首页

> 学术论文知识库

首页 学术论文知识库 问题

固态电池的研究与发展论文

发布时间:

固态电池的研究与发展论文

本文将介绍国外在固态电池的发展现状:

日本:

2018年7月,日本国立研究机构——新能源产业技术综合开发机构(NEDO)宣称,日本部分企业(包括丰田、松下等23家 汽车 、电池和材料企业)及15家学术机构将在未来5年内联合研发电动车全固态锂电池。目前第二阶段固态锂离子电池研发项目已经启动,预计将投资100亿日元(约合人民币亿元)。

在整车厂商的研究进展方面,丰田 汽车 凭借雄厚的技术经验积累处于领先地位:2018年9月,丰田披露了其全固态电池的框架,并计划于本世纪20年代初实现商业化。

丰田全固态电池基础就是降低固态电池内电阻的技术。凭借该技术,丰田将全固态电池的能量输出密度(按照体积)提高至约。同时,成功将能量密度提高至400Wh/L,比2010年左右生产的锂离子(Li-ion)电池的能量密度高一倍。

但是目前丰田的全固态电池的性能远远比不上现有的锂离子电池。因此,为了使固态电池可以尽早商业化,丰田正努力提高其性能。

韩国:

韩国企业选择抱团研发固态电池技术:

2018年11月消息,韩国三大蓄电池厂商LG化学、三星SDI和SKI将联手开发固态电池、锂金属电池和锂硫电池,此外,它们将成立一个规模1000亿韩元(约合9000万美元)的基金,来打造下一代电池产业生态系统。

三星SDI在2017年北美车展便已展出过固态电池和基于21700圆柱电芯的电池模组;LG化学本身在固态电池的研发上也有布局。

整车厂商现代 汽车 则选择投资材料技术公司——位于马萨诸塞州的初创固态电池材料企业Ionic Materials来布局固态电池,推动电池技术发展。有业内人士透露,现代正通过南阳研发中心(Namyang R&D Center)旗下的电池研发团队进行固态电池的研发,目前已取得一定的技术水平,预计2025年可实现固态电池量产。

德国:

德国政府在资金上给予了固态电池研发工作支持。

据外媒报道,为了减少德国车企对于中日韩电池供应商的依赖,德国总理默克尔将计划拨发10亿欧元用于支持德国的一家电池生产商,同时也将资助一家电池研发机构,用于开发下一代的固态电池。

宝马:宝马一方面在自建电芯研发中心,研发固态电池技术并有望于2026年实现固态电池突破性进展并随后量产。另一方面,宝马也积极和Solid Power在固态电池方面深度合作,快速提升电池研发能力。

大众:老牌 汽车 厂商大众此前宣布将计划自主生产固态电池,可能从2024或2025年开始批量生产,工厂或将建在欧洲或德国。此外,大众还获得了美国外国投资委员会(CFIUS)的许可,同意其向电池技术公司-QuantumScape投资1亿美元成为QuantumScape最大股东,增持股份。QuantumScape拥有200多项固态电池技术专利和专利申请量,这将为大众研发固态电池提供强有力的帮助。目标在2025年前建立固态电池生产线。

美国:

2018年10月,菲斯克宣称其新款固态锂电池充电仅需9分钟,并将实现量产。此后,该公司的固态电池技术获得了重型机械制造商卡特彼勒(Caterpillar)的投资,但并未透露具体投资数额。菲斯克表示,正申请专利的菲斯克柔性固态电池的成本每千瓦时不到100美元,可用于建筑、储能、交通和采矿业。预计将于2018-2033年间实现商业化。

英国:

2018年10月,Ricardo宣布与4家机构/企业合作开展PowerDrive Line项目,目的是建立固态电池的预试验线,并为固态电池材料供应链开发流程。

项目合作方包括Ilika technologies公司、英国技术创新中心- Centre for Process Innovation、本田欧洲研发中心(Honda R&D Europe)以及英国伦敦大学学院(University College)。

澳洲:

2018年10月,澳洲马格尼斯资源有限公司(Magnis Resources Limited)宣布其合作伙伴C4V(Charge CCCV)已经生产出固态电池的原型。该原型电池容量目前为380Wh/kg和700Wh/L,预计进一步优化可达400Wh/kg和750Wh/L。该新型电池降低了生产成本,并且无需使用钴金属,减少了制约因素。

C4V计划将于2019年第二个季度开始商业生产。

若要看全球固态电池平均的进度,目前整个产业有一起向前的趋势,越来越多机构可以做出钮扣型或小型的样品,目前已有辉能和博洛雷两家可以量产固态电池。前景部分,若固态电池产能可以冲起来,基本上能够直接接手传统锂电池的市场。

hcufudysydyfufigivivibobobononoblnlboblblnlblblnlnlbbpblbkbkvjv

固态电池深度研究报告论文

,是不属于的;丙酮丙二醇缩酮(或称Propylene glycol monomethyl ether)它是由丙酮与丙二醇起缩合反应而得,是一种功能性有机磺酸盐类溶剂;而氧杂环戊烷又名四氢呋喃,是一个杂环有机化合物。所以丙酮丙二醇缩酮是不属于属于132氧杂环戊烷类的化合物的。

你好,是不属于的;丙酮丙二醇缩酮(或称Propylene glycol monomethyl ether)它是由丙酮与丙二醇起缩合反应而得,是一种功能性有机磺酸盐类溶剂;而氧杂环戊烷又名四氢呋喃,是一个杂环有机化合物。所以丙酮丙二醇缩酮是不属于属于132氧杂环戊烷类的化合物的。

车东西(公众号:chedongxi)文 | Bear

三星在全固态电池的量产之路上取得了突破性的进展!

日前,三星高等研究院与三星日本研究中心在《自然-能源》(Nature Energy)杂志上发布了一篇名为《通过银碳负极实现高能量密度长续航全固态锂电池》的论文,展示了三星对于困扰全固态电池量产的锂枝晶与充放电效率问题的解决方案。

▲三星在《自然-能源》杂志上发表论文

据了解,这一解决方案将帮助三星的全固态电池实现900Wh/L(区别于Wh/kg的计量单位,因不同材料密度不同,二者不可换算)的能量密度,1000次以上的充放电循环以及的库伦效率(也可称为充放电效率)。我国目前较为先进的固态电池技术虽然同样也能够实现1000次以上的充放电循环,但在库伦效率方面目前还达不到接近100%的程度。

据论文介绍,三星通过引入银碳复合负极、不锈钢(SUS)集电器、辉石型硫化物电解质以及特殊材料涂层,对固态电池的负极、电解质与正极进行了处理,有效解决了锂枝晶生长、低库伦效率与界面副反应,这三大固态电池量产所面临的核心问题,推动固态电池技术离产业化更进一步。

关键技术的突破,意味着固态电池市场卡位赛的开启,包括松下、宁德时代、丰田、宝马在内的一众玩家磨刀霍霍。可以预见,未来五年,固态电池技术将会成为这些公司技术交锋、产业布局的关键所在。

而三星,则会因为率先实现了技术上的突破,在这场竞赛中拥有相当大的领先优势。

一、全球争夺固态电池新风口 三星率先取得技术突破

固态电池一度被视为最适合电动汽车的电池技术,但这究竟是一种什么样的技术呢?

单从字面上理解,全固态电池意味着将现有电池体系中的液态电解质,完全替换为固态电解质。但在电池产业的定义中,固态电池有着三大技术特征——固态电解质、兼容高能量的正负极以及轻量化的电池系统。

固态电解质很好理解,区别于传统锂电池中所使用的碳酸乙烯酯、碳酸丙烯酯、碳酸二乙酯等液态电解质,固态电解质是一种新型的,作为电池正负极之间离子移动通道的材料,目前主要分为三类——聚合物材料、无机氧化物材料、无机硫化物材料。

与液态电解质对比,固态电解质具有高温下稳定、不易燃的理化特性,同时其机械结构也能抑制锂枝晶生长,避免其刺穿隔膜造成电池短路。

同时,常规液态电解质高压之下易氧化的特点对于固态电解质而言也不复存在,因此固态电池可采用能量密度更高、放电窗口更高、电势差更大的正负极解决方案。

而由于固态电池电芯内部不含液体,可以实现先串联后并联组装的方式,减轻了电池PACK的重量;固态电池性质稳定的特点,也可以省去动力电池内部的温控元件,进一步实现动力电池的减重。

上述三大特征所对应的,正是固态电池对比传统锂电池所具有的技术优势。简单来说,就是更高的能量密度、更大的放电倍率、更长的循环寿命以及更加轻量化的电池系统设计。

这些技术优势决定,固态电池将会是未来十年内最适合电动汽车的动力电池,以动力电池产业内部对固态电池量产进度的研判,到2025年之后,固态电池将逐渐成为动力电池领域的主流产品。

可以说,谁抢下了固态电池,谁就抢下了未来十年内,新能源产业发展的先机。

在这一思想的主导下,丰田、宝马、大众等国际一线车企,松下、三星、宁德时代等动力电池企业,甚至是戴森、NGK|NTK等跨界而来的巨头玩家,纷纷涌入固态电池领域,试图通过投资并购、技术合作、独立研发等手段,在固态电池尚未实现产业化之前完成卡位。

▲大众推出了搭载固态电池的奥迪PB18 e-tron

但当这些玩家真正下场布局的时候,固态电池的技术难度远超他们的想象。当下固态电池技术距离量产还需要解决诸多难点,有研究显示,锂枝晶的形成、界面阻抗导致的库伦效率低、固态电解质与正负极产生副反应等问题在固态电池的实验中尤为明显。

三星日前在《自然-能源》杂志上发表的论文,正式针对这些问题提出了解决方案。

▲三星在《自然-能源》杂志上发表论文

首先,三星通过银碳复合材料与不锈钢(SUS)集电器减少了负极锂离子过量不均匀沉积,并采用锂离子迁移数更高的硫化物固态电解质(一般液态电解质锂离子迁移数为,硫化物固态电解质锂离子迁移数为1),减少了电解质中锂离子的沉积,在负极与电解质两个区域内减少了锂枝晶形成的可能性。

其次,三星对NCM正极层进行了LZO涂层的涂覆处理,使用的LZO涂层将正极材料与硫化物固态电解质分隔开,并通过LZO涂层自身良好的电导率实现阻抗的减小,用以提升电池系统的库伦效率。

与此同时,LZO涂层与银碳复合材料层的存在也阻断了硫化物固态电解质与正负极产生副反应的可能,最大限度地保证了固态电池在工作过程中的正常表现与可循环性。

通过这套解决方案,三星的全固态电池实现了900Wh/L的能量密度、1000次以上的充放电循环以及的库伦效率。

而同样在研究固态电池的丰田、松下团队,目前的固态电池技术虽然能做到更高水平的循环次数,但其能量密度仅为700Wh/L,库伦效率也在90%左右。宁德时代的固态锂电池理论上能够做到1000Wh/L以上的能量密度,但在库伦效率方面,同样要弱三星一筹。

三星的这套解决方案有效地克服了固态电池产业化的技术难点,如果以卡位赛的思路来评价三星在众多对手中间的地位,那么三星在固态电池关键技术上的突破,无疑为其赢下了起跑阶段的优势。

二、三星解决锂枝晶生长问题的三大法门

三星在全固态电池研究过程中遇到的第一个难题就是锂枝晶问题,锂枝晶的形成对于所有的锂电池而言,都是不得不面对的问题。

其生成原理是锂离子在负极与电解液中的不均匀沉积,所形成的树杈状的锂离子结晶体,这些结晶体在放电倍率超过电池设计上限以及长期的充放电循环中均有可能出现。

而锂枝晶一旦出现,则意味着电池内部的锂离子出现了不可逆的减少,同时锂枝晶会不断吸附游离的锂离子实现生长,最终可能会刺破隔膜,导致电池正负极直接产生接触引发短路。

曾有观点认为,固态电解质的力学特性能够抑制锂枝晶的生长,阻止其对隔膜的破坏,但实际上,这样的设想并未实现。

有研究显示,通过固态电解质离子通道的锂离子抵达负极时的位置更不均匀,固态电解质与负极界面之间也存在间隙,因此容易造成锂离子的不规则沉积,从而形成锂枝晶。并且在这种情况下,导致锂枝晶出现的电压甚至低于传统的锂电池。

面对这一难题,三星提出了一种三合一的解决方案:

1、银碳复合材料层

三星在硫化物固态电解质与负极材料之间,添加了一层银碳复合材料层。

其充电过程中的工作原理,是在锂离子通过电解质抵达负极最终沉积的过程中,使锂离子与银碳材料层中间的银离子实现结合,降低锂离子的成核能(可简单理解为聚集在一起的能力),从而使锂离子均匀地沉积在负极材料上。

