首页

> 期刊发表知识库

首页 期刊发表知识库 问题

大学生数学模型论文

发布时间:

大学生数学模型论文

数学中国啊,注册个账号,里面很多相关的东西都可以下载。有什么疑问可以问我哈

数学建模论文基本格式摘要 (200-300字,包括模型的主要特点、建模方法和主要结果。)关键词(求解问题、使用的方法中的重要术语) 内容较多时最好有个目录1。问题重述 2。问题分析3。模型假设与约定4。符号说明及名词定义5。模型建立与求解 ①补充假设条件,明确概念,引进参数; ②模型形式(可有多个形式的模型);6。进一步讨论(参数的变化、假设改变对模型的影响)7。模型检验 (使用数据计算结果,进行分析与检验)8。模型优缺点(改进方向,推广新思想)9。参考文献及参考书籍和网站10。附录 (计算程序,框图;各种求解演算过程,计算中间结果;各种图形、表格。)小经验:1。随时记下自己的假设。有时候在很合理的假设下开始了下一步的工作,就应该顺手把这个假设给记下 来,否则到了最后可能会忘掉,而且这也会让我们的解答更加严谨。2。随时记录自己的想法,而且不留余地的完全的表达自己的思想。3。要有自己的特色,闪光点。如何撰写数学建模论文当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文。撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的。事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题。首先要明确撰写论文的目的。数学建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员(竞赛时的阅卷人员)读了之后,相信模型假设的合理性,理解在建立模型过程中所用数学方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。当然,一篇好的论文是以作者所建立的数学模型的科学性为前提的。其次,要注意论文的条理性。下面就论文的各部分应当注意的地方具体地来做一些分析。(一) 问题提出和假设的合理性在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题。历届数学建模竞赛的试题可以看作是情景说明的范例。对情景的说明,不可能也不必要提供问题的每个细节。由此而来建立数学模型还是不够的,还要补充一些假设,模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣。所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。这部分内容就应该在论文的“问题的假设”部分中体现。由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面:(1)论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解。(2)所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考。(3)假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发做出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类 推得到。对于后者应指出参考文献的相关内容。 (二) 模型的建立在做出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨;引用现成定理时,要先验证满足定理的条件。论文中用到的各种数学符号,必须在第一次出现时加以说明。总之,要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据。 (三)模型的计算与分析把实际问题归结为一定的数学问题后,就要求解或进行分析。在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序(通常以附录形式给出)。还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论。有些模型(例如非线性微分方程)需要作稳定性或其他定性分析。这时应该指出所依据的数学理论,并在推理或计算的基础上得出明确的结论。在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来。结论使用时要注意的问题,可以用助记的形式列出。定理和命题必须写清结论成立的条件。(四) 模型的讨论对所作的数学模型,可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化。或可以根据实际情况,改变文章一开始所作的某些假设,指出由此数学模型的变化。还可以用不同的数值方法进行计算,并比较所得的结果。有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。除正文外,论文和竞赛答卷都要求写出摘要。我们不要忽视摘要的写作。因为它会给读者和评卷人第一印象。摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意。语言是构成论文的基本元素。数学建模论文的语言与其他科学论文的语言一样,要求达意、干练。不要把一句句子写得太长,使人不甚卒读。语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句。在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态。最后,论文的书写和附图也都很重要。附图中的图形应有明确的说明,字迹力求端正。

