说起数学建模,相信大家都不陌生,它的定义是根据计算结果来解释实际问题,建立数学模型的检验和验收全过程,下面是学术堂的数学建模论文格式规范的收集,提供参考。 摘要 一般为200~400 字;其内容主要包括建模思想、模型特点、求解方法、主要结果等,其既要概括全文, 又要反映出本队的特点; 注意: (1) 控制好论文摘要的字数, 一般应在400 字左右。 (2) 摘要应包括: 数学模型的归类( 在数学上属于什么类型) ;所用的数学知识、建模的思想、算法思想、模型及算法特点; 主要结果( 数值结果, 结论, 回答题目所问的全部“问题”) (3) 摘要表述要准确、简明、条理清晰、合乎语法。 (4)摘要中不应引用正文中的结果, 也不应有所引用的参考文献出现, 一般也不应有第一人称的语句出现。 问题的重述和分析 重述是指对原问题的简要回顾, 大多数情况下, 问题的重述可以省略。分析则是通过对问题和所给数据的透彻理解, 理出建模的清晰思路, 明确正确的数学方法。一般情况下, 问题的分析尤为重要, 它可以使评阅者明晰答卷人的建模思想和所用方法, 借以判断答卷人对问题的敏感性和数学建模素质 假设 一要抓住实际问题的主要因素, 忽略次要因素, 为建立模型创造条件;二要假设应当“ 合理”;三要假设确属“ 必要” ;四是原题中已给的假设, 一般不再写入。 注意: (1) 根据题目中条件作出假设; (2) 根据题目中要求作出假设; (3) 关键性假设不能缺; 假设要切合题意、合理。 (4)符号说明要注意整篇文章符号一致。 模型的建立 一要:通过对问题的分析引出建模的思路,要有建模的过程。 二要:建成的模型有完整的数学表述, 最好能在建成后集中写出来,以免评阅者找来找去。 三要:建模是分阶段完成的, 即基础模型→中间模型→最终模型。 四要:有时所建的模型相当好, 只是求解困难, 这样的模型也要写出来。然后设法给出简化的模型以利求解。 五要:注意一个实际问题可以有多个模型, 但不要贪多求全, 抓一个或两个有代表性的或能反映本队特点的, 建好、解好就足够了。 六要:注意不要片面地追求“ 建模的创造性“”模不惊人誓不休”, 要知道评卷依据中的“ 建模的创造性”并非仅指模型要有创造性, 而是整个答卷要有一定的创造性, 因此,对所建模型的要求是: 起码“ 正确”, 进而“ 更好”。 七要:注意模型的建立与求解可以分开来写, 也可以合在一起写。即可以模型: 问题①, 问题②……求解: 问题①, 问题②……也可以问题①: 模型, 求解; 问题②: 模型, 求解…… 建立数学模型应注意以下几点: (1) 分清变量类型, 恰当使用数学工具。 (2) 抓住问题本质, 简化变量之间的关系。 (3) 建立数学模型时要有严密的数学推理。 (4) 用数学方法建模, 模型要明确, 要有数学表达式。 模型的求解和结果 一要:有算法的设计或选择, 给出算法的具体步骤或框图。 二要:注意计算机实现时, 如果是自己编程,程序不一定要打印在附录中, 如果是选用数学软件, 写出名称即可。 三要:注意在模型的建立和求解过程中, 可能有必要的数学命题, 如果是自己给出的命题,应当有证明; 如果是引用他人的命题, 应当注明出处( 并列入参考献) 。 四要:注意中间结果, 除非必不可少的, 一般不必写入答卷。 五要:注意最终结果至少要“ 答为所问”。 六要:注意有的赛题的最终结果可以甚至应当“ 超出”赛题的要求。 七要:注意结果的表述不仅有多样性( 公式、表格、图、文字等), 也可有创造性 结果的分析和检验 (1) 对数值结果或模拟结果要进行必要的检验, 若结果不正确、不合理、或误差大时, 要分析原因, 对算法、计算方法、或模型进行修正、改进; (2) 必要时, 要对模型进行稳定性分析、统计检验、误差分析,要对不同模型进行对比及实际可行性检验。 模型的评价和改进 根据所建模型的特点提出中肯的评价, 并提出切实可行的改进意见。 (1) 优点突出, 缺点不回避。 (2) 推广或改进方向 参考文献 文献尽量是少而精, 不要滥用, 不要罗列无关文献。 参考文献按正文中的引用次序列出,其中书籍的表述方式为: [编号]作者,书名,出版地:出版社,出版年。 参考文献中期刊杂志论文的表述方式为: [编号]作者,论文名,杂志名,卷期号:起止页码,出版年。 参考文献中网上资源的表述方式为: [编号]作者,资源标题,网址,访问时间(年月日)。 附录 视情况而定, 可有可无。 (1) 计算程序、详细的结果, 详细的数据表格, 可在此列出。但不要错, 错的宁可不列 (2) 主要结果数据, 应在正文中列出, 不怕重复。 总之, 评判一篇论文优劣的标准应当是结构完整,条理清楚,文字通顺,打印规范。以上关于数学建模论文格式要求规范的详细介绍,希望大家可以顺利发表论文,取得自己满意的成绩。