▲银碳复合层(红线部分)在电池结构中的示意图

而放电过程中,原本沉积在负极材料上的银-锂金属镀层中,锂离子完全消失,返回正极,银离子则会分布在负极材料与银碳复合材料层之间,等待下一次充电过程中锂离子的到来。

针对银碳复合材料层是否在锂离子沉积过程中产生了效果,三星团队进行了对照实验。

首先,该团队研究了无银碳复合材料层,负极直接与硫化物固态电解质接触的情况。

当充电率(SOC)50%,且充电速率为()时,尽管锂离子在负极的沉积并不致密,但其沉积物较厚且形状随机,具备生成锂枝晶的可能性。

▲无银碳层时锂离子在负极的沉积情况

并且,在10次完整充放电循环之后,该电池容量与初始容量对比出现了大幅下滑,大约在经历了25次充放电循环之后,电池的容量已经下降至初始容量的20%左右。

▲无银碳层电池电量衰减情况

据三星研究团队分析,这种情况很可能是电池内部产生了锂枝晶,导致活动的锂离子数量大幅减少,从而减少了电池的放电容量。

而在存在银碳复合层的情况下,首次充电过程(,)中,锂离子通过银碳层后,在负极形成了致密且均匀的沉积物。

据三星研究团队推测,银碳层中的银在锂离子经过时,与锂离子进行结合,形成银锂合金,降低了锂离子的成核能,并在抵达负极的过程中形成了固溶体,使锂离子均匀地沉积在负极材料上。

▲银离子在多次循环后的分布情况

而在随后的放电过程中,电子显微镜下的图像显示,锂离子100%返回了正极材料,并未在负极材料中存在残留,这意味着本次充放电的过程中,锂离子几乎没有发生损失,也没有存留沉积,避免锂枝晶的形成。

2、SUS集电器负极

银碳复合材料层很大程度上解决了锂离子不均匀沉积的问题,但为了尽可能减少锂枝晶的形成,还需要对电池中“过量”的锂进行削减。

提出这一说法的原因,是因为三星发现被盛传适合作为高能量密度(3,860 mAh g?1)负极材料的金属锂,在固态电池中并不适用。

过量的锂在高电压的作用下很可能会自发聚集,形成锂枝晶。

因此,三星在其全固态电池解决方案中使用了不含锂的不锈钢(SUS)集电器作为负极,作为锂离子的沉积载体和电池的结构体而言,SUS材料的机械强度十分可靠。

并且由于负极材料不含锂,也能够抑制锂枝晶的形成。

3、辉石型硫化物固态电解质

锂枝晶形成的另一处位置是电解质,由于传统电解质锂离子迁移数通常为,过量放电造成的大量锂离子迁移会使锂离子沉积在离子通道内,在长期的循环中有可能形成锂枝晶。

而三星在全固态电池解决方案中使用的电解质是锂离子迁移数为1的辉石型硫化物固态电解质,其锂离子迁移数较一般电解质更大,不容易使锂离子沉积其中,因此也能够抑制锂枝晶的形成。

通过上述三种方法,三星的全固态电池解决方案有效避免了锂枝晶的形成,在其数千次的循环试验中,采用这一方案的固态电池没有形成锂枝晶。

三、特殊涂料解决阻抗问题 充放电效率高达

针对全固态电池研发的另外两个难点——界面阻抗高引起的库伦效率问题、固态电解质与正负极产生副反应的问题,三星也给出了解决方案。

在固态电池中,固态电极与固体电解质之间会形成固-固界面,与传统电池的固-液界面拥有良好的接触性不同,固体与固体之间的直接接触难以做到无缝。即是说,固-固界面的接触面积要比相同规格的固-液界面接触面积小。

根据接触面积影响离子电导率的原理,接触面积越小,界面之间的离子电导率就越低,阻抗也就越大。

而在相同电压下,阻抗越大,电流也就越小,电池的库伦效率就越低。

不仅如此,固态电解质在与活性正极材料接触的过程中,也会产生界面副反应。

根据加州大学圣地亚哥分校的研究成果,正极锂离子脱嵌过程中产生的氧将会与硫化物固态电解质中的锂产生强烈的静电作用,电解质与正极材料之间阳离子的互扩散会形成SEI膜(一种覆盖在电极表面的钝化层),并在反复的循环中出现增厚、阻碍离子运输的现象。

这一现象也会导致电池的库伦效率降低。

为应对上述两个问题,三星在正负电极方面均进行了处理。

在正极方面,三星通过对正极NCM材料涂覆一层5nm厚的LZO(Li2O–ZrO2)涂层,用来改善正极与电解质固-固界面的阻抗性能。

▲NCM正极材料外涂覆的LZO涂层

与此同时,涂覆的LZO涂层阻断了正极材料与硫化物固态电解质之间的副反应,这使得二者间不会出现SEI膜,库伦效率得到了提升,放电容量的衰减也同时被大幅减缓。

在负极方面,硫化物固态电解质通过银碳层与负极间接接触,界面阻抗同样得到了改善,银离子还能够帮助锂离子完成在负极的均匀沉积,阻抗进一步减小。

而三星使用SUS集电器作为负极材料的另一个原因也是因为SUS集电器与硫化物几乎不产生反应,也就是说负极与硫化物固态电解质的副反应的可能性也被断绝。

除此之外,三星所选用的辉石型硫化物固态电解质拥有与一般液态电解质相同的离子传导率(1-25ms/cm),因此,该电解质本身的导电能力就很强,对于提升库伦效率也有帮助。

在三星研究团队1000次的充放电循环中,该套电池解决方案的平均库伦效率大于。而在去年7月,我国中科院物理所发表的固态电池解决方案中,其电池的库伦效率大约为。

四、三星领先一步 其他玩家仍有五年窗口期

三星的全固态电池解决方案,在一定程度上解决了当下固态电池产业化的三大技术难点。关键技术被攻克,意味着固态电池离产业化更进一步,电动汽车能用上固态电池的日子,也变得更近了。

三星研究团队在论文中直言:“我们研发的全固态电池拥有900Wh/L以上的能量密度与1000次以上的充放电循环寿命,出色的性能使得这套解决方案成为固态电池领域的关键性突破,很可能助推全固态电池成为未来电动汽车高能量密度与高安全性电池的选择。”

但需要注意的是,当一家企业宣布完成前瞻性技术关键难点突破的同时,也意味着该企业的技术壁垒正在建立,其他企业的机会则相应缩小。尤其是在电池这类技术优势大过天的产业中,技术壁垒的突破难度不言而喻。

此前,日本锂电材料商日立化成完成碳基负极技术研发,对我国材料企业的封锁时长达到30年之久。

而三星、LG化学、SKI等企业更是早早布局电池上游的隔膜、电解液、电极等领域,培养了自己的供应商体系的同时,将大量专利收入手中,形成了对其他电池企业的封锁之势。

此次三星率先突破固态电池技术难点,势必也会对其他电池企业进行专利封锁,中日韩等动力电池企业突破固态电池难点的技术路径又少了一条。

这就是三星在固态电池卡位赛中,取得先发优势的结果。

但对于三星而言,先发优势并不意味着胜券在握。固态电池的量产对于三星来说,仍有许多难点。

首先,硫化物固态电解质对生产过程的要求极高,暴露在空气中容易发生氧化,遇水易产生 H2S 等有害气体,生产过程需隔绝水分和氧气。

其次,银碳层的规模化投产需要规模不小的贵金属银的采购,成本颇高。

对于近年来盈利状况不佳的三星电池业务而言,新建产线采购贵金属的成本与固态电池量产后的市场之间形成的投入产出比,值得衡量。

因此,在固态电池的风口还未到来之前(业内认为会在2025年小规模量产),其他动力电池企业仍然拥有一段市场与技术的窗口期,固态电池的第一把交椅目前仍然虚位以待。

在日本,松下已经与丰田结盟,在两年之前拿出了700Wh/L能量密度的固态电池解决方案。

国内宁德时代近日公布的专利则显示,其全固态锂金属电池的能量密度理论上能够超过1000Wh/L,中科院物理所也完成了能将固态电池库伦效率提升至93%以上的材料研发。

美国动力电池初创公司Solid Power得到了现代、宝马、福特等车企的投资,宣布将在2026年量产能够用于电动汽车的固态电池。

可以预见的是,未来五年内,动力电池产业将围绕固态电池这一关键技术打响一场暗战。中、日、美、韩的动力电池企业均已入场布局,准备在固态电池风口到来之时,争抢该领域的龙头位置。

