本文介绍一篇基于去雾算法的低亮度图片增强算法(FAST EFFICIENT ALGORITHM FOR ENHANCEMENT OF LOW LIGHTING VIDEO)。 该论文的作者观察到反转的低亮度图片(inverted image)具有与有雾图片类似的性质,比如: 以上两条性质是有雾图片特有的性质。 因此,我们可以运用成熟的去雾算法来进行低亮度图片的增强。 具体地做法如下: 其中, 是大气的亮度, 是相机获取到的图像亮度, 是原始图像或场景的亮度。 基于[1] , 我们可以得到:其中 是大气的散射系数, 是像素 的景深。其中 在算法中设置为0.8, 是中心位于 的一个小区域,在算法中设置为9。 为了获取大气的亮度,作者选取了图像中RGB通道中最小值里最大的100个像素,然后选取这些像素中RGB值相加最大的像素值最为 的估计值。这里需要注意,我们需要增强的区域是位于前景的物体,例如房子、车子等物体,同时需要避免过度增强背景区域,像天空等。 所以,这里我们需要根据图片内容的不同,自适应地调节 ,从而重点增强前景的内容。因此,这里引入了一个中间变量:然后,需要恢复的图片 可由下式计算得到:[]论文还介绍了如何加速视频的方法,由于不是该博客的研究重点,故而忽略,有兴趣的朋友可以查看原文。