首页

> 学术发表知识库

首页 学术发表知识库 问题

大一线性代数论文格式

发布时间:

大一线性代数论文格式

线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。 线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。 线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。 我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。 二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。 例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数 上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。

行列式小结一、行列式定义 行列式归根结底就是一个数值,只不过它是由一大堆数字经过一种特殊运算规则而得出的数而已。当然这堆数排列成相当规范的n行n列的数表形式了。所以我们可以把行列式当成一个数值来进行加减乘除等运算。 举个例子:比如说电视机(看做一个行列式),是由很多个小的元件(行列式中的元素)构成的,经过元件的相互作用、联系最终成为一台电视机(行列式)。 那么这n*n个数字是按照什么规则进行运算的呢? 行列式是不同行、不同列的所有可能元素乘积的代数和(共有n!项)。(这里面的代数和,表示每个乘积项是带有正负号的,而正负号的确定要根据行列标的逆序数来判断!) 对于行列式的这个概念,仅仅是给出了行列式的一种通用定义,它能用来求特殊行列式(比如三角行列式、对角行列式等)的值和做一些证明,而真正要来求行列式的值,需要依据行列式的性质和展开法则。 二、行列式性质 行列式的那几条性质其实也很容易记忆。 1、行列式转置值不变。这条性质说明行列式行、列等价,凡是对行成立的,对列也成立。 2、互换两行(列),行列式变号。 3、两行(列)相等,则行列式为0。 4、数乘行列式等于该数与行列式某一行(列)所有元素相乘! 5、两行(列)成比例,则行列式为0。 6、行列式加法运算:某一行(列)每个元素都可以看成两项的和的话,可以将行列式展开成两个同阶行列式的和。 7、某行(列)同乘一个数加到另外一行(列)上,行列式值不变。 这7条性质往往组合使用来求行列式的值。尤其第7条性质,一定要会熟练运用来将一个行列式化为三角行列式(既要会对行使用,也要会对列使用),最好能自己多做点练习。 三、行列式行(列)展开法则 行列式的行(列)展开法则其实是一种降阶求行列式值的方法。 行列式的行(列)展开法则一定注意一点,即一定是某行(列)每个元素同乘以自己对应的代数余子式。(即我一直强调的:要配套。) 如果是某行(列)每个元素同乘以另外一行(列)对应位置的代数余子式则值为零。(即:不配套。)矩阵小结初等矩阵的概念是随着矩阵初等变换的定义而来的。初等变换有三类: 1、位置变换:矩阵的两行(列)位置交换; 2、数乘变换:数k乘以矩阵某行(列)的每个元素; 3、消元变换:矩阵的某行(列)元素同乘以数k,然后加到另外一行(列)上。初等矩阵:由单位矩阵经过一次初等变换后所得的矩阵。则根据三类初等变换,可以得到三种不同的初等矩阵。 1、交换阵E(i,j):单位矩阵第i行与第j行位置交换而得; 2、数乘阵E(i(k)):数k乘以单位矩阵第i行的每个元素(其实就是主对角线的1变成k); 3、消元阵E(ij(k)):单位矩阵的第i行元素乘以数k,然后加到第j行上。其上的三种初等矩阵均可看成是单位矩阵的列经过初等变换而得。初等矩阵的模样其实我们可以尝试写一个3阶或者4阶的单位矩阵,然后进行初等变换来加深一下印象。 首先:初等矩阵都可逆,其次,初等矩阵的逆矩阵其实是一个同类型的初等矩阵(可看作逆变换)。最关键的问题是:初等矩阵能用来做什么?当我们用初等矩阵左乘一个矩阵A的时候,我们发现矩阵A发生变化而成为矩阵B,而这种变化恰好是一个单位矩阵变成该初等矩阵所产生的变化。具体来说: 左乘的情况: 1、E(i,j)A=B,则矩阵A第i行与第j行位置交换而得到矩阵B; 2、E(i(k))A=B,则矩阵A的第i行的元素乘以数k而得到矩阵B; 3、E(ij(k))A=B,则矩阵A的第i行元素乘以数k,然后加到第j行上而得到矩阵B。结论1:用初等矩阵左乘一个矩阵A,相当于对矩阵A做了一次相应的行的初等变换。 右乘的情况: 4、AE(i,j)=B,则矩阵A第i列与第j列位置交换而得到矩阵B; 5、AE(i(k))=B,则矩阵A的第i列的元素乘以数k而得到矩阵B; 6、AE(ij(k))=B,则矩阵A的第i列元素乘以数k,然后加到第j列上而得到矩阵B。结论2:用初等矩阵右乘一个矩阵A,相当于对矩阵A做了一次相应的列的初等变换。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 请注意并理解结论1和结论2中的“相应”两字。 初等矩阵为由单位矩阵E经过一次初等变换(三种)而来,我们可以把初等矩阵看成是施加到单位矩阵E上的一个变换。 若某初等矩阵左(右)乘矩阵A,则初等矩阵会将原先施加到单位矩阵E上的变换,按照同种形式施加到矩阵A之上。或者说,我们想对矩阵A做变换,但是不是直接对矩阵A去做处理,而是通过一种间接方式去实现。