结语:固态电池难点被三星攻克

在此前的固态电池研发中,锂枝晶问题、库伦效率问题与界面副反应问题难倒了众多电池领域的研发团队。

但此次三星通过银碳复合材料与SUS集电器负极,有效解决了锂枝晶形成的问题,LZO涂层对正极的包覆也使得电池系统的库伦效率达到了。

可以认为,固态电池技术的关键难点已被三星攻克,固态电池产品距离量产又近了一步。

这一现象意味着在未来五年的时间里,布局固态电池领域的车企、动力电池供应商以及跨界玩家都将顺着这一思路进行研究,推动固态电池领域实现从研发到量产的突破。

综合入局玩家体量、资本助推以及电动汽车产业的需求三点来看,固态动力电池产业的风口或许很快就会到来。

本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。

第一章 丙酮丙二醇缩酮相关概念一、丙酮丙二醇缩酮简介二、丙酮丙二醇缩酮的分类三、丙酮丙二醇缩酮的质量指标第二节 丙酮丙二醇缩酮的主要作用及用途简介第三节 丙酮丙二醇缩酮产品主要生产技术分析一、丙酮丙二醇缩酮生产工艺概述二、丙酮丙二醇缩酮主要生产工艺简介第二章 2010-2015年世界丙酮丙二醇缩酮行业发展状况分析第一节 2010-2015年世界丙酮丙二醇缩酮行业运行概况一、世界丙酮丙二醇缩酮行业市场供需分析二、世界丙酮丙二醇缩酮价格分析第二节 2010-2015年世界主要地区丙酮丙二醇缩酮行业运行情况分析一、美国二、日韩地区三、欧洲第三节 2010-2015年世界丙酮丙二醇缩酮行业发展趋势分析第三章 2010-2015年中国丙酮丙二醇缩酮的行业发展环境分析第一节 2010-2015年中国经济环境分析一、宏观经济二、工业形势三、固定资产投资第二节 2010-2015年中国丙酮丙二醇缩酮的行业发展政策环境分析一、行业政策影响分析二、相关行业标准分析第三节 2010-2015年中国丙酮丙二醇缩酮行业发展社会环境分析第四章 2015年中国丙酮丙二醇缩酮行业市场运行动态分析第一节 2015年中国丙酮丙二醇缩酮行业市场供需分析一、丙酮丙二醇缩酮市场消费结构分析二、丙酮丙二醇缩酮进出口形势分析三、中国丙酮丙二醇缩酮企业动态分析第二节 2015年中国丙酮丙二醇缩酮行业市场营销策略分析一、不断推出新的销售方式二、辨别并选择正确的销售对象三、创造性的广告策略四、密切关注消费者的需求第三节 2015年中国丙酮丙二醇缩酮市场供需平衡分析第五章 2010-2015年中国丙酮丙二醇缩酮行业数据调查分析第一节 2010-2015年中国丙酮丙二醇缩酮行业规模分析一、企业数量增长分析二、从业人数增长分析三、资产规模增长分析第二节 2010-2015年中国丙酮丙二醇缩酮行业结构分析一、企业数量结构分析二、销售收入结构分析第三节 2010-2015年中国丙酮丙二醇缩酮行业产值分析一、产成品增长分析二、工业销售产值分析三、出口交货值分析第四节 2010-2015年中国丙酮丙二醇缩酮行业成本费用分析一、销售成本统计二、费用统计第五节 2010-2015年中国丙酮丙二醇缩酮行业盈利能力分析一、主要盈利指标分析二、主要盈利能力指标分析第六章 2010-2015年中国丙酮丙二醇缩酮进出口数据监测分析第一节 2010-2015年中国丙酮丙二醇缩酮进口数据分析一、进口数量分析二、进口金额分析第二节 2010-2015年中国丙酮丙二醇缩酮出口数据分析一、出口数量分析二、出口金额分析第三节 2010-2015年中国丙酮丙二醇缩酮进出口平均单价分析第四节 2010-2015年中国丙酮丙二醇缩酮进出口国家及地区分析第七章 中国丙酮丙二醇缩酮区域市场调查状况分析第一节 华北市场一、地区生产状况二、地区需求状况三、地区竞争状况第二节 中南市场一、地区生产状况二、地区需求状况三、地区竞争状况第三节 华东市场一、地区生产状况二、地区需求状况三、地区竞争状况第四节 东北市场一、地区生产状况二、地区需求状况三、地区竞争状况第五节 西南市场一、地区生产状况二、地区需求状况三、地区竞争状况第八章 中国丙酮丙二醇缩酮用户度市场调查情况分析第一节 丙酮丙二醇缩酮用户认知程度第二节 丙酮丙二醇缩酮用户关注因素一、功能二、质量三、价格四、外观五、服务第九章 2010-2015年中国丙酮丙二醇缩酮产业市场竞争格局分析第一节 2010-2015年中国丙酮丙二醇缩酮产业竞争现状分析一、市场竞争程度分析二、丙酮丙二醇缩酮产品价格竞争分析三、丙酮丙二醇缩酮产业技术竞争分析四、丙酮丙二醇缩酮产业品牌竞争分析第二节 丙酮丙二醇缩酮竞争优劣势分析第三节 2010-2015年中国丙酮丙二醇缩酮行业集中度分析一、市场集中度分析二、区域集中度第四节 2010-2015年中国丙酮丙二醇缩酮企业提升竞争力策略分析第十章 2010-2015年中国丙酮丙二醇缩酮行业重点厂商分析第一节 企业A一、企业概况二、企业主要经济指标分析三、企业盈利能力分析四、企业偿债能力分析五、企业运营能力分析六、企业成长能力分析第二节 企业B一、企业概况二、企业主要经济指标分析三、企业盈利能力分析四、企业偿债能力分析五、企业运营能力分析六、企业成长能力分析第三节 企业C一、企业概况二、企业主要经济指标分析三、企业盈利能力分析四、企业偿债能力分析五、企业运营能力分析六、企业成长能力分析第四节 企业D一、企业概况二、企业主要经济指标分析三、企业盈利能力分析四、企业偿债能力分析五、企业运营能力分析六、企业成长能力分析第五节 企业E一、企业概况二、企业主要经济指标分析三、企业盈利能力分析四、企业偿债能力分析五、企业运营能力分析六、企业成长能力分析第十一章 2010-2015年中国丙酮丙二醇缩酮行业产业链分析第一节 丙酮丙二醇缩酮上游行业分析一、上游行业发展现状二、上游行业发展趋势三、上游行业对丙酮丙二醇缩酮行业的影响第二节 丙酮丙二醇缩酮下游行业分析一、下游行业发展现状二、下游行业发展趋势三、下游行业对丙酮丙二醇缩酮行业的影响第十二章 2016-2021年中国丙酮丙二醇缩酮产业发展趋势预测分析第一节 2016-2021年中国丙酮丙二醇缩酮产业发展趋势分析一、丙酮丙二醇缩酮技术发展方向分析二、丙酮丙二醇缩酮行业前景分析第二节 2016-2021年中国丙酮丙二醇缩酮产业市场预测分析一、丙酮丙二醇缩酮市场供给预测分析二、丙酮丙二醇缩酮产品需求预测分析三、丙酮丙二醇缩酮进出口预测第三节 2016-2021年中国丙酮丙二醇缩酮产业市场盈利预测分析第十三章 2016-2021年中国丙酮丙二醇缩酮产业投资机会与风险分析第一节 2016-2021年中国丙酮丙二醇缩酮产业投资环境分析第二节 2016-2021年中国丙酮丙二醇缩酮产业投资机会分析一、丙酮丙二醇缩酮行业区域投资热点分析二、丙酮丙二醇缩酮行业投资潜力分析第三节 2016-2021年中国丙酮丙二醇缩酮产业投资风险分析一、市场运营风险二、技术风险三、政策风险四、进入退出风险第十四章 结论和建议查看全部>>返回首页收藏报告个性定制关闭窗口返回顶部报告标题:丙酮丙二醇缩酮研究报告:2016-2021年中国丙酮丙二醇缩酮产业运行态势及投资战略研究报告本文地址:上一篇:奶粉报告下一篇:煮蛋器报告相关研究报告2017-2022年中国丙酮丙二醇缩酮行业发展前景分析及发展策略研究报告2017-2022年中国丙酮丙二醇缩酮项目行业市场深度调研及投资战略研究分析报告2017-2022年中国丙酮丙二醇缩酮行业细分市场研究及重点企业深度调查分析报告化工报告化工市场研究报告化工市场调查报告化工前景预测报告化工市场分析报告化工市场评估报告化工投资咨询报告化工市场供需分析报告化工重点企业分析报告化工项目可行性研究报告化工发展前景分析报告化工投资规划分析报告化工深度研究报告化工投资前景分析报告化工项目调研报告化工专项调研报告中国报告大厅简介中国报告大厅()成立于2002年10月,是由宇博智业机构开通并运营的一家大型专业化市场研究网站,提供针对企业用户的各类信息,如深度研究报告、市场调查、统计数据等。为了满足企业对原始数据的需求,也为了能给企业提供更为全面和客观的研究报告,中国报告大厅与国内各大数据源(包括政府机构、行业协会、图书馆、信息中心等权威机构)建立起战略合作关系。经过多年的努力,中国报告大厅与国内100多家最优质研究公司建立良好的合作关系,推出超过50000份有价值的研究报告,中国报告大厅目标是打造一个真正的一站式服务的多用户报告平台。中国报告大厅汇聚全国各大市场研究信息生产商的研究成果,正是依托独有的资源优势,为客户提供最准确、最及时、最权威、最专业的研究报告。最新研究报告 更多2017-2022年中国坚固型手持设备行业细分市场研究及重点企业深度调查分析报告2017-2022年中国固态薄膜电池行业细分市场研究及重点企业深度调查分析报告2017-2022年中国固定翼无人机行业细分市场研究及重点企业深度调查分析报告2017-2022年中国固定牙套行业细分市场研究及重点企业深度调查分析报告2017-2022年中国固定式铅蓄电池行业细分市场研究及重点企业深度调查分析报告2017-2022年中国固定式柴油发电机行业细分市场研究及重点企业深度调查分析报告2017-2022年中国固定式天然气发电机行业细分市场研究及重点企业深度调查分析报告2017-2022年中国固定式发电机行业细分市场研究及重点企业深度调查分析报告资质证书客户回馈甲级工程咨询单位资格证书涉外调查许可证甲级工程咨询单位资格证书企业法人营业执照团体会员证书电信与信息服务业务经营许可证联系我们全国免费服务热线:北京客户服务专线:厦门客户服务专线:商业计划书:专项调研报告:个性定制报告:报告合作专线:传真: 邮箱:相关分类化工报告无机化工报告有机原料报告塑料及制品报告橡胶报告合成纤维报告染料及颜料报告聚合物报告涂料及油漆报告医药与生物化工报告化工中间体报告日用化工报告感光材料报告树脂报告胶粘剂报告香精香料报告化工设备报告其他报告化学矿报告石油及制品报告添加剂报告催化剂报告玻璃报告农药报告肥料报告报告搜索 快速搜索热门搜索:丙酮丙二醇缩酮 企业丙酮丙二醇缩酮 分析丙酮丙二醇缩酮 研究丙酮丙二醇缩酮 深度研究丙酮丙二醇缩酮 项目调研丙酮丙二醇缩酮购买方式更多A. 电话订购:B. 邮件订购: sales@. 网上订购:订购单下载D. 直接到我公司上门购买:温馨提示:1、购买报告请认准“中国报告大厅”网站,公司从未通过第三方代理,请来电购买。 2、中国报告大厅欢迎广大客户上门洽谈购买。我们的优势我们的优势丰富的信息资源宇博智业依托国家发展改革委和国家信息中心系统丰富的数据资源,以及国内其他各大数据源(包括行业协会、图书馆、相关研究机构等)建立的战略合作关系,建成了独具特色和覆盖全面的产业监测体系。专业的研究团队公司人员拥有不同背景和资历的研究人员,每份报告都由多年从事相关行业的资深研究员撰写,他们长期专门从事行业研究,掌握着大量的第一手资料;同时,为保证研究成果的前瞻性,我们与国内众多研究机构和专家有着密切的合作关系。品质保证①宇博智业创立于2002年,中国最早的市场研究机构之一;②公司拥有强大的调研团队,能为报告的撰写提供可靠的一手资料。③研究人员根据对中国文化的深刻理解,实现国际领先研究方法与本土实践经验巧妙结合。售前售后服务公司拥有一批专业的业务人员,将根据您的需求,为您提供详细的解答并提供相符合的报告目录;报告售出后,我们的研究人员将会为您提供全程的后续修改及补充服务。赠送增值服务购买我们研究报告可获赠报告大厅数据中心会员资格,全方面了解行业动态。行业资讯更多自主新药研发获得重大进展 药品报销范围进一步扩大人工智能如何献力教育均衡发展环保部向WTO递交文件:年底前禁止24种高污染固体废物入境共享单车改善乱象 摩拜单车通过欧盟及国际标准认证全国食品安全周又有哪些新热点?日媒:日IT业劳动力紧缺 在日中国留学生迎好时机医改试点城市扩大到200个 公立医院和民营资本共建6月房地产销售创单月纪录 库存降至28个月新低免费报告更多2017大红酸枝价格趋势分析新能源汽车价格行情分析大亚湾房价行情分析安庆房价行情分析乌鲁木齐房价行情分析硫酸钾价格行情分析生猪价格走势分析长沙房价走势分析数据中心更多2015年中国十大品牌面包机排行榜生猪价格最新行情:2016年4月12日黑龙江生猪价格今日猪价分析2016年3月汽车品牌销量排行榜top20:长安品牌力压丰田等位居第二2016年3月汽车厂商销量排行榜top20:上汽通用五菱以183982辆夺冠2015年中国民营企业服装排行榜南京2016企业退休人员养老金上调最新消息:约涨幅大豆价格今日走势:2016年4月12日大豆价格最新行情预测一览钢铁价格最新行情:2016年4月12日全国建材价格汇总一览行业年鉴更多《中国贸易外经统计年鉴2013》《中国民营医院发展报告2013》《中国环境统计年鉴2013》《2012年有色金属工业统计资料汇编》《中国外商投资报告2013》《中国教育年鉴2012》《能源与电力分析年度报告系列:中国发电能源供需与电源发展分析报告2013》《能源与电力分析年度报告系列:世界能源与电力发展状况分析报告2013》报告研究报告分析报告市场研究报告市场调查报告投资咨询商业计划书项目可行性报告项目申请报告资金申请报告ipo咨询ipo一体化方案ipo细分市场研究募投项目可行性研究ipo财务辅导市场调研专项定制调研市场进入调研竞争对手调研消费者调研数据中心产量数据行业数据进出口数据宏观数据购买帮助订购流程常见问题支付方式联系客服售后保障售后条款实力鉴证版权声明投诉与举报关于我们|帮助中心|友情链接|我们的服务|报告订制|报告订购表|网站地图|品牌大全|联系我们|法律声明© 2023 报告大厅(),市场研究报告门户,提供海量的行业报告及市场前景研究报告。服务热线:北京: 传真: E-mail:福建: 传真: 中文域名:中国报告大厅.com报告大厅—宇博智业市场研究中心主办,宇博智业集团旗下网站闽ICP备09008123号-21 京公网安备 11010502031895号

锂离子电池的发展与研究论文

行业主要上市公司:宁德时代(300750);比亚迪(002594);国轩高科(002074);孚能科技(688567);亿纬锂能(300014);鹏辉能源(300438);欣旺达(300207)等

本文核心数据:锂电池板块上市公司研发费用;锂电池相关论文发表数量

全文统计口径说明:1)论文发表数量统计以“lithium battery”为关键词,选择“中国”、“论文”筛选。2)统计时间截至2022年8月17日。3)若有特殊统计口径会在图表下方备注。

锂电池技术概况

1、技术原理及类型

(1)锂电池技术原理

锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,Li+在两个电极之间往返嵌入和脱嵌:充电池时,Li+从正极脱嵌,经过电解质嵌入负极,负极处于富锂状态;放电时则相反。

(2)锂电池的分类

按照电解质材料、电池外形、外包材料、正极材料、应用领域等不同分类方式,可将锂电池分为以下几类:

2、技术全景图:四大细分技术领域

从锂电池构成来看,锂电池技术主要包括正极材料、负极材料、电解质和隔膜四个主要细分技术领域。其中,正极材料主要包括磷酸铁锂、三元正极、锰酸锂等;负极材料主要包括碳系材料和非碳系材料;电解质主要包括液态电解质、固液复合电解质和固态电解质;隔膜主要包括干法隔膜和湿法隔膜。