说起数学建模,相信大家都不陌生,它的定义是根据计算结果来解释实际问题,建立数学模型的检验和验收全过程,下面是学术堂的数学建模论文格式规范的收集,提供参考。  摘要  一般为200~400 字;其内容主要包括建模思想、模型特点、求解方法、主要结果等,其既要概括全文, 又要反映出本队的特点;  注意:  (1) 控制好论文摘要的字数, 一般应在400 字左右。  (2) 摘要应包括: 数学模型的归类( 在数学上属于什么类型) ;所用的数学知识、建模的思想、算法思想、模型及算法特点; 主要结果( 数值结果, 结论, 回答题目所问的全部“问题”)  (3) 摘要表述要准确、简明、条理清晰、合乎语法。  (4)摘要中不应引用正文中的结果, 也不应有所引用的参考文献出现, 一般也不应有第一人称的语句出现。  问题的重述和分析  重述是指对原问题的简要回顾, 大多数情况下, 问题的重述可以省略。分析则是通过对问题和所给数据的透彻理解, 理出建模的清晰思路, 明确正确的数学方法。一般情况下, 问题的分析尤为重要, 它可以使评阅者明晰答卷人的建模思想和所用方法, 借以判断答卷人对问题的敏感性和数学建模素质  假设  一要抓住实际问题的主要因素, 忽略次要因素, 为建立模型创造条件;二要假设应当“ 合理”;三要假设确属“ 必要” ;四是原题中已给的假设, 一般不再写入。  注意:  (1) 根据题目中条件作出假设;  (2) 根据题目中要求作出假设;  (3) 关键性假设不能缺; 假设要切合题意、合理。  (4)符号说明要注意整篇文章符号一致。  模型的建立  一要:通过对问题的分析引出建模的思路,要有建模的过程。  二要:建成的模型有完整的数学表述, 最好能在建成后集中写出来,以免评阅者找来找去。  三要:建模是分阶段完成的, 即基础模型→中间模型→最终模型。  四要:有时所建的模型相当好, 只是求解困难, 这样的模型也要写出来。然后设法给出简化的模型以利求解。  五要:注意一个实际问题可以有多个模型, 但不要贪多求全, 抓一个或两个有代表性的或能反映本队特点的, 建好、解好就足够了。  六要:注意不要片面地追求“ 建模的创造性“”模不惊人誓不休”, 要知道评卷依据中的“ 建模的创造性”并非仅指模型要有创造性, 而是整个答卷要有一定的创造性, 因此,对所建模型的要求是: 起码“ 正确”, 进而“ 更好”。  七要:注意模型的建立与求解可以分开来写, 也可以合在一起写。即可以模型: 问题①, 问题②……求解: 问题①, 问题②……也可以问题①: 模型, 求解; 问题②: 模型, 求解……  建立数学模型应注意以下几点:  (1) 分清变量类型, 恰当使用数学工具。  (2) 抓住问题本质, 简化变量之间的关系。  (3) 建立数学模型时要有严密的数学推理。  (4) 用数学方法建模, 模型要明确, 要有数学表达式。  模型的求解和结果  一要:有算法的设计或选择, 给出算法的具体步骤或框图。  二要:注意计算机实现时, 如果是自己编程,程序不一定要打印在附录中, 如果是选用数学软件, 写出名称即可。  三要:注意在模型的建立和求解过程中, 可能有必要的数学命题, 如果是自己给出的命题,应当有证明; 如果是引用他人的命题, 应当注明出处( 并列入参考献) 。  四要:注意中间结果, 除非必不可少的, 一般不必写入答卷。  五要:注意最终结果至少要“ 答为所问”。  六要:注意有的赛题的最终结果可以甚至应当“ 超出”赛题的要求。  七要:注意结果的表述不仅有多样性( 公式、表格、图、文字等), 也可有创造性  结果的分析和检验  (1) 对数值结果或模拟结果要进行必要的检验, 若结果不正确、不合理、或误差大时, 要分析原因, 对算法、计算方法、或模型进行修正、改进;  (2) 必要时, 要对模型进行稳定性分析、统计检验、误差分析,要对不同模型进行对比及实际可行性检验。  模型的评价和改进  根据所建模型的特点提出中肯的评价, 并提出切实可行的改进意见。  (1) 优点突出, 缺点不回避。  (2) 推广或改进方向  参考文献  文献尽量是少而精, 不要滥用, 不要罗列无关文献。  参考文献按正文中的引用次序列出,其中书籍的表述方式为:  [编号]作者,书名,出版地:出版社,出版年。  参考文献中期刊杂志论文的表述方式为:  [编号]作者,论文名,杂志名,卷期号:起止页码,出版年。  参考文献中网上资源的表述方式为:  [编号]作者,资源标题,网址,访问时间(年月日)。  附录  视情况而定, 可有可无。  (1) 计算程序、详细的结果, 详细的数据表格, 可在此列出。但不要错, 错的宁可不列  (2) 主要结果数据, 应在正文中列出, 不怕重复。  总之, 评判一篇论文优劣的标准应当是结构完整,条理清楚,文字通顺,打印规范。以上关于数学建模论文格式要求规范的详细介绍,希望大家可以顺利发表论文,取得自己满意的成绩。