线性代数研究性论文

启迪每个认得一生中都会有一件事能给他或者是她一个启示。我就遇到过一件让我深受启发的事情,至今我还难以忘却。那件事就发生在五月一日的时候,那天风和日丽,正好是出去逛街的好时候。我和妈妈商定了出去买东西,去逛街,我们在大街上逛着。快到中午了,这时,迎着面走来了一对母子,他们穿着外国进口的最新潮流款式的衣服,脖子上面挂着一条金项链,手上带着两枚金戒指。他们的打扮迎来了旁边人们的注意,他们走路的时候是趾高气扬的,以显示出来那个样子十分威风。就在这时,他们的目光落在了桥上,那儿有一个人正在推者煤气输运三轮车吃力地走着,还不时地发出“嗨哟嗨哟”的气喘的声音。那位阿姨见了这个情景便立刻跟正在一旁看的儿子说了起来:“那,你看,你看见了吧,这个人从小不好好学习,只顾着玩,大学也考不上,工作也找不到,现在只能在这里干这些粗的累的活。你如果现在不好好学习,将来呢也只能去干这一些下等活粗活了。”那孩子本来想去帮那个人一下,但是听见了他妈妈的话之后,就把他那只伸出援助之手又收了回来,并胆怯地对他的妈妈说:“我知道了。”当他的妈妈知道哪那个送煤气的工人是她单位里面的张科长时,(因为张科长正在为那个小区义务劳动呢!)便连忙跑过去去拍那个所谓的科长的马屁。。。。。。 今天,我没有去逛街。刚才发生的那一幕幕,我至今还难以忘却。高傲的奉承小人(阿姨),呆板的听话儿子(小孩)。在那个阿姨身上,我明白了所谓的两面人的含义,那种人是最可恨、最可耻的,那种人是中华人民的耻辱,我发誓以后我绝对不会去当那种人的。

关于线性代数,首先搞清楚线代都能干什么:求Ax=B的时候,我们不是基于求解具体的解,而是先研究A的各种特性,看看这些特性是如何影响Ax=B的解的。所有的特性就是行列式,矩阵,秩,特征向量和特征值,等等。这就是线性代数的主要内容。它的应用就是对于向量和方程作正交分解(对角化,特征向量),达到降低方程组维数的作用,使得经典方法那一求解的问题变得可解,应用在图像处理,天气预测等诸多领域。具体的你可以看看我的blog的讲解。--------------------------------------漫谈高数(二)方程和矩阵的物理含义漫谈高数(三)线性相关和秩的物理意义漫谈高数(四)特征向量物理意义漫谈高数(七)正交,相关,消元漫谈高数(八)正交分析和谱分析

我也想要啊~~~

线性代数数学建模毕业论文

在数学领域里,应用数学占有重要的位置,理论上应用数学包括运筹学和线性代数,还有概率论及数理统计等学科。下文是我为大家整理的关于数学与应用数学 毕业 论文的内容,欢迎大家阅读参考!

浅析高校目前的应用数学教学状况与改革策略

在高校设立的学科中数学教学占有的位置不容忽视,加强数学 教育 就能够使学生在解决实际问题时更有把握,并且学生自身还可以构建其数学知识体系。所以,在进行高效实际数学教学改革时,师生都对教学改革的观念加以重视,同时要慢慢的培养学生养成良好的学习习惯。

1 高校应用数学内在的意义

高校应用数学这门学科非常重要,并且不同与以往的教学。其一,是应用领域上的不同,高校应用数学的开始针对性特别的强,以往是数学有着较为传统的应用领域。其二,应用数学主要关注的就是将理论知识联系到实际,可是,以往的数学主要就是对理论加以注重。即使有很大的差异存在这两种数学中,可是这两种学科的内容是不能分离的,他们是一个整体,存在的差异也只是在针对性方面和教学目标方面[1].