锂电池技术发展历程:正负极材料演变拉动技术发展

从20世纪70年代第一个锂电池出现,到如今五十余年的岁月中,锂离子电池不断发展,负极材料从锂金属发展到碳材料,再试图回到锂金属;正极材料也不断丰富,陆续推出钴酸锂、锰酸锂、磷酸铁锂、三元材料等。

锂电池技术政策背景:政策加持技术水平提升

近些年来,我国提出了一系列锂离子电池技术发展相关政策,加速了锂离子电池产业链的发展,同时对锂电池的安全性、技术体系、回收体系做出了规范,使得锂电池技术水平稳步提升。

锂电池技术发展现状

1、锂电池技术科研投入现状

(1)国家重点研发计划项目

据已公开的国家重点研发计划项目,2018-2021年我国锂电池技术相关国家重点研发计划项目共计18项。国家重点研发计划项目的资金来源为中央财政经费,一个项目的财政经费在2亿元以上。

(2)A股上市企业研发费用

锂电池行业经过多年发展,产品相对成熟,但行业整体研发投入水平不算太高。从A股市场来看,2017-2021年,我国锂电池板块上市公司研发总费用逐年增长,2022年第一季度,锂电池板块上市公司研发总费用约亿元。

2、锂电池技术科研创新成果

(1)论文发表数量

从锂电池相关论文发表数量来看,2010年至今我国锂电池相关论文发表数量呈现逐年递增的趋势,可见锂电池科研热度持续走高。截至2022年8月,我国已有69366篇锂电池相关论文发表。

注:统计时间截至2022年8月。

(2)技术创新热点

通过创新词云可以了解锂电池技术领域内最热门的技术主题词,分析该技术领域内最新重点研发的主题。通过智慧芽提取该技术领域中最近5000条专利中最常见的关键词,其中,正极材料、负极材料、电解质、集流体等关键词涉及的专利数量较多,说明锂电池领域近期的研发和创新重点集中于正负极材料、电解质等领域。

(3)专利聚焦领域

从锂电池专利聚焦的领域看,目前锂电池专利聚焦领域较明显,其主要聚焦于锂电池、锂离子电池、正极材料、负极材料、电解液等。

主要锂电池技术对比分析

根据分析磷酸铁锂、三元锂电池的技术特性,可以看出磷酸铁锂电池在安全性、经济性、原材料丰富度和循环寿命方面优势明显,而三元锂电池在能量密度、低温性能和充电效率方面优势明显。因此,磷酸铁锂电池技术更适合用于中短距离用车(中低端车型)、电动自行车、储能等场景;三元锂电池技术更适用于长距离用车(高端车型)、消费电子、医疗等场景。

锂电池技术发展痛点及突破

1、锂电池技术发展痛点

(1)缺乏高能量密度的正负极材料产业化应用

尽管锂离子电池技术和市场快速发展使得电池能量密度已有明显提升,然而缺乏可行的未来正极材料来继续提高锂离子电池的能量密度,给锂离子电池产业持续发展带来了重大挑战。

(2)锂离子电池安全问题亟待解决

另一方面,锂离子电池安全问题也是锂离子电池技术发展的痛点之一。锂离子电池安全问题的根源主要是电池的热失控。主要是由于锂离子电池内部具有很强的燃爆条件,其内部的易燃性材料如低熔点可燃有机脂类化合物、石墨负极材料都会成为相应的“燃料”,在充放电以及运行过程中不当的热管理将成为锂电池安全事故的导火索,最终引发燃爆事故。

2、锂电池技术发展突破

(1)锂电池结构创新设计

锂电池电芯集成方式的革新是锂电池的重要结构创新,例如CTP(Cell To Pack)即跳过标准化模组环节,直接将电芯集成在电池包上,提高能量密度。

(2)固态电池技术

目前,锂离子电池面临着安全性差的问题,固态电池可在安全性、能量密度、温度范围等方面突破锂离子电池的局限。

锂电池技术发展方向及趋势:短期提高电池能量密度、长期技术路线多元化

短期内,提高锂电池能量密度主要通过对现有材料体系的迭代升级和电池结构革新来实现。其中,锂电池材料体系的迭代升级包括正负极材料、电解液和隔膜的迭代升级;电池结构革新又包括电芯、模组、封装方式等的结构改进和精简。

从长期来看,由于磷酸铁锂电池能量密度上限较低,并且为了应对不同应用场景下的不同需求,锂电池技术路线将朝多元化方向发展。除了酸铁锂电池和三元锂电池之外,固态电池、磷酸锰铁锂电池、富锂锰基电池等新型锂电池技术路线的发展趋势向好。

「前瞻碳中和战略研究院」聚焦碳中和领域的政策、技术、产品等开展研究,瞄准国际科技前沿,服务国家重大战略需求,围绕“碳中和”开展有组织、有规划科研攻关,促进碳中和技术成果转化和推广应用,为企业创新找到技术突破口,为各级政府提供碳达峰、碳中和的战略路径管理咨询和技术咨询。院长徐文强博士毕业于美国加州大学伯克利分校,二十余年来一直深耕于低碳清洁能源和绿色材料领域的基础研究、产品开发和产业化,拥有55项专利、33篇论文,并已将30多种产品推向市场,创造商业价值50+亿元,专注于氢能、太阳能、储能等清洁能源研究。

以上数据参考前瞻产业研究院《锂电池行业技术趋势前瞻及投资价值战略咨询报告》。

现在新型的磷酸铁锂电池,安全性更好,而且成本更低。

锂电池材料构成四大主材:正极材料、负极材料、隔膜、电解液辅材:NMP、铜箔、铝箔、铝壳盖板、导电剂、粘结剂、其他(EMD)等。锂电池的性能与制造工艺息息相关,3C锂电池的制作工艺分为四道程序,一是极片制作,二是电芯组装,三是电芯激活检测,四是电池封装。电极制片又包括正极片和负极片制作,主要环节包括配料、搅拌、涂布、辊压、分切和极耳等步骤。极片制作是3C锂电池制作工艺的基础,电芯组装则关系着3C锂电池的性能,是核心工序。而电芯激活包含着电池的化成、分容和测试,是3C锂电池制作完成后关键性工序,电池封装工艺是3C锂电池制作的最后一步,关系着电池的成品质量。3C锂电池的化成、分容完成后,还需要对其进行性能测试,测试中可用弹片微针模组作为电流传输的媒介,能起到稳定连接的作用。3C锂电池的性能测试包括基本性能、安全性能、环境性能、电化学性能几大类,弹片微针模组在测试中可通过1-50A范围内的电流,过流能力强大,还有着平均20W次的使用寿命,可有效提高3C锂电池测试效率,保障测试高效安全进行。

锂电池行业主要上市公司:宁德时代(300750);比亚迪(002594);国轩高科(002074);亿纬锂能(300014)等。

本文核心数据:全球锂电池细分市场结构、全球锂电池区域分布、全球锂电池企业市场份额、全球锂电池市场规模

全球锂电池细分市场:动力与储能锂电池的市场份额有望提升

锂电池的细分市场主要为动力锂电池、储能锂电池和消费锂电池,其中,动力电池的下游应用领域主要为新能源汽车,储能电池的下游应用领域主要为电力系统,消费电池的下游应用领域主要为手机等消费电子。

从全球锂电池产量来看,动力锂电池占据了主要的产量份额,达到了,其次是消费锂电池,锂电池产量市场份额为,储能电池的市场份额最小,为7%。随着全球各国“碳达峰”战略的提出,全球各企业纷纷部署动力电池与储能电池产线,新能源汽车与储能市场的蓬勃发展有望推动动力锂电池和储能锂电池的市场份额进一步提升。

全球锂电池区域分布:中国占比达77%,欧洲扩张加速

根据S&P Global Market Intelligence 公布的数据显示,从产能来看,2020 年,中国在主导了全球锂离子制造市场,中国锂离子电池产能占世界产能的约 77%,其次是美国,占比约为9%。

虽然,S&P Global Market Intelligence预计,中国将在 2025 年继续成为锂离子电池制造的领先国家,但随着欧洲对制造设施的计划投资,其产能将大幅扩大,2025年,欧洲有望在成为世界第二大锂离子电池生产国,约占全球产能的25%。

全球锂电池企业竞争格局:LG化学、松下、宁德时代占据70%的市场份额

从企业产量来看,2020年1月至8月, LG化学成为全球领先的锂离子电池制造商,市场份额为;其次是宁德时代,以左右的市场份额位居第二,松下以左右的市场份额紧随其后。

在排名前五的全球锂离子电池制造商中,中国企业达到两家,分别是宁德时代和比亚迪,市场排名为第二和第四,合计市场份额达到32%。

全球锂电池供给情况:电池工厂数量快速增长

2020年,全球处于不同规划建设阶段的锂离子工厂共有181家。在新冠疫情大流行的背景下,2020年全球锂离子工厂的扩建与上一年相比依然增加了50%以上。其中,2020年在建和规划的181家工厂中,有136家位于中国,其中大部分是世界上最大的锂离子工厂。

全球锂电池需求情况:2025年市场规模将翻番

根据Research and Markets调研数据显示,2020年全球锂离子电池市场价值约为405亿美元,预计2026年市场将以的GACR增长,达到近920亿美元的规模,超过2020年市场规模的一倍。