一般不会很细究页码的,首先看的是你的厚度,也就是页数;过关了,再看你内容;再过关,会看你是否有新意,方法等如何,而页码,一般阅卷老师不会太在意的,主要还是你的内容,问题解决的是否充分,方法是否合理,有新意,这才是关键

大学生数学建模论文模板

说起数学建模,相信大家都不陌生,它的定义是根据计算结果来解释实际问题,建立数学模型的检验和验收全过程,下面是学术堂的数学建模论文格式规范的收集,提供参考。  摘要  一般为200~400 字;其内容主要包括建模思想、模型特点、求解方法、主要结果等,其既要概括全文, 又要反映出本队的特点;  注意:  (1) 控制好论文摘要的字数, 一般应在400 字左右。  (2) 摘要应包括: 数学模型的归类( 在数学上属于什么类型) ;所用的数学知识、建模的思想、算法思想、模型及算法特点; 主要结果( 数值结果, 结论, 回答题目所问的全部“问题”)  (3) 摘要表述要准确、简明、条理清晰、合乎语法。  (4)摘要中不应引用正文中的结果, 也不应有所引用的参考文献出现, 一般也不应有第一人称的语句出现。  问题的重述和分析  重述是指对原问题的简要回顾, 大多数情况下, 问题的重述可以省略。分析则是通过对问题和所给数据的透彻理解, 理出建模的清晰思路, 明确正确的数学方法。一般情况下, 问题的分析尤为重要, 它可以使评阅者明晰答卷人的建模思想和所用方法, 借以判断答卷人对问题的敏感性和数学建模素质  假设  一要抓住实际问题的主要因素, 忽略次要因素, 为建立模型创造条件;二要假设应当“ 合理”;三要假设确属“ 必要” ;四是原题中已给的假设, 一般不再写入。  注意:  (1) 根据题目中条件作出假设;  (2) 根据题目中要求作出假设;  (3) 关键性假设不能缺; 假设要切合题意、合理。  (4)符号说明要注意整篇文章符号一致。  模型的建立  一要:通过对问题的分析引出建模的思路,要有建模的过程。  二要:建成的模型有完整的数学表述, 最好能在建成后集中写出来,以免评阅者找来找去。  三要:建模是分阶段完成的, 即基础模型→中间模型→最终模型。  四要:有时所建的模型相当好, 只是求解困难, 这样的模型也要写出来。然后设法给出简化的模型以利求解。  五要:注意一个实际问题可以有多个模型, 但不要贪多求全, 抓一个或两个有代表性的或能反映本队特点的, 建好、解好就足够了。  六要:注意不要片面地追求“ 建模的创造性“”模不惊人誓不休”, 要知道评卷依据中的“ 建模的创造性”并非仅指模型要有创造性, 而是整个答卷要有一定的创造性, 因此,对所建模型的要求是: 起码“ 正确”, 进而“ 更好”。  七要:注意模型的建立与求解可以分开来写, 也可以合在一起写。即可以模型: 问题①, 问题②……求解: 问题①, 问题②……也可以问题①: 模型, 求解; 问题②: 模型, 求解……  建立数学模型应注意以下几点:  (1) 分清变量类型, 恰当使用数学工具。  (2) 抓住问题本质, 简化变量之间的关系。  (3) 建立数学模型时要有严密的数学推理。  (4) 用数学方法建模, 模型要明确, 要有数学表达式。  模型的求解和结果  一要:有算法的设计或选择, 给出算法的具体步骤或框图。  二要:注意计算机实现时, 如果是自己编程,程序不一定要打印在附录中, 如果是选用数学软件, 写出名称即可。  三要:注意在模型的建立和求解过程中, 可能有必要的数学命题, 如果是自己给出的命题,应当有证明; 如果是引用他人的命题, 应当注明出处( 并列入参考献) 。  四要:注意中间结果, 除非必不可少的, 一般不必写入答卷。  五要:注意最终结果至少要“ 答为所问”。  六要:注意有的赛题的最终结果可以甚至应当“ 超出”赛题的要求。  七要:注意结果的表述不仅有多样性( 公式、表格、图、文字等), 也可有创造性  结果的分析和检验  (1) 对数值结果或模拟结果要进行必要的检验, 若结果不正确、不合理、或误差大时, 要分析原因, 对算法、计算方法、或模型进行修正、改进;  (2) 必要时, 要对模型进行稳定性分析、统计检验、误差分析,要对不同模型进行对比及实际可行性检验。  模型的评价和改进  根据所建模型的特点提出中肯的评价, 并提出切实可行的改进意见。  (1) 优点突出, 缺点不回避。  (2) 推广或改进方向  参考文献  文献尽量是少而精, 不要滥用, 不要罗列无关文献。  参考文献按正文中的引用次序列出,其中书籍的表述方式为:  [编号]作者,书名,出版地:出版社,出版年。  参考文献中期刊杂志论文的表述方式为:  [编号]作者,论文名,杂志名,卷期号:起止页码,出版年。  参考文献中网上资源的表述方式为:  [编号]作者,资源标题,网址,访问时间(年月日)。  附录  视情况而定, 可有可无。  (1) 计算程序、详细的结果, 详细的数据表格, 可在此列出。但不要错, 错的宁可不列  (2) 主要结果数据, 应在正文中列出, 不怕重复。  总之, 评判一篇论文优劣的标准应当是结构完整,条理清楚,文字通顺,打印规范。以上关于数学建模论文格式要求规范的详细介绍,希望大家可以顺利发表论文,取得自己满意的成绩。