2 高校目前的应用数学的教学状况

2.1 建立应用数学的有关课堂

学生在深入学习应用数学知识后,可以对数学中的一些基础运算加以掌握,并且学生的思维能力也得到了提高,学生能够深入的分析数学中的所有问题,并在对所有问题应用所学的理论知识加以解决,对学生的数学理论知识的运用与创新能力进行培养,最后达到提升学生数学素养的目标。

大学生的教学课程就包括高等数学课程,并且高校还建立了与改课程有关的专人培养内容,对应用数学的学习有助于学习其他的学科,想要学好其他的课程,应用数学的学习必不可少[2].高校建立应用数学课堂,这样学生就能掌握数学的理论知识,学生的学习数学能力将会得到培养,同时增加学生的学习兴趣,学生的数学素养也会得到提高。

2.2 高校数学中出现的问题

(1)在教学内容上有问题存在。高校数学教学的内容上涵盖性较强,很多专业学生对数学的学习知识为基础理论,根本不能联系数学实践,所以,教学的领域根本不符合教学要求,并且,学生在整个学习的过程中对所有理论知识都不能深刻的理解,这都阻碍了学生积极主动的学习数学理论知识的想法。

(2)存在在教学内容上的问题。现在高校的数学教学课堂主要重视的就是学习技巧,同时还注重推理的严谨性,可是却忽视了实际问题中应用数学理论知识去解决,这样培养出的专业人才将不能以专业实现就业,没有做到立足于岗位,对专业素质的培养不加以重视,致使理论知识脱离于实践应用,最后不能有效的培养学生的职业能力[3].

(3)存在在教师队伍方面的问题。现在,在数学教学中应用数学具有非常重要的作用,可是应用数学的教师并没有对这一点科学知识加以掌握,缺乏基本的教学能力,也缺少培养学生教学的 方法 ,在进行应用数学的教学过程中,经常出现的现象较为普遍就是缺乏专业理论知识,这样学生对理论知识就不能熟练掌握,学生也就体会不到结合理论知识和现实时间的基础要素。

3 高校应用数学的改革策略

3.1 高校应用数学制定了正确的教学观念

高校对与应用数学教学有关的课程进行制定时一定要对专业的要求加以确定,对学生所学的专业进行分析,适当的调整应用数学的教育理念。同时数学的基本开放原则为适用性,将学生提升自身的素质作为教学目标。同时还要注意数学教学所包含的育人能力,将学生的所有能力进行有效的培养,引导学生在实际生活中应用数学去解决问题,引领学生增强创新能力。

3.2 将以往的 教学方法 加以改变培养学生增加应用数学的意识

传统的数学教学方式为灌输式,新的教学方案要应用启发式来实现数学教学,同时要对多种教学方法进行深入的研究,使教学方法更有效,以往教师在进行教学时,教学方法为单一的,学生学习的知识都是被动接受的,学生在这种教学方法的带领下只能逐渐的失去数学学习的兴趣,这样需要教师将教学方法灵活化,为学生创建出一种愉悦的学习环境[4].主要就是要对学生实施因材施教,使学生能够充分发挥自己的学习热情。

高校在进行整个应用数学教学时,首先要培养的就是学生有基本的应用数学观念,同时数学知识的有效运用是教学中必不可少的内容。这就需要高校的数学教师担负起自己的教育责任,首先教师要掌握学生对应用数学的意识深浅,如果有较差的应用意识,要找其原因,同时一定要培养学生学习数学的兴趣,引导学生进行积极主动的学习,让学生能够认识到我们的生活中广泛的应用数学知识。教育者要对其进行深刻的研究,对应用数学加以重视,使应用数学的重要性在教学中得以发挥[5].同时还要将学生应用数学的意识加以提升,并且逐渐提高应用数学的能力。

3.3 对应用数学的教学内容加以改变

对数学的教学内容进行改革时,要对不同专业的内在要求加以综合,可以将课堂改变成弹性教学,对应用数学所具有的严谨性不应过多的强调,根据学生的专业内容进行教学课堂的设计,将众多的基础知识提供给学生,在以后能够更好的支持学生的职业技能,使学生的综合能力得到提高[6].