以上数据参考前瞻产业研究院《中国锂电池行业市场需求预测与投资战略规划分析报告》

燃料电池车的发展研究论文

战略性新兴产业之新能源汽车:中国车企冲顶 2010年10月18日发布的《国务院关于加快培育和发展战略性新兴产业的决定》规划到2020年,新能源汽车将成为中国国民经济的先导产业。发改委随后在对有关决定解读时指出,新能源汽车是全球汽车行业升级转型的方向。我国要在未来形成具有世界竞争力的汽车工业体系,必须超前部署新能源汽车的研发和产业化。当前,要充分发挥社会各方面的积极性,以产业联盟系列化为途径,着力突破动力电池、驱动电机和电子控制领域关键核心技术,加速形成知识产权,推进插电式混合动力汽车、纯电动汽车推广应用和产业化。而有关规划实际上已经将中国新能源汽车10年内的发展目标定为全球第一。若这一规划成真,中国汽车企业将有望通过新能源汽车的跨越发展一举登上全球汽车产业的王者宝座。 2009年9月,我国在联合国气候变化峰会上提出,争取到2020年非化石能源占一次能源消费总量的比重达到15%左右。同年12月,我国在哥本哈根气候变化大会上承诺到2020年,我国单位GDP二氧化碳排放比2005年下降40-45%。这意味着未来10年我国节能减排任务艰巨。我国工业能耗大约占70%,而汽车是工业能耗大户,我国每年新增石油需求的2/3用于交通运输业。截至2010年10月,全国机动车保有量约亿辆。若未来国内机动车完全更新换代为新能源汽车(价格按每车10万元计算),则整个市场规模将高达20万亿元(这还未考虑到出口)。因此,发展新能源汽车不但有助于节能减排目标的实现,同时也代表了汽车产业的发展方向,其市场空间极其惊人。 根据《电动汽车科技发展“十二五”专项规划》,到2015年中国电动汽车保有量计划达到100万辆,动力电池产能约达到100亿瓦时。 此外,根据《节能与新能源汽车产业规划》,到2015年我国新能源汽车将初步实现产业化,动力电池、电机、电控等关键零部件核心技术实现自主化;纯电动汽车和插电式混合动力汽车市场保有量达到50万辆以上;到2020年,我国新能源汽车实现产业化,新能源汽车产业化和市场规模达到全球第一,其中新能源汽车(插电式混合动力汽车、纯电动汽车、氢燃料电池汽车等)保有量达到500万辆;以混合动力汽车为代表的节能汽车销量达到世界第一,年产销量达到1500万辆。 因此,我国新能源汽车产业即将面临爆发期,可以预计该产业中将会涌现出许多高速成长的企业,而这些企业也将会在资本市场获得良好的表现,极具投资价值。 新能源汽车产业政策支持全面加强 现代电动汽车一般可分为三类:纯电动汽车(PEV)、混合动力汽车(HEV)、燃料电池电动汽车(FCEV)。近些年在传统混合动力汽车的基础上,又衍生出一种外接充电式(Plug-In)混合动力汽车(PHEV)。目前全世界各国对电动汽车都非常重视,许多国家都开始投入大量资金开发电动汽车。 我国对新能源汽车产业支持政策由来已久。“十五”期间,投入亿元设立电动汽车重大科技专项,并取得重要进展,形成了“三纵三横”的研发布局,基本形成电动汽车自主开发的技术平台。所谓“三纵”是指开发燃料电池汽车、混合动力电动汽车、纯电动汽车;“三横”是指多能源动力总成控制、驱动电机、动力蓄电池。此外,电动汽车也被列入我国“863”计划12 个重大专项之一。 目前我国汽车产业支持政策包括两个方面:一是鼓励节能环保和小排量汽车,减少现有汽车能源消耗和排放;二是鼓励新能源汽车发展。主要补助插电式(plug-in)混合动力车和纯电动车。支持政策的走向是: (1)一揽子政策推动整个产业发展、补贴范围扩展到私人购车领域 节能与新能源汽车产业发展规划和一揽子扶持政策将于近期上报国务院审议,如审议通过,最快年内有望实施。一揽子扶持政策将从研发生产、市场推广、售后服务和回收利用等各个环节入手,制订产业政策、财政政策、税收政策、投融资政策等。我国还准备设立国家层面的节能与新能源汽车研发与产业化专项,重点支持节能与新能源汽车关键技术研发和技术改造。这将是我国第一次针对一个产业提出一揽子扶持政策。 近期我国对新能源汽车的补贴范围从对公交、公务、市政、邮政等政府采购补贴逐步扩展到对私人购买新能源汽车进行补贴。 2009年1月,国家启动“十城千车” 节能与新能源汽车示范推广试点,计划用3年左右的时间,每年发展10个城市,每个城市推出1000辆新能源汽车,首批列入了13个城市。09年底试点城市由13个扩大到20个,选择5个城市对私人购买节能与新能源汽车给予补贴试点。 2010年5月,政府在全国范围内开展“节能产品惠民工程”,消费者在6月18日之后,每购买一辆节能型汽车,将获得3000元的补贴。6月,出台对于私人购买新能源汽车补贴办法,对满足支持条件的新能源汽车,按3000元/千瓦时给予补助。插电式混合动力乘用车最高补助5万元/辆;纯电动乘用车最高补助6万元/辆。 (2)通过补贴扶持和引导新能源汽车产业链整体的发 展,并重点支持关键环节 新能源汽车的补贴政策通过规定补助范围、对象,并需要满足一系列的支持条件,来引导试点城市建立相关配套设施和示范推广工作。通过《推荐车型目录》和国家标准,来引导申请补助的汽车生产企业及其新能源汽车产品,提高和保证产品性能参数,重点扶持具备一定产能规模和完善售后服务体系,具有自主知识产权的企业。 目前,发改委正在修订《产业结构调整指导目录(2010年本)》,在鼓励类产品中,新增新能源汽车关键零部件。其中包括电池管理系统、电机管理系统、电动汽车驱动电机、电路集成以及充电设备等。 在配套设施方面,国家电网2010年将建设75个电动汽车充电站和6200个充电桩,2015年前将建设1700个充电站。南方电网也宣布2010年将建设超过80座充电站。 在国家和行业标准方面,我国已制定并发布了新能源汽车相关国家标准和行业标准共计42项,其中22项已列为新能源汽车产品准入的专项检验标准。2012年前,我国将基本建立与产业发展和能源规划相适应的节能与新能源汽车及充电设施标准体系。 新能源汽车技术路线:近期以混合动力汽车为重点,未来以纯电动车为主要发展方向 面对纯电动汽车(PEV)、混合动力汽车(HEV)、燃料电池电动汽车(FCEV)等不同的技术选择,根据《节能与新能源汽车产业规划》,我国新能源车发展路线将以纯电动汽车作为主要战略取向,近期以混合动力汽车为重点,大力推广普及节能汽车。考虑到技术发展现状,而将燃料电池电动汽车作为未来长期的发展方向。 经过近10年的自主研发和示范运行,中国在电动车产业技术方面与世界先进水平的差距在大幅度缩小;中国电动车领军企业与国外电动车技术的先行车企正在同一起跑线上成长。小型纯电动乘用车将是3到5年内中国电动车产业发展的主导方向。在“十二五”电动车发展规划中,小型纯电动车将得到充分重视。 动力电池:以锂电池为主要发展方向、以锰酸锂+钛酸锂为正负极搭配方式 动力电池、电机、电控等关键部件成本占电动车整车成本的30%至50%,同时也是新能源汽车的关键核心技术。根据《节能与新能源汽车产业规划》,到2015年,动力电池、电机、电控等关键零部件核心技术实现自主化;到2020年,节能与新能源汽车及关键零部件技术将达到国际先进水平。 在动力电池环节,我国力争突破动力电池瓶颈。到2015年,动力电池系统能量密度达到120瓦时/公斤以上,成本降低至2元/瓦时,循环寿命稳定达到2000次或10年以上。到2020年,动力电池系统能量密度达到200瓦时/公斤以上,成本降低至元/瓦时以下。 目前二次电池包括铅酸电池、镍镉电池、镍氢电池和锂电池等。虽然影响电池性能及决定其相对优势的因素很多,但是比能量是最重要最直观的一个指标。从铅酸电池、镍镉电池、镍氢电池到锂电池,比能量越来越高。与铅酸电池、镍镉电池和镍氢电池比较,锂电池的优势明显,因此作为发展方向的锂电池将会在电动汽车领域广泛应用。我们预计2015年国内新能源汽车动力锂电池的市场规模达到180亿元。到2020年,新能源汽车已经进入普及期,新能源汽车动力锂电池规模将达到2880亿元。市场容量巨大,且增长迅速。 锂电池单元主要由正极、负极、隔膜和电解液四部分组成。正极材料是决定电池性能的关键,目前市场应用的主流正极材料包括钴酸锂、锰酸锂、三原材料和磷酸铁锂,其中锰酸锂和磷酸铁锂可以说是各领风骚。由于磷酸铁锂产品存在一致性、低温性能、高倍率放电性能和成本等问题,因此我们认为未来新能源汽车将主要选择锰酸锂路线。从目前市场主流新能源汽车看,除了比亚迪坚持使用磷酸铁锂电池,其他公司也基本都选择了锰酸锂路线。 在负极材料方面,虽然碳材料一直处于主导地位,但是我们预计钛酸锂的出现将会颠覆行业格局。钛酸锂是一种性能优异的负极材料,由于电位过高,钛酸锂并不适合与磷酸铁锂搭配,反而锰酸锂+钛酸锂体系是较优的一种选择。锰酸锂+钛酸锂体系的优势包括:近乎完美的安全性、使用寿命更长、可以快速充放电、结合锰酸锂具备整体成本优势等。因此我们认为锰酸锂+钛酸锂体系将会是未来正负极材料的主要搭配方式。 电解液约占锂电池成本的15%,电解液中关键材料六氟磷酸锂约占成本一半,目前六氟磷酸锂国产化程度很低,毛利率更高达70%;隔膜是锂电关键材料中技术壁垒最高的一种高附加值材料,占锂电池成本的20%左右,由于技术含量高,目前国内80%的隔膜需要进口。可以预计动力锂电池用隔膜的发展方向是耐高温、多层隔膜、高强度、高保液能力。 驱动电机:我国驱动电机技术进步明显 驱动电机是电动汽车的关键部件,直接影响整车的动力性及经济性。驱动电机主要包括直流电机和交流电机。目前电动汽车广泛使用交流电机,主要包括:异步电机、开关磁阻电机和永磁电机(包括无刷直流电机和永磁同步电机)。其中,异步电机主要应用在纯电动汽车,永磁同步电机主要应用在混合动力汽车中,开关磁阻电机目前主要应用在客车中。 车用电机的发展趋势包括:第一、电机本体永磁化:永磁电机具有高转矩密度、高功率密度、高效率、高可靠性等优点。我国具有世界最为丰富的稀土资源,因此高性能永磁电机是我国车用驱动电机的重要发展方向。第二、电机控制数字化:专用芯片及数字信号处理器的出现,促进了电机控制器的数字化,提高了电机系统的控制精度,有效减小了系统体积。第三、电机系统集成化:通过机电集成和控制器集成,有利于减小驱动系统的重量和体积,可有效降低系统制造成本。 在驱动电机方面,经过“九五”、“十五”、“十一五”国家对电动汽车用电机系统的集中研发和应用,我国已自主开发了满足各类电动汽车需求的驱动电机系统产品,获得了一大批电机系统的相关知识产权,形成具有核心竞争能力的车用驱动电机系统批量生产能力。 目前,我国自主开发的永磁同步电机、交流异步电机和开关磁阻电机已经实现了与国内整车产业化技术配套,电机重量比功率显著提高,电机系统最高效率达到93%以上,系列化产品的功率范围覆盖了200kW以下电动汽车用电机动力需求,各类电机系统的核心指标均达到相同功率等级的国际先进水平。但是与国际先进水平相比,在产品集成度、可靠性和系统应用技术方面,仍存在较大的差距。