数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究数学模型的另一个特征是经济性用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真所谓"模型就是模型"(而不是原型),即是指该性质二、数学建模 数学建模是利用数学方法解决实际问题的一种实践即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解简而言之,建立数学模型的这个过程就称为数学建模模型是客观实体有关属性的模拟陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题如果有现成的数学工具当然好如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路而在现在,要真正解决一个实际问题,离了计算机几乎是不行的数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型从这一意义上讲,可以说数学建模是一切科学研究的基础没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法 (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法 (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用 (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式 (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型 (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定机理分析法建模的具体步骤大致可见左图仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验① 离散系统仿真--有一组状态变量② 连续系统仿真--有解析表达式或系统结构图(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响近年来随着数学的发展,又有所谓突变性模型和模糊性模型静态模型和动态模型 取决于是否考虑时间因素引起的变化线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的五、数学建模的一般步骤建模的步骤一般分为下列几步:模型准备首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息模型假设在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解不同的简化假设会得到不同的模型假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化经验在这里也常起重要作用写出假设时,语言要精确,就象做习题时写出已知条件那样模型构成根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型把问题化为数学问题要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用模型求解利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设在难以得出解析解时,也应当借助计算机求出数值解模型分析对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等模型检验分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善模型应用所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善应用的方式自然取决于问题的性质和建模的目的参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。

无忧在线有很多数学建模论文,你去搜一下就行

首先是摘要,这个是全文的概述,里面包括这个模型的主题,以及几个需要解决问题的总体答案,比如对模型结果的阐述,或者对原来的安排评价是否合理等等。另外摘要最好控制在word一页内(小四宋体),不要太多。下面是论文的主体: 问题重述主要是对需要解决的问题用自己的语言进行描述,这个就看你自己的文笔功底了。 模型假设对你将要建立的模型进行理想假设,比如说将一些可能对结果影响不显著,但考虑起来需要很多时间的的问题理想化。 符号说明将你要建立的模型中的一些参量用符号代替表示。 模型建立这个是介绍你模型建立的原理和步骤,以及最终的模型结果,一般是一个评价函数,也可以是另外的形式,不过一定要给出一个能解决问题的大的方法 问题一、二、三(视具体的需要回答问题的个数而定,最好分条回答)利用你上面建立的模型,对题目提出的问题进行求解,这个部分需要你通过程序来实现,最后给出这个问题的结果,如果是满不满意这样的问题,需要给出明确回答满意或不满意,如果是一个量的结果,就需要把通过你的模型以及代码得到的准确结果进行阐述。 模型改进解决完上面题目提出的问题之后,可以对你的模型不足的地方再提出来,并提出改进的方案,以完善整个模型。 参考文献最后将你的参考文献写上,包括你在网上查的的资料,以及别人的论文或者书籍等等。如果最后需要你一并交上程序代码的话,还需要一个附录,里面包括程序代码,或者如果你上面的问题的结果太长的话(比如要给出几百个点的坐标这样的),可以将这些结果也放在这一块。如果楼主需要看论文样式的话,推荐一个网站:这是北京航空航天大学的数学建模网站,里面包括了该学校从92年开始到09年的各届论文,里面不乏一些比较好的论文,楼主如果需要参考样式的话,可以看看这些论文。

