的,一时的满足和安于现状就会导致落后,不断进取,不断创新才更有所作为. 人类需求是推动科学发展的动力高分子物理教学内容为揭示高分子材料结构与性能之间的内在联系及其基本规律.高分子结构是高分子性能的基础,性能是高分子结构的反映,高分子的分子运动是联系结构与性能的桥梁.即通过分子运动的理解建立结构与性能的内在联系,掌握结构与性能的关系,通过合成,改性,加工改善聚合物的性能,满足需要,为聚合物的分子设计和材料设计打下科学基础,为高分子材料的合成,加工,成型,检测及应用等提供理论依据.二,高分子物理的教学内容高分子的链结构高分子的凝聚态结构高分子溶液分子量及分子量分布聚合物的转变与松弛橡胶弹性聚合物的粘弹性聚合物的屈服与断裂聚合物的流变性能聚合物的其它性能二,高分子物理的教学内容高分子的结构:包括高分子链的结构和凝聚态结构,链段,柔顺性,球晶,片晶,分子量和分子量分布, θ溶液概念.高分子材料的性能:力学性能,热,电,光,磁等性能.力学性能包括拉伸性能,冲击性能等,银纹,剪切带,强度,模量.高分子的分子运动:玻璃化转变,粘弹性,熵弹性,结晶动力学,结晶热力学,熔点,流变性能,粘度,非牛顿流体. WLF方程,Avrami方程,橡胶状态方程,Boltzmann叠加原理.高分子物理的重点内容聚合物结构与性能的关系HOW 研究方法结构:长链,柔性,缠结,链段运动性能:质轻,易着色,韧性,耐腐蚀,易加工,减震,生物兼容,易剪裁WHY 研究的目的指导大分子设计指导加工发展高分子材料1.高聚物结构的特点(与小分子相比)①高分子的链式结构:高分子是由很大数目(103—105 数量级)的结构单元组成的.②高分子链的柔顺性:高分子链的内旋转,产生非常多的构象(如:DP=100的PE,构象数1094),可以使主链弯曲而具有柔性.③高分子结构具有多分散性,不均一性.④高分子凝聚态结构的复杂性:晶态,非晶态,球晶,串晶,单晶,伸直链晶等.其聚集态结构对高分子材料的物理性能有很重要的影响.聚合物材料(塑料,橡胶,纤维,)具有以下优点:①质量轻,相对密度小.LDPE (),PTFE() ②良好的电性能和绝缘性能. ③优良的隔热保温性能,绝热材料. ④良好的化学稳定性,耐化学溶剂. ⑤良好的耐磨,耐疲劳性质.橡胶是轮胎不可替代的材料.⑥良好的自润滑性,用于轴承,齿轮. ⑦良好的透光率.树脂基光盘,树脂镜片. ⑧宽范围内的力学可选择性.⑨原料来源广泛,加工成型方便,适宜大批量生产,成本低. ⑩漂亮美观的装饰性.可任意着色,表面修饰.2.高分子材料的性能特点性 质 和 用 途塑 料纤 维橡 胶涂 料胶粘剂功能高分子以聚合物为基础,加入(或不加)各种助剂和填料,经加工形成的塑性材料或刚性材料.具有可逆形变的高弹性材料.纤细而柔软的丝状物,长度至少为直径的100倍.涂布于物体表面能成坚韧的薄膜,起装饰和保护作用的聚合物材料能通过粘合的方法将两种以上的物体连接在一起的聚合物材料具有特殊功能与用途但用量不大的精细高分子材料3. 高分子材料的应用农用塑料:①薄膜 ②灌溉用管建筑工业:①给排水管PVC,HDPE ②塑料门窗 ③涂料油漆④复合地板,家具人造木材,地板 ⑤PVC天花板包装工业:①塑料薄膜:PE,PP,PS,PET,PA等②中空容器:PET,,PE,PP等③泡沫塑料:PE,PU等汽车工业:塑料件,仪表盘,保险机,油箱内饰件,坐垫等军工工业:飞机和火箭固体燃料(低聚物),复合纤维等3. 高分子材料的应用高分子材料遍及各行各业,各个领域:包装,农林牧渔,建筑,电子电气,交通运输,家庭日用,机械,化工,纺织,医疗卫生,玩具,文教办公,家具等等.电气工业:①绝缘材料(导热性,电阻率)等,导电高分子②电子:通讯光纤,电缆,电线,光盘,手机,电话③家用电器:外壳,内胆(电视,电脑,空调)等医疗卫生中的应用: 人工心脏,人工脏器,人工肾(PU),人工肌肉,输液管,血袋,注射器,可溶缝合线,药物释放等.防腐工程:耐腐蚀性,防腐结构材料.如水管阀门(PTFE):230~260℃长期工作,适合温度高腐蚀严重的产品.功能高分子:离子交换树脂,高分子分离膜,高吸水性树脂,光刻胶,感光树脂,医用高分子,液晶高分子,高导电高分子,电致发光高分子等. 3. 高分子材料的应用4.高分子物理知识解决实际生产问题①分子量,分子量分布影响高分子材料性能:分子量大:材料强度大,但加工流动性变差,分子量要适中.分子量分布:a纤维,分布窄些,高分子量组分对强度性能不利.b橡胶:平均分子量大,加工困难,所以经过塑炼,降低分子量,使分布变宽起增塑作用.②凝聚态结构影响高分子材料性能: 结晶使材料强度↑,脆,韧性↓.另外球晶大小也影响性能,球晶不能过大.可加成核剂,减小球晶尺寸;改变结晶温度,多成核.③ 加工工艺影响高分子材料性能:粘度低,加工容易. 聚碳酸酯,改变温度,降低粘度.而聚乙烯:改变螺杆转速,提高注射压力和剪切力→降低粘度.5.如何学好高分子物理 高分子物理内容多,概念多,头绪多,关系多,数学推导多.紧紧抓住高聚物结构与性能关系这一主线,将分子运动和热转变作为联系结构与性能关系的桥梁,把零散的知识融合成一体.课堂内认真听讲,注意概念,方法,总结规律.我们要注重培养自学能力,在课堂上和课外能够认真看书.独立思考,亲自动手推演例题和习题.以启发式为主导的教学方法,废除以往注入式的教学方法 .[1]何曼君,陈维孝,董西侠,《高分子物理》,上海,复旦大学出版社,1990年.[2]马德柱,何平笙等,《高聚物的结构与性能》,北京,科学出版社,1995年.[3], Macromolecular Physics, Academic Press, New York, 1973.[4]P. J. Flory, Principles of Polymer Chemistry, Cornell Uni. Press, New York, 1953. [5]de Genes P. G., Scaling Concepts in Polymer Physics, Cornell Uni. Press, New York, 1979.[6]G. R. Strobl, The Physics of Polymer, Springer,1996.祝君好运!!

高分子材料范围大了,如果想要简单的话,就在网上下载一篇,你得给一个题目才行!

相关百科

热门百科

首页
发表服务