汽车新能源还是非常有前景的,可以考虑长期学习

你自己按照个人情况改改!摘要:本文从新能源汽车的市场现状开始,利用营销中市场的概念和SWOT分析法,阐述和分析了海口新能源汽车的发展前景,阐明了海口新能源汽车还属于产品的导入期,并建议“先公后私”引入新能源汽车等观点。 关键词:新能源汽 SWOT 产业化 在石油能源严重紧缺、节能呼声日益高涨的背景下,新能源汽车研究项目被列入国家 “十五”期间的“863重大科技课题”,并规划了以汽油车为起点,向氢动力车目标挺进的战略。从2009年起,中国新能源汽车市场将进入产品导入期,由科技部牵头的国家节能与新能源汽车大规模推广应用工程将全面启动。新能源汽车将在我国一批中心城市全面开花,并有望形成一定规模。 各家汽车企业都希望能够占据先机,从日益膨胀的新能源汽车市场中分到更大的一块蛋糕。继北京奥运会之后,于2010年举办的上海世博会也将为新能源汽车加速发展提供了契机。而上海市作为下届世博会的主办城市,有关部门表示,为迎接世博会,明年上海将有1000辆左右的新能源汽车投入使用。那么对于中国最南端的省会城市并荣获“中国人居环境奖”的海口市,其新能源汽车的发展前景又是如何呢? 一、市场=购买规模+购买力+购买欲望 1. 海口的新能源汽车市场有没购买规模 根据数据显示:2008年底海口市常住人口180多万人,2008年12月31日,海口市机动车保有量万辆,较2007年增长。目前新车入户日均100辆,高峰期达380辆,年增长3万辆,截至目前,海口市共有机动车驾驶人40万人。随着海口市民生活质量的不断提高和改善,私家车成为机动车增长的新亮点。全市民用汽车拥有量万辆,比上年增长,其中私人汽车拥有量万辆,增长。民用轿车拥有量万辆,增长,其中私人轿车拥有量万辆。据了解,在5年的机动车增长过程中,私家车占了46%,位居全国前列。但是从其他大中型城市的保有量和人口比例来分析,海口的汽车市场前景还是非常的广阔。 2. 海口的新能源汽车市场有没购买力 《2008年海口国民经济社会发展统计公报》显示:2008年全年海口市生产总值(GDP)实现亿元(不含农垦,下同),按可比价格计算,比上年增长,已连续11年保持两位数增长,经济增长率比全国平均水平高个百分点。从三产业情况看,第一产业实现增加值亿元,增长;第二产业实现增加值亿元,增长,第三产业实现增加值亿元,增长。一、二、三产业结构为。按常住人口计算,人均生产总值达3573美元(按平均汇率),比上年增长。2008年末,全市城镇从业人员万人(不包括私营企业、乡镇企业从业人员及个体劳动者),比上年增长,其中,在岗职工人数万人,增长。全年实现新增就业人员31313人,其中下岗失业人员再就业12377人,职业技能培训11798人,其中再就业培训5730人;农村富余劳动力转移就业11290人,创业培训1149人。按照众泰2008EV公布基本型以万元的市场价格出售的新能源汽车来看,它创造了目前国内纯电动乘用车领域的最低价,但这一价格与传统汽车相比,仍高出了一大截。如果用锂电池改造一个传统动力的轿车,附加成本是15万元-16万元,而如果是公交车,就是50万元-60万元。所以从人均生产总值和就业情况来来看,海口居民购买电动车的购买力还比较弱。 3. 海口的消费者对于新能源汽车市场有没购买欲望 日前,新华信针对消费者的新能源汽车购买意向调查显示,仅有的被访者表示肯定会购买新能源汽车,超过七成以上的被访者态度不明朗,另有的被访者表示肯定不会购买。是什么原因导致消费者对新能源汽车的购买表现迟疑?此次调查显示,“车价太高”成为阻碍消费者购买新能源汽车的主要原因。其次,对新能源车“技术不信任”、“担心维修便利性”、“燃料添加不方便”等原因也是消费者不考虑购买新能源汽车的理由。新能源汽车普遍售价过高,而纯电动以及充电式混合动力汽车都需要电源等基础设施的支持,如果政府财力不能给予足够的补贴,或者无法建成完善的充电设施,相对于技术成熟稳定的传统动力车型而言,消费者对新能源汽车这一新生事物的认识还不足,所以从购买欲望来看,海口的大部分居民没有够买新能源汽车的意向。 市场=购买规模+购买力+购买欲望,从市场构成的三要素来看海口的新能源汽车市场有没购买规模,从其他大中型城市的保有量和人口比例来分析,还是非常的广阔,但是从人均生产总值和就业情况来来看,海口居民购买电动车的购买力还比较弱,由于消费者对新能源汽车“车价太高” 、“技术不信任”、“担心维修便利性”、“燃料添加不方便”等原因,使其购买欲望偏低。 二、海口市新能源汽车的发展前景的SWOT分析 1. 海口市新能源汽车的发展前景的优势(strength)分析 国家信息中心预测,我国乘用车市场的高速增长态势将至少再持续15 年,需求年均增长率大致相当于GDP 增长率的 倍左右。2009 年轿车将大量进入家庭(中等收入家庭具备购车能力)。从定性角度看,轿车市场至少还将有20 年的快速增长。如果国内GDP2020 年比2000年翻两番的话,2020 年前后我国将超过美国,汽车需求量将达到2000 万辆,成为世界第一大汽车市场。 自1988年,海南建省并成为全国最大的经济特区,海口市成为海南省省会以来海口市便获得了十佳城市、国家环境保护模范城市、全国卫生城市、中国优秀旅游城市、国家园林城市、国家历史文化名城、全国创建文明城市工作先进市、全国城市环境综合整治优秀城市、“中国人居环境奖” 等城市美誉。海南一贯的发展思路是旅游岛、环保岛、健康岛,新能源汽车便是这个城市的另一种环保和健康。 从海口市的经济发展前景和汽车市场发展规模来看,在城市的公交、出租车、公务、环卫和邮政等公共服务等领域,新能源汽车有很大的市场空间。 2. 海口市新能源汽车的发展前景的劣势(weakness)分析 (1)交通拥挤、混乱。近5年来海口机动车和驾驶员数量持续增长,给道路交通管理带来了空前的压力。据了解,海口现有城市道路859条,总长度1797公里,机动车拥有量为25万辆,且正以每日200辆的速度增长着,其中私家车占有量高达26%,以当前海口的交通网络显然是无法满足机动车行驶需求的。其次,城市中心区域道路改造速度缓慢,对原有道路改造还未形成系统工程,特殊是多颈路,断头路长年以来未得到有效改造。严重制约着其他主干道的通行及分流量能力。再次,还存在精态道路交通及建设滞后问题,如海口现有的停车场因不能容纳下过多的车辆,导致司机在一些路段两旁停车。这使得本来就不宽的道路变得更加狭窄。还有就是海口交通发展落后,市民出行方式单一,摩托车、私家车等出行成为市民首选,使道路资料利用率降低。如府城的中介路是海口摩托车与风采车泛滥最为严重的地方之一。在候车店旁,挤满了摩托车与风采车。他们占道抢客,阻碍了其他过往车辆的正常通行,轻易引起堵车。海口交通警力不足,路面管控点,盲区过多,人们的交通, 观念淡薄,公交车的线路重叠严重,站点安排不合理。有些路段的塞车严重,特别是节假日或上下班高峰时,交通是混乱不堪。 (2)车位供小于求。资料显示,目前,海口的汽车保有量已超过16万辆,并以每年2万多辆的速度递增。据了解,目前海口市平均每天有60多辆新车上路,而在一天之间增加这么多车位显然不太现实。在未来几年内,不论是小区车位还是公共车库都会更加趋于紧张。 交通混乱、堵塞、车位难求,不仅是海口汽车市场,也是海口新能源汽车市场发展的一个致命症结。 3. 海口市新能源汽车的发展前景的机会(opportunity)分析 (1)政府鼓励。今年2月5日,科技部和财政部联合出台《节能与新能源汽车示范推广财政补助资金管理暂行办法》,宣布为鼓励节能汽车发展,中央财政将对购置节能与新能源汽车给予一次性定额补助,鼓励全国13个试点城市率先在公交、出租车、公务、环卫和邮政等公共服务领域推广使用节能与新能源汽车。《办法》明确规定,中央财政对购置节能与新能源汽车将按同类传统汽车的基础价差,并适当考虑规模效应、技术进步等因素给予一次性定额补贴。其中,长度10米以上城市公交客车是此次补贴的重点,混合动力客车最高每辆补贴42万元,纯电动和燃料电池客车每辆补贴分别高达50万元和60万元。 (2)新能源汽车技术逐步成熟完善。在“十五”电动汽车重大专项和清洁汽车科技行动攻关计划的基础上,“十一五”期间,在“863”计划中又启动了“节能与新能源汽车”重大项目,继续支持节能与新能源汽车关键技术研发和产业化。 这期间,我国科技计划累计投入近20亿元,分别组织实施了“电动汽车重大科技专项”和“节能与新能源汽车重大项目”,确立了“三纵三横”的研发布局,即燃料电池汽车、混合动力汽车、纯电动汽车三种整车技术为“三纵”,多能源动力总成系统、驱动电机、动力电池三种关键技术为“三横”。目前,我国基本掌握了新能源汽车技术,建立了节能与新能源汽车的动力技术平台,形成了一个比较完整的关键零部件体系,开发出一批节能与新能源汽车的产品,实现了小批量的整车能力。在我国节能与新能源汽车的研发布局中,纯电动车和燃料电池车、混合动力车“三驾马车”并驾齐驱。 通过持续开展的技术攻关,我国的新能源汽车产品日益成熟。在混合动力汽车方面,我国在系统集成、可靠性、节油性能等方面进步显著,依据不同混合度方案,实际路况运行节油10%至40%,混合动力整车产品开始小批量进入市场。 在纯电动汽车方面,我国处于国际先进水平,使用大容量锂离子动力蓄电池的纯电动客车在奥运中心区的规模应用,代表了当代国际纯电动大客车的先进水平。纯电动轿车具有成本优势,已开始小批量出口欧美,国内市场需求也不断加大。在燃料电池汽车方面,我国的整车集成技术、动力平台的成熟性、整车的可靠性有了新的提高,无故障间隔里程与国外同步达到3000公里,燃料经济性优于国外燃料电池汽车,并取得了“新一代整车控制器”、“两挡变速器”、“氢电系统安全性碰撞”等一批原创性研究成果。 4. 海口市新能源汽车的发展前景的威胁(threat)分析 (1)技术问题。对于新能源汽车来说,电池技术是主要瓶颈。研制成本低、体积小、持续能力强,并且使用寿命长的电池是破解新能源汽车难题的关键。此外,如何保证由电机系统组成的动力总成与整车匹配,是亟待解决的技术问题。 (2)产业化问题。 我国能源汽车战略应尽快形成上下一盘棋的局面。而当前各地争相上马新能源汽车联盟和产业基地,或将导致更严重的地方保护主义,不利于新能源战略的推广。 另外,国内节能与新能源汽车生产企业并没有足够的技术实力迎接产业化的到来。在混合动力汽车关键零部件领域,国内企业的产品可靠性以及自动变速箱生产经验等方面均与国外产品存在一定差距。 从海口市新能源汽车的发展前景的SWOT分析来看,海口市的新能源汽车的发展前景有着发展公共服务等领域的优势,同时由于城市交通的混乱、堵塞、车位难求等劣势,制约着海口新能源汽车市场的发展,但由于我国政府对于新能源汽车的政策鼓励和支持,各民族自主企业的发奋图强,攻破了新能源汽车的层层技术难关,海口新能源汽车市场又面临了新的机遇。 三、发展前景建议 1. 引导消费者改变消费观念 多年来的汽车消费习惯导致人们对汽车新事物——新能源汽车的认识存在诸多偏见,例如价格太贵、性能不稳定、使用不方便和维修太贵等等。无论是政府还是汽车厂家都应该从各个方面去正确引导消费者,让他们对新能源汽车有一个正确而客观的认识,让汽车消费更加理性和科学。倡导汽车新消费=环保+诚信+车德的理念,使消费者在购买新能源汽车的时候感受到自己作出的社会贡献。 2. 解决交通混乱、车位难求的现状 海口目前总的交通状况是交通网络发展缓慢与车辆众多之间的矛盾,贯穿海口的交通。还有停车问题、占道拉客问题等一系列的问题构成海口市交通的主要问题。建议相关职能部门必须制定海口交通短期改造计划及长期建设规划和相关政策解决车位难求的现状。 3. 政府加大鼓励和指导力度 新能源汽车除了混合动力之外,纯电动车及其他代用燃料车应由国家统一标准。启动的节能与新能源汽车示范推广试点,在3至5年的补贴期内增强自主创新产品竞争力,以顺利进入产业化阶段,降低企业生产成本,使其售价满足消费者的需求。同时建立与新能源汽车相关的产业结构,如充电站、新能源汽车检测与维修中心,联合生产厂家建立和完善售后服务体系。 4. “先公后私”引如新能源汽车 海口新能源汽车还属于产品的导入期,建议先从公交、出租车、公务、环卫和邮政等公共服务领域推广使用节能与新能源汽车,逐步改变消费者,特别是私家车主的消费观念,在发展新能源汽车的私家车市场。

2017年我国新能源汽车产销量分别达到万辆和万辆,已经连续三年位居世界第一位,累计保有量达到180万辆,占全球市场保有量的50%以上。这样的成绩取得的确喜人,其背后正是一系列政策不断积累生效以及市场不断认可的表现。

中国手机电池的研究发展论文

【IT168 评测】其实笔者写文章的时候,最喜欢的一句开头语就是:在智能手机飞速发展的今天此处省略一万字。不可否认,智能手机硬件软件发展速度真的是呈几何级数曲线增长的。但即使是飞速发展,我们对智能手机还是有着这样或者那样的不满意,到底是什么制约了智能手机,什么又是智能手机木桶效应的那个短板呢?今天我们就来探讨下关于智能手机一个老生常谈的问题——电池。有人说智能手机电池已经到达瓶颈,很难有大的突破了,是这样么?要想要智能手机电池续航有所突破需要在电池工业上有哪些改进,又需要在软件算法上有何优化呢?时下什么智能手机采用了高端节电技术呢?这将是本文和大家一同探讨的问题。

其实智能手机发展进入瓶颈这是一个老生常谈的话题。但如果我们仔细想想,什么样的论据支持我们这一基本上算是达成了的论点呢?我们一时又很难说明。在这篇文章前面,笔者通过一个实验来看看究竟这几年来智能手机电池发展速度如何?其实实验的原理十分简单。通过比较2005年至今的手机电池比容量(比容量又称克容量,指每克电池含有的电量),就能够简单直观的看出05年至今手机电池的发展速度了。

在做这个实验之前,我们先来给大家简单介绍一些日常手机电池我们遇到的一些名词,有助于我们更准确的了解智能手机、充电宝等数码产品电池。

mAh:mAh毫安时可以说是我们在智能手机电池中最常见的参数。智能手机厂家也在发布会上说我们采用了3000mAh超大容量电池云云。其实mAh并不是一个能量单位,也就是说一块电池能有多大电量用mAh来表达并不准确。mAh是代表电池中释放为外部电子使用的电子总数,和物理上的库伦是等价的。1mAh等于库伦电子。手机多采用mAh作为电池计量单位原因在于计量方便。例如3000mAh电池就能够维持300mA持续电流下,手机工作10小时。但请记住,mAh不是电池的能量单位。

工作电压:手机电池上,我们经常见的除了mAh以外,还有工作电压一说。我们常见的说法是这块电池是 1000mAh电池,或者 3000mAh电池等。这个电压其实是一个平均值。大致意思是电池工作电压的平均值,或者可以理解为电池正常工作时间最长的电压。通常我们可以看到手机电池有一个充电电压和一个工作电压。理论上这两个值越大越好。原因在于智能手机运转时,是需要电池维持在以上。当电池电压讲到以下时,手机大部分功能就不能使用了,进入关机状态。仅有一小部分功能能在关机下利用以下电压进行工作。如果电池工作电压越大,也就意味着电池能工作的时间越长。而充电电压则是电池充满后不能超过的电压。如果超过这一电压,有可能发生危险。

Wh:Wh是电池的一个最准确的能量单位,其实很多大型电池都采用了Wh代表电池容量。其实就连笔记本电池也更多的采用了这一容量单位。Wh是毫安时和工作电压乘积而来。例如一块1000mAh电池工作电压为,则这款电池容量为。而我们前面所说的比容量(或者成为克容量、能量密度)则是电池每一克含有的Wh数。

简单介绍了mAh、工作电压、充电电压、Wh之间的关系,也知道了Wh是最能体现一款手机电池容量的核心参数,接下来我们通过对2005年到2014年手机电池的测试来看看这9年间电池发展是否为一个瓶颈。