总之想要使学生的自身学习能力能够提高,就要注意到应用数学不同于纯数学,它的实践性较强,所以,想要使学生能够积极主动学习应用数学,就一定要培养学生的学习兴趣。高校要在数学师资投入这一方面加大力度,并且也要深入的去分析和研究这一教学课题,将应用数学的整体教学提升上来,使应用数学教学不断的发展。

参考文献:

[1] 邢潮锋,黄治琴,杨旭,等。 数学建模与高校数学教学改革的实践---以济南大学为例[J].高等函授学报(自然科学版),2010,23(2):20-22.

[2]郭娜,朱奕奕。浅谈高校应用数学教学改革与学生应用数学意识的培养[J].信息化建设,2015(4):61-63.

[3]王艳华,王笑岩。渗透数学建模思想方法的基本途径[J].辽宁师专学报(自然科学版),2012,14(4):5-6.

[4]王君轩。探究高校学生数学建模意识与方法的培养[J].大观周刊,2012(16):214-214.

[5]宋文静。浅谈高校数学教学中如何培养学生应用数学意识[J].东方青年·教师,2012(2):30.

[6]施明华,赵建中,周本达,等。应用型院校高等数学与数学建模融合的探索[J].教育教学论坛,2013(21):270-271.

浅谈小学生应用数学意识提升策略

在数学领域里,应用数学占有重要的位置,理论上应用数学包括运筹学和线性代数,还有概率论及数理统计等学科,这些学科的广泛应用都体现了应用数学的思想。 随着教育体制的改革,教学中也对应用数学教学提出了新的要求,要求应用数学教学要重视与生活的联系性,及与 其它 学科的关联。让小学生能用数学知识,解决实际生活中的一些问题。

1、丰富的生活与应用数学的联系

教师要注重生活素材的积累,并能将这些有用的素材贯穿到教学中,把数学书本中抽象的知识具体化,让小学生更好地进行消化和理解,认识到应用数学与实际生活的联系。 根据学习的内容老师可以有针对性布置一些作业。比如在进行米,厘米的学习时,可以让学生回家里量一下床、门、饭桌等家俱的尺寸,在学习元角分等时,可以让学生自己走超市买矿泉水等进行实践,这样可以加深对学习的数学知识的理解,并起到一定的巩固作用,是一个非常好的教学方法。

2、开启小学生学习应用数学的积极性

小学生的应用数学知识,大多比较简单,在生活中很容易找到切入点和联系性。所以要求老师在教学中,多进行书本与实际的联系,激发学生的学习积极性,多把理论化的数学知识转化成实际的问题。 这样不仅让学生认识起来更清晰,还会使学生真正感受到学习应用数学的价值,积极想办法用应用数学的思想解决问题。 在这个学习的过程中,学生就能够对应用数学产生浓厚的兴趣,有探究下去的意识,这才是教学的目的所在。例如分数部分的讲解,就可以通过分 蛋糕 、分苹果等生活中实际事例来进行讲解,这样学生不仅能很快理解,而且会明白在日常生活中如何去应用分数,所以这样往往教学效果比较理想。

3、不忽视教材的作用,教材融于生活

随着教学方法的推陈出新,很多老师对教材开始忽视。 因为越来越多的教学方式,象分组辅导活动、多媒体教学、课外设计等各种形式教学的开展,老师对教材就不象过去那么重视和依赖了,其实这种想法也是错误的。 任何的教学活动也是要以教材为蓝本的,都是互为补充的关系,教材起到统领性、目标性的作用,任何形式的教学都是围绕教材来进行的,如果脱离了教材就失去了意义,所以老师要充分地利用好手中教材的作用,并与实际生活展开联系。

如:小小采购员、小管家、数字与编码、节约能源、调查利率,计算利息等,这些实践活动内容既符合学生的年龄特征和知识基础,又符合学生的生活背景。因此,我们可充分利用这些资源,遵循教材的要求组织具体、有趣、富有实践性、全员参与的数学活动,培养学生用数学的眼光观察周围事物, 经历应用数学知识分析和解决实际问题的过程,将数学问题与生活 经验 联系起来,使学生认识到数学与日常生活息息相关,获得应用数学的成功体验。

4、生活情境化的练习促进应用数学的学习

对于应用数学的教学,最合适的方法就是放到具体的情境中去讲解,这样更利于学生的思考,并使数学看起来更有趣,更容易激发学生的学习兴趣。在这个方面,就需要教师用心去设计一些生活场景,并根据学生的 兴趣 爱好 ,多设置一些开放性的问题,老师适当进行引导。 这样让学生在回答问题和思考问题的过程中,进行了应用数学知识的学习。