大学生数学论文模板

论文一般都是绪言,正文,结论。具体你参看相关论文格式,但是还是按照指导老师的要求来写论文

微分几何学是运用数学分析的理论研究曲线或曲面在它一点邻域的性质,换句话说,微分几何是研究一般的曲线和曲面在“小范围”上的性质的数学分支学科。 微分几何学的产生和发展是和数学分析密切相连的。在这方面第一个做出贡献的是瑞士数学家欧拉。1736年他首先引进了平面曲线的内在坐标这一概念,即以曲线弧长这以几何量作为曲线上点的坐标,从而开始了曲线的内在几何的研究。 十八世纪初,法国数学家蒙日首先把微积分应用到曲线和曲面的研究中去,并于1807年出版了它的《分析在几何学上的应用》一书,这是微分几何最早的一本著作。

研究背景国内外研究现状理论基础论文框架参考文献致谢

努力的学,好好去写。

大学生数学建模论文范文

下载一片获奖论文,之后的所有基本就都解决了吧!!

无忧在线有很多数学建模论文,你去搜一下就行

数学建模论文范文一篇,带例题,结构格式要求有摘要、关键词、问题背景、建模过程、模型解释、小结、参考文献%3A+%C2%DB%CE%C4&ch=uf&num=10&w=site%3A+%C2%DB%CE%C4点一下就可以进去了,希望你早日完成论文。祝你顺利资料什么的都有,论文相关的。加油!

乁额外防护分时毫亿 解放热看见热机仍旧解放那么反抗偶尔飞机日发棵日藕粉机燃放就

大学生数学建模论文3000字

数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究数学模型的另一个特征是经济性用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真所谓"模型就是模型"(而不是原型),即是指该性质二、数学建模 数学建模是利用数学方法解决实际问题的一种实践即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解简而言之,建立数学模型的这个过程就称为数学建模模型是客观实体有关属性的模拟陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题如果有现成的数学工具当然好如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路而在现在,要真正解决一个实际问题,离了计算机几乎是不行的数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型从这一意义上讲,可以说数学建模是一切科学研究的基础没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法 (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法 (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用 (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式 (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型 (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定机理分析法建模的具体步骤大致可见左图仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验① 离散系统仿真--有一组状态变量② 连续系统仿真--有解析表达式或系统结构图(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响近年来随着数学的发展,又有所谓突变性模型和模糊性模型静态模型和动态模型 取决于是否考虑时间因素引起的变化线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的五、数学建模的一般步骤建模的步骤一般分为下列几步:模型准备首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息模型假设在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解不同的简化假设会得到不同的模型假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化经验在这里也常起重要作用写出假设时,语言要精确,就象做习题时写出已知条件那样模型构成根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型把问题化为数学问题要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用模型求解利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设在难以得出解析解时,也应当借助计算机求出数值解模型分析对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等模型检验分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善模型应用所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善应用的方式自然取决于问题的性质和建模的目的参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。

无忧在线有很多数学建模论文,你去搜一下就行

大概什么时候要?还有是什么题目?吧重点说的清楚点吗

没有具体字数,要求将基本的方面写齐全就可以,我个人的经验来说,少的5000左右,多的20000左右。如果做大型问题的建模,可能更多点~

相关百科

热门百科

首页
发表服务