通过测试,我们得到了这样的一张大概为波浪的图片。并不像我们之前想象的始终小幅上升,反而是有时急速上升,有时反倒下降的表格。其实这里面原因有很多,首先笔者样本量不足肯定是导致这一现象发生的最主要原因。但这幅图中也蕴含着这10年来智能手机发展的几个阶段。我们这一部分先简单向大家解读一下。

首先05年到07年,手机电池能量密度有了一个巨大的飞跃,增幅大概为40%,主要原因是这期间智能手机电池从普通液态锂电池转变为锂离子聚合物电池。经历了07、08、09、10年的小幅上涨后,智能手机电池容量在11、12年两年不增反降这其中有两个原因:1.在手机电池做大之后,厂商更加关注手机电池的安全性,在硬壳防护上做了很大改进,导致手机电池重量上升。2.随着互联网品牌等更多品牌的加入,智能手机电池质量开始出现参差不齐的现象。最后我们看到13、14年,智能手机电池比容量达到目前的顶峰。原因也是两方面的:1.越来越多的厂商开始做内置电池,在保证安全的情况下省去了硬壳包装。2.电池技术从12年到14年间有了很大进步,高端智能机电池工作电压普遍从升至。

其实我们可以看到,从05年到14年十年间,智能手机电池基本上做到了100%的能量密度提升,平均每年的增长率,按说这一数字如果换算成GDP增长率,那可真算得上是10年腾飞之路了。但怎奈何CPU主频增长率1500%,摄像头像素增长率5000%,其实并不是电池发展遇到瓶颈,而是其他硬件产业发展是在太迅猛了。在大环境的映衬下,显得智能手机电池发展速度太慢了。也难怪大家都吐槽电池不给力。举个例子十年前两个人每个月都挣100块。十年后一个人挣200块,一个人挣5000块,显然200块那主儿是被吐槽的一方啊。那究竟智能手机电池还能不能迎来飞跃?怎么才能解决智能手机续航不给力的现状呢?我们通过开源和节流两方面来向大家简单分析下。

智能手机电池如何开源?

智能手机电池资源跟所有短缺资源相同,都需要开源节流。在我们介绍目前手机电池“开源”创新方面,我们先来看看时下智能手机电池的现状。前面我们也说道了液态锂离子电池和锂离子聚合物电池,两者之间有何差别呢?

提到智能手机电池故障,我们首先想到的往往是鼓包、爆炸等词语。其实电池鼓包、爆炸等都是液态锂离子电池的代名词。手机发展到今天,绝大多数厂商已经开始使用锂离子聚合物电池。锂离子聚合物电池和液态锂离子电池最大的不同就在于电解质形态不同。液态锂离子电池采用液态物体作为电解质液,最具代表性的就是我们常说的18650电池,液态锂离子电池尤其自身的优点:历史悠久、价格低廉、安全系数不错。这也是为神马目前小到例如小米电源,大到例如特斯拉汽车都在使用18650电池作为能源。但由于保护电解质液通常需要使用金属外壳,如果密封不好的话会出现漏液,如果过冲(充电电压过大)的话会出现电池鼓包或者爆炸的现象,时下越来越多的智能手机开始使用锂离子聚合物电池。

锂离子聚合物电池相对于液态锂离子电池最大的区别在于其使用了固态或胶状物体作为电解质。安全系数更高。在出现过冲的情况下,固态或胶状物体会出现气化的现象,更为严重的会出现燃烧,基本不会爆炸。而我们时下常见的手机爆炸新闻通常是由于锂离子聚合物电池出现过冲自燃后引发手机内部芯片爆炸或手机自燃。并不是我们脑海中的手机电池爆炸。并且锂离子聚合物电池相对于液态锂离子电池也有明显的优势:工作电压高、能量密度大、自然放电小、重复使用寿命长、没有记忆效应、内阻小、形状可定制、保护电路板设计简单等。但同样带来的问题就是成本较高。

▲特斯拉使用的松下18650电池

了解了锂离子聚合物电池和液态锂离子电池后,我们来看看时下主流的电池构成是怎么样的。时下主流的锂电池基本上分为钴酸锂离子电池、锰酸锂离子电池、磷酸铁锂离子电池、三元电池等等。其中每一类电池各有优劣。其中钴酸锂离子电池能量密度最大,所以目前智能手机电池全部采用钴酸锂离子电池。其他锂离子电池各有优劣,例如最新的特斯拉汽车就开始使用三元锂离子电池替代了钴酸锂离子电池。

▲钴酸锂的微观形态

锂作为最活泼的金属元素,活泼型仅次于氢,显然是做电池的最佳选择,但由于其过于活泼,本身不稳定且十分不安全,人们就想到了利用钴酸、锰酸、磷酸铁等和锂结合作为电池正极,用石墨作为负极打造电池。前面我们说到钴酸锂离子电池能量密度最大,虽然有着相比于其他锂离子电池不太安全、工作电压不高等缺点,但对于智能手机这种小型、需要单块电池的设备来讲还是最佳的选择。前面我们说到了开源,如何对现有电池技术进行开源呢?

▲采用三维纳米网格技术正极增加钴酸锂密度

方法一:提升钴酸锂密度。提升钴酸锂密度,放电电子增多,库伦数/mAh增大是解决电池容量不足的一个方法。当然我们谈论的是在一定体积下增大密度。随着技术的革新,钴酸锂离子电池正极密度越来越大。而目前科学家正在考虑利用纳米网状层来进行钴酸锂离子电池正极的从新分配,从而更大限度的合理利用正极的安全空间。目前实验表明,该项技术能够使电池容量成倍增加。但需要注意的是,目前该项技术仅仅是实验当中,想想处理器刚刚跨进20nm,将纳米技术应用在民用级手机电池正极,还得些年头。并且我们知道钴酸锂是有其物理密度的,提升钴酸锂密度的方法最终是会到达尽头的。并且在时下已经非常完善的技术上再提升密度,安全性和成本对于厂商来讲还是不划算的。

方法二:提升工作电压。工作电压是由正极材质、电解质材质等等综合控制的。前面我们说过Wh=mAh×工作电压,如果工作电压能够提升,也能为电池增加容量。但由于目前手机电池电解质耐压,所以充电电压不能高过,故工作电压也很难提升。其实这几年厂家在工作电压上已经下了很大功夫,从10年前的,已经提升到了现在的,千万别小看这的提升,代表着厂家在正极、电解质、过冲保护方面做到了极致。相信过不了多久,就会出现工作电压的手机电池,但这也是现有情况下手机电池工作电压的极限了。如果真的想笔者所说的工作电压从提升到,那么电池容量增幅也仅仅能达到,还是杯水车薪的一件事情。

方法三:异性电池。提升空间利用率是目前厂家很好实现的一个方法。目前智能手机采用很多都采用了弧形设计,内部电池却仍旧采用较为方正的矩形设计,不能很好的利用背部弧形的空间。而梯形电池、柔性电池、线缆电池等电池的加入使得智能手机空间能够更加合理的利用。在这方面上LG Chem走在前列。之前LG G2就采用了梯形电池大幅提升了电池容量。而刚刚发布的LG G3搭载了2940mAh的常规形状电池,如果能搭载梯形电池有可能电池容量达到3450mAh,这一提升还是非常可观的。但增大体积来解决电池容量问题终归是一个笨办法。LG G2售价2699元。【点击查看详情】。

▲Li-Air电池技术

方法四:采用全新材质电池。想要智能手机电池容量提升速度跟摄像头像素提升速度那么快的办法目前来看只有采用新材质电池。目前呼声较高的锂硫电池、锂氧电池虽然号称在能量密度上相比目前的钴酸锂系电池能够提升数十倍甚至上百倍,但由于成本、技术不成熟、安全性能低等原因目前仍旧停留在实验室理论验证和极少量试验品的生产阶段。离装到我们手机中还极其遥远,甚至比前面我们说到的采用纳米网格增加正极密度还要遥远。儿子辈能用上就算是科技突飞猛进了。

▲三星很早试水手机燃料电池

方法五:燃料电池。每当我们说到电池遇到瓶颈的时候,都会听到燃料电池的声音。的确锂作为电池虽然已经十分强大了,但别忘了元素周期表中第一位的氢才是能量的王中王。笔者记得每一代iPhone发布前夕都有各种各样的传言称iPhone将采用燃料电池。笔者只能说理想很丰满,现实很骨感。目前燃料电池还不能做到小型商用化,还不能保证非专业用户手中的燃料电池足够安全。笔者腹黑的想法是燃料电池能量很大,如果进入消费级,几块手机电池就能组装成一颗炸弹,那岂不是天下大乱。还有每天幻想着核能进入消费级市场的朋友,想想现在的地区安全局势,还是不要做梦了。

以上就是智能手机开源的5种方法,我们也看到了不是目前还处于试验阶段的,就是成本过高的。最靠谱的一种方法——异性电池的应用本质上仍然是增大手机体积。不能说手机电池近年来不会有迅猛发展,但本质上的改变很难,我们理想状态下成倍的增长更是几乎不可能。既然开源短期内很难看到成效,那我们就来看看节流吧。目前有什么技术能够降低手机耗电量呢?

智能手机现有节电技术

有人说钱不是攒出来的,笔者也特认同这个观点,但在现实生活中,你不涨工资还不想省钱,想必你也是醉了。手机也一样,前面我们说了目前开源的方法不太靠谱,文章的这一环节我们就来简单讲讲手机如何节电?

快速充电:其实快速充电严格意义上来讲并不能算是节电技术的一种,但由于实际操作过程中确实能够为我们带来续航方面的便利。文章这里就简单向大家介绍一下。其实时下很多快速充电技术,几乎我们每隔一段时间都能看到新闻讲到XX大学研究快速充电技术能够在几秒钟对电池完成充电。但其实快速充电就伴随着安全性的问题。理论上充电速度越快就越容易出现安全问题。我们在这里简单向大家介绍两个目前已经应用到手机上的快速充电技术。那些躺在实验室中的技术就选择性的掠过了。QuickCharge 技术是高通采用的全新快速充电技术,采用9V/充电标准,号称能在1小时内为手机充电60%。目前小米4采用了这一标准,而高通也将大力推广这一充电标准。小米4售价1999元。【点击查看详情】。VOOC闪充技术是最先采用在OPPO Find 7上的一个OPPO专利充电技术。充电速度达现有充电速度的4被,5分钟充电时间能够为手机提供2小时通话时间的电量。采用规格。需要芯片和microUSB口同时支持才能使用。OPPO Find 7售价3498元。【点击查看详情】。

▲MIUI 6采用系统级节电方式

软件节电:目前很多安卓手机都号称自己采用了独家的节电技术。其实安卓手机软件节电基本上是通过系统级和应用级节电完成的。例如小米4采用了全新的内存管理和后台运行程序机制,就属于系统级节电。而例如华为从华为P7上开始搭载的屏幕省电,则是通过降低屏幕分辨率的方式来进行节电,属于应用级的省电功能。华为P7售价2888元。【点击查看详情】。

▲RAM屏幕工作原理

硬件节电:在硬件节电方面,目前作为手机耗电的两大“巨头”,处理器和屏幕都分别有着自己的方法。处理器厂家包括ARM和其他例如高通等厂家都通过优化架构、采用全新的制程等方式进行节电。而屏幕厂家则通过试用带有RAM的屏幕来对手机画面进行自动识别,来控制刷新率和背光来节电。LG G3和努比亚Z7就是典型的带有RAM的2K分辨率屏幕节电手机。LG G3售价3499元。【点击查看详情】。

全文总结:其实笔者通过这篇文章简单的解读了一下智能手机电池的昨天今天和明天。通过开源节流两方面介绍了目前智能手机电池的发展趋势。作为一个非专业人士,笔者深知目前随着电动汽车等清洁能源交通工具的大热,无论是政策因素还是市场因素都给整个电池产业带到了一个很好的发展时期。本文最终目的是给消费者对于智能手机电池的一个大体认识。而对于专业人士来讲,如果本文出现描述不准确的地方,望斧正。

提到现如今的移动设备,说真的,其发展之快往往会令我侧目。

在此之前,我从来都没有想过,板砖青年诺基亚居然有一天会改变自我,向着一个大屏的方向不断发展。

而这也是当今 手机发展的一个缩影 ,随着如今科学技术的极尽发展,如今的电子设备已经进行了非常强力的升级换代。

从手机芯片方面来说,如今的 SOC架构 每年都会发生新的革新,而且在处理速率方面,其每年也都会 进行60%左右的升级 。如今的手机已经可以胜任少量的 桌面级操作 ,主要原因就在于此。

在相机方面,随着 传感器产业 的发展,如今的便携式摄像头也已经发挥出了自己的实力。

曾经的 大块氙气摄像头 早已不复存在,以华为为先的 徕卡镜头 更是走向了世界,拍出了可以媲美小单反的效果。

至于制造工艺的发展就更别说了,从前的手机的手感有多劣质大家应该都有所了解,因此才让当年的iPhone4获得了惊为天人的评价。

如今的手机则是异常的精致, 铝合金一体设计 已然落后,新的 素皮设计 已然来临,一举一动尽是精致漂亮。

不过不知道大家有没有发现,在其他技术极尽发展的同时, 手机电池技术却像停机了一样 ,没有让我们感觉到什么太大的发展。

至少说没让我们得到太深的体验感,或者可能被我以上我所说的各种进步所掩盖了。

由此带来的最直观的感受就是,如今的手机电量真是越来越不经用了。在移动端没有发展起来的以前,我们的手机最多也就每天充一次电。

而到了现在,真是不知道每天要充几次电。出门时间稍微长一点就得带充电宝,否则 恐慌感 就会瞬间袭来。

由上便引来了我们对于手机电池技术为何发展不是很快的疑问,手机电池续航短的问题为什么这么多年都没有解决?其难题又在哪呢?