比如,在学生学习加减法时,可以让几个同学进行分组,分别扮演顾客和营业员,拿钱和一些简单的货品进行加减法的运算练习,可以有同学喜欢的糖果,饮料等,也可以有一些平时常见的书包、本子和笔等文具。 这样学生会有参予的积极性,也会对加减法的运算产生浓厚的兴趣, 并且通过分组练习了解了加减法运算在实际生活中的运用,这种情境式教学方法,就是让学生在最熟悉的环境中去感受接触到新知识,在应用数学的教学中受到学生普遍好评。

5、学习应用数学的过程就是培养实际能力的过程

在学习的过程中也不断发现问题,然后再想办法去解决问题。 这整个的过程,都可以让学生不知不觉中去探究知识,增加 逻辑思维 能力与解决问题的能力。 另外,通过学生问问题,其它同学和老师解答,还可以加强学生的沟通交流能力。 在与老师和同学的交流探讨中,还可以让同学懂得集体的力量,懂得克服困难有时需要帮助,从各个角度和层面上,让学生了解感受数学在实际中的应用,应用数学的魅力及学习它的重要意义。

在教学低年级学生学习比多比少,比大比小的知识并能做简单的减法讲讲算算后,可让学生调查家里人的岁数,编成应用题,如奶奶66 岁,爸爸 30 岁,奶奶比爸爸大几岁? 等等,讨论谁的年龄大,谁的年龄小,谁比谁小多少,谁与谁相差多少? 两人相加是多少岁? 谁的年龄是谁的几倍等。 再如教学乘法、除法的含义时,通过摆一摆学具的活动,掌握抽象的概念。 教师要鼓励学生多思考、多观察,从中发现数学问题,并将其分析、探索、组织、锻炼、筛选等活动方式自编应用题,有利于培养学生学数学、用数学的意识,也有利于培养学生从不同角度,全方位分析问题和解决问题的能力。

6、结束语

在我们的日常工作和生活中有着大量的应用数学问题。 只要小学数学教师能够将平时收集和观察到的实践问题的资料, 经过 总结 、概括、处理之后,就能够设计和提炼出相关的应用数学问题,让学生把他们所学到的知识应用于实践生活当中去,从而使学生认识到学习数学的价值,激发学生学习数学的兴趣,开拓学生的数学思维,提高学生灵活运用数学知识的意识和能力。 因此,充分发挥应用数学在小学数学教学中的作用,不仅能够教会学生如何运用学到的数学知识来解决实际应用数学问题,还能激发每个学生的创造潜能,培养学生的创新能力。

参考文献:

[1]季山红.对小学生数学建模思想的培养[J].语数外学习:初中版中旬,2012(09)。

[2]郭霞.在小学阶段进行数学建模的探索[J].中国电力教育,2009(13)。

[3]吴信钰.小学数学教学联系生活策略的研究[D].东北师范大学,2011.

数学建模论文范文--利用数学建模解数学应用题数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。 关键词:创新能力;数学建模;研究性学习。 《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生: (1)学会提出问题和明确探究方向; (2)体验数学活动的过程; (3)培养创新精神和应用能力。 其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。 数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。 一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。 教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。 如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大? 这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。 这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。 2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。 学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程: 现实原型问题 数学模型 数学抽象 简化原则 演算推理 现实原型问题的解 数学模型的解 反映性原则 返回解释 列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。 3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。 高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。 例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。 时间(年份) 人中数(百万) 39 50 63 76 92 106 123 132 145 分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。 通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。 四、培养学生的其他能力,完善数学建模思想。 由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想: (1)理解实际问题的能力; (2)洞察能力,即关于抓住系统要点的能力; (3)抽象分析问题的能力; (4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力; (5)运用数学知识的能力; (6)通过实际加以检验的能力。 只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。 例2:解方程组 x+y+z=1 (1) x2+y2+z2=1/3 (2) x3+y3+z3=1/9 (3) 分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。 方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根 t3-t2+1/3t-1/27=0 (4) 函数模型: 由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3) 平面解析模型 方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。 总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