目前来说,现在市面上的电池基本上都是 锂电池 。

其中的原因自然是很简单,因为 锂是已知的所有金属当中储能性最好的一个,而且也便宜,方便推广普及 。

在此处我们也应该说句公道话,手机电池在最近这几年来并非没发展,而是发展的很迅速,只不过是被如今的手机发展速度搞了一顿罢了。

就比如说,十年前手机里的锂电池和现在手机里的锂电池肯定没法比。而之所以今天我们感觉手机的电池不够用了,就是因为现在 手机定义发生了极大的变化 。

十年前的手机用的是小小的黑白屏,现在手机用的是超大的彩屏。

以前手机只需要完成打电话或发短信的任务,顶多再加个贪吃蛇。

现在那就不用说了, 手机已经成了我们认识世界的工具,通讯、 游戏 、社交、 娱乐 通通被整合到了手机上,其耗电量自然是倍增。

根据目前的一些数据,现在手机电池每年的进步大约能有 3% ,这也就意味着这十几年来,手机的电池技术进步大概也只有 34% 。

按照发展的标准来看,其实手机电池也不是没有进步。

只是相比于如今的 高端芯片 性能每隔1到2年的时间就会翻一番的恐怖速率,大家才会觉得如今的手机电池就像完全没有发展一样。

说真的,对于手机续航能力的提升这一方面,最上心的往往并非我们,而是各大手机厂商。

这要是整出个逆天的技术,岂不是坐拥了世界美誉和广大的市场?也许以后别的都不用干了,光卖个授权费这辈子就够用了。

不过,纵使各路手机厂商费尽了心思,他们也想不出个两全其美的办法, 其中最大的阻碍是有关于手机便携性的问题。

现在的手机都追求轻薄, 而在轻薄之下,我们就得让电池容量变小。

在往年,其实很多的手机厂商都对手机的厚度方面进行了极致的追求。不过在后来,因为续航性实在是太差,故此而得不偿失。

如今的他们虽然想明白了关键所在,可是又受限于手机内部的空间大小,因此在续航方面也只能算是一般。故此摆在他们面前的解决方式就变成了两种:

第一种是增加手机的厚度,第二种是增加手机的尺寸。

二者才是如今的手机变得越来越大屏的主要原因,不得不说他们也真的是有点难。而在 大屏和高性能芯片 带来的更大功耗之下, 如今手机有效使用寿命定格在了两年左右。

这无疑是让很多的手机厂商感到了开心,毕竟用户的手机损耗的越快,他们的日子就越好过。这真是无商不奸的另一个写照。

当然,科学技术的发展 不能单单依靠物理上的扩容 。

在技术层面,很多的科学家也掉光了头发。而他们给出的解决方式就是 通过增强能量密度来解决问题, 不过由此带来的问题似乎就更多了。

现在的科研人员们也只能在 电解液和正级材料方面 做出自己的努力,才能勉勉强强将电池的续航能力提高了那么一丢丢。

不过正当他们想庆祝自己成就的时候,手机的其他方面又会迎来新一轮的进步,而续航也增加了起来。

因此对于用户而言,手机电池似乎就像多年都没有过改变一样。

多年努力在众人眼中只算个泡影,这也许是值得大家吐血的一件事吧。

本着越挫越勇的原则,这些科学家们也并不在意别人的看法。毕竟他们是如此的无私,如此的上进,他们只关注他们的成就和发量。

不得不说,虽然如今的电池技术每年都会进步大约3%,但这一切在飞速发展的 芯片技术和屏幕技术 面前还是有一些不够看。

故此在主流电池技术难以发展的情况下,一些旁路左道倒是受到了很多技术人员的认可。

相信大家都知道,在各路手机助手大行其道的那几年,一些 所谓控制电量的软件 也随之产生了。虽然噱头确实不小,但在我看来这也确实是没啥大用。

涓流充电什么的都是在扯淡 ——手机电池典型值就这么大,岂能是你一句话就给安排明白的?

而在后来,以华为为首的各路手机厂商在科学家的乏力之下又推出了 快充技术 ,不得不说,这倒是一种比较另类的解决方式,而且非常的有效。

原先大概要三个多小时的充电时间,因为这个功能而缩短了到了一个多小时左右。

而根据目前一些新闻的说法,小米已经 将快充技术冲击到了100W的位置 ,这无疑是一个非常令人恐惧的数据。

总而言之,如今的各路科学家都在尽自己的所能想要解决这个问题,而且似乎收获颇丰。

在技术层面上,华为也推出了所谓的 石墨烯散热 ,这虽然看似和电池没啥太大的关系,但也总算得上是一条大路。

俗话说得好,条条大路罗马,这世界上解决问题的路子多着呢,何必仅仅拘泥于目前触目可及的几个手段呢?

不过我也真的期待啥时候手机可以两天一充电,这对于我这种健忘症真是太重要了。

现在也有很多对 石墨烯电池 的报道,但是目前这种技术仅仅处在 理论状态 ,由于现在石墨烯的制造工艺不行,这也只能成为一种我们心中的梦想。

虽然很多民间科学家都在肆意宣传通过武断的 提高能量密度 这种方法来提高电池的容量,并且在网络上大放厥词。

然而在我看来,这仍然算不上一种聪明的方法。

先来说提升电池能量密度的风险,为了保证电池的容量足够大,电池能量密度肯定是越大越好,但是任何事情都是 物极必反 的, 电池能量密度增加也有可能带来风险。

按照技术来说,提高电池的能量密度肯定是个最简单的方式。不过按照目前的工艺来说,你很可能会因此而收入一个 巨型炸弹 。

单纯从结构上来说,手机长得就像是一个很理想的爆炸体—— 一个铁壳子包着一个能量体 ,而产生爆炸的原因就是 能量聚集在一个密闭的空间内扩散不出去。

因此,对于电池方面,真的容不得一丝一毫的敷衍。

现在目前国际上有一项研发方向认为,可以 通过电池隔膜的轻薄化 来解决这一切的问题。

大家都知道,手机电池的内部有一层隔膜, 用来隔离电芯的正负极 。而一旦隔膜被破坏,就会导致 正负极材料短路 ,从而引起起火或爆炸。

如果为了提高电池容量而将隔膜减薄的话,手机会变得极度的危险。

因此各种工艺的实验都需要漫长的 论证过程 ,单纯凭借着一个所谓的想法就肆意胡说的话,显然非常的不负责任。

不过不论如何,手机电池都会在将来有更大的发展,而这一切无疑会改变我们的生活。也不需要催着这个行业进步,毕竟对于能量体这个东西,大家还是要 以安全为第一要务。

宁可它出现的晚,也不要让他以一个不安全的姿态出现在我们的面前——比如爆炸。

虽然说在此之前,我们都认为是移动端设备的发展改变了我们的生活。不过求本溯源,这种设备上的改变,主要是因为电池技术的极大发展。

在当今一切都以电能为主要导向的 科技 发展方向上,我们仍需以电能为主要的能源。而这也就意味着,我们生活当中的一切改变都需要电能的加持。

正如百年前的人们也不会想到, 巨大的硫酸铅电池能够不断缩小成今天这样大的锂电池。

从为我们身边的一切改变保驾护航,进而改变我们的生活状态。

我们更不会想到,曾经我们所唾弃的鸡肋移动端设备也会在电池技术的改变之下,逐渐的成为我们生活当中的一员。

在这个世界上, 每一次 科技 的改变都倾注了无数人的心血,也意味着数百件元件的发展与变革。

而在我们致力于吐槽电池 科技 无发展的同时,我们也应该想到在此之后,有数百上千名头秃眼花的科学家们正对此进行不断的冲击,致力于改变我们的生活。

无论如何,在保证安全的前提之下,就让手机电池如此的发展吧。纵使缓慢,也会有巨变的发生。我们相信早晚有一天,我们可以利用电池的又一轮发展实现新一轮的变革,甚至彻底改变我们的生活理念。

此时我们需要做的,就是静待未来。

怎么延长手机电池的使用寿命?1.锂电池日常使用保护事项由于没有记忆效应,所以锂离子电池可以随时充电,对寿命的影响有限。这里有个电池循环寿命的概念,电池经过N次充放电后,容量下降到70%,N为循环寿命。国标规定寿命不得小于300次,实际容量降到70%电池还是可以用的。而且循环寿命是指全充全放次数,部分充放电可理解为几分之一次寿命。2.充满后继续充电的坏处充满后继续充电对电池伤害很大。电池内保护电路是针对电池安全性的保护,对未达到危险界限的轻微过压、过流、长时间充电引起的过充完全不起作用。满后继续充电,电池内部将产生副反应,活性物质减少,垃圾物质增多,容量下降,内阻增大,严重过充直接破坏电池结构,导致电池报废。最好能养成习惯:白天到单位、晚上到家,开始充电,充满或睡觉前拔掉电源,特别要避免深夜充电(电网电压偏高)。3.电池安全性就目前而言,手机电池主要为LION电池(锂离子电池),包裹液态锂离子电池LIB、聚合物锂离子电池LPB。首先聚合物电池是安全电池,由于没有坚硬的金属外壳封包,所以即便发生异常情况,都不会爆炸。可能爆炸的是主要是金属封包的液态锂离子电池。一般来说,只要符合国家标准,具有国家生产许可的正规厂家的产品,都不会发生爆炸。理由如下:①符合国家标准的电池,均要求采用双管以上(过压、过流、欠压等)全保护电路及安全电芯。电池电极即便短路也会被保护电路自动断开,输出电压为零,不会爆炸。②即便把保护电路去掉,也就是即便保护电路失效,直接短路电芯,符合国家标准的正规电池,都是铝壳安全电芯,短路、穿刺引起的激烈释气反应导致电池内部压力提高到一定程度,排气阀门打开排气,也就不会爆炸。③就算排气阀也失效了,柔软的铝壳也会因内部压力鼓胀,达到一定程度出现破裂口、发生泻气,也就不会发生爆炸。4.新电池说明新的锂离子电池都是有电的:锂离子电池要求半荷电以上状态运输及存储,电压过低会影响其活性、甚至引起保护电路关闭输出导致无法充电。如果收到的锂离子电池电量很低甚至没电,则说明电池存放时间较长或自放电过大。新电池中的电在工厂用高倍率电流充进,极化严重,电能效果不好,所以锂离子电池的头三次应在手机用到自然关机(关机后勿反复强行开机,可能会引发手机或电池保护,切断输出无法充电),然后用手机接原配直充或原厂智能座充充电(建议勿用非原厂普通座充),充满后保持充电大约1-2小时。锂电池和镍电池的充放电特性有非常大的区别,所有正式技术资料都强调过充和过放电会对锂电池、特别是液体 锂离子电池造成巨大的伤害。因而充电最好按照标准时间和标准方法充电,特别是不要进行超过12个小时的超长充电。通常,手机说明书上介绍的充电方法,就是适合该手机的标准充电方法。事实上,浅放浅充对于锂电更有益处,只有在产品的电源模块为锂电做校准时,才有深放深充的必要。所以,使用锂电供电的产品不必拘泥于过程,一切以方便为先,随时充电,不必担心影响寿命另外,少数的比如诺基亚官方在产品说明书上公布要求前三次电池充电12-14小时,确实如官方所说此类充电时可行,不过可以尝试看,新电池充电5小时与12小时无多大差异,并且切记不可养成每次充电超过10小时的情况,对锂电池来说是很大的损害。

相关百科

热门百科

首页
发表服务