线性代数教学中线性相关性的一种解释和理解[摘要]线性相关性的内容是线性代数课程中的重点和难点,特别是被表示向量组的线性相关性与被表示向量组中向量的个数以及表示向量组中向量的个数之间的关系的有关结论,对学生来说是很难理解的,在教学中,我们把线性相关解释为“多余”,线性无关解释为“没有多余”,在教学上可收到较好的效果。[关键词]线性相关线性无关多余没有多余线性相关性在线性代数课程中是一个重要内容,对学生来说是非常困难的内容,许多学生学完线性代数后还没有弄懂,有的学生学到这一内容时觉得很难学,就丧失信心。认为整个线性代数都很难学,甚至放弃学习。线性相关性是线性代数课程中教学的难点,它与后面线性方程组的解的理论有密切的联系,对于这一难点的处理是非常重要的。根据不同层次的学生采用不同的教学要求。使得学生正确的理解线性相关性的定义,定理。大多数经济类的本科线性代数课程的教材在叙述向量组的极大无关组和向量组的秩的理论时,由于这一章节的理论性比较强,一般都是从定理到定理,从证明到证明,例子较少。在教学中,在讲完线性相关的定义和有关定理后,在介绍向量的极大无关组之前,用”多余”来解释线性相关性,可使后面的问题简单化,直观化。我们以龚德恩等主编的《经济数学基础》的第二分册线性代数的教材为例进行说明。首先来看线性组合的概念。对于向量组α1,α2,…,αs和向量β,如果存在s个数k1,k2,…,ks使得β=k1α1+k2α2+…+ksαs则称向量β是向量组α1,α2,…,αs的线性组合。换句话说向量β相对于向量组α1,α2,…,αs是“多余”的向量。关于线性相关概念,对于向量组α1,α2,…,αs,如果存在不全为零的数k1,k2,…,ks使得k1α1+k2α2+…+ksαs=0称向量组α1,α2,…,αs线性相关。因k1,k2,…,ks不全为零,不妨假设α1≠0则α1=-k2k1α2-…-ksk1αs。因此向量组α1,α2,…,αs线性相关,看成是向量组α1,α2,…,αs中至少有一个“多余”的向量。关于线性无关概念,对于向量组α1,α2,…,αs,如果仅当k1,k2,…,ks都等于零时,才能使得k1α1+k2α2+…+ksαs=0成立。称向量组α1,α2,…,αs线性无关。由于α1,α2,…,αs线性无关等价于其中任何一个向量不能由其余向量线性表示,因此向量组α1,α2,…,αs线性无关看成是α1,α2,…,αs中“没有多余”的向量。一些结论也可作相应的理解和解释。如:“如果一个向量组中的部分组线性相关,则整个向量组也线性相关”,解释为如果一个向量组中的部分组有多余的向量,则整个向量组也有多余的向量。“如果一个向量组线性无关,则它的任意一个部分组也线性无关”,解释为如果一个向量组中没有多余的向量,则该向量组去掉一些向量后也没有多余的向量。下面两个定理是学生们在学习向量组的线性相关性的过程中感到最难理解和掌握的。定理1设向量组(Ⅰ)α1,α2,…,αs可由向量组(Ⅱ)β1,β2,…,βt线性表示,且s>t,则α1,α2,…,αs线性相关。在课堂教学中我们是作如下解释的,向量组(Ⅰ)α1,α2,…,αs称为“被表示向量组”,向量组(Ⅱ)β1,β2,…,βt称为“表示向量组”。条件s>t,看成是有”多余”的向量。即“被表示向量组(Ⅰ)α1,α2,…,αs相对于表示向量组(Ⅱ)β1,β2,…,βt有多余的向量,则α1,α2,…,αs线性相关,这样解释便于学生理解和记忆。推论1如果一个向量组α1,α2,…,αs线性无关,并且可由向量组β1,β2,…,βt线性表示。则s≤t。推论1可解释为:如果“被表示向量组α1,α2,…,αs线性无关,则被表示的向量组α1,α2,…,αs相对于表示向量组β1,β2,…,βt没有多余的向量,即s≤t。推论2两个等价的线性无关向量组所含的向量的个数相同。两个向量组都线性无关,且彼此可相互线性表示,两个向量组彼此相对于另一个向量组都没有多余的向量,得两个向量组所含的向量的个数相同。下面再举一些例子进行说明。例1设向量组α1,α2,…,αs线性无关,且可由向量组β1,β2,…,βt线性表示,则必有()。

线性代数论文开题报告

这个应该是比较简单的,关于这个命题的证明好象很多书上都是有的,而且好象还不址一种.找找最古老的一本高等代数或者线性代数的书看看就可以了我推荐北京大学的,好象是不错的,武汉大学的有个教材也不错.主要是证明乘积后的秩的规律性

线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。 线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。 线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。 我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。 二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。 例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数 上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。

巴东县民族实验小学“小学数学有效课堂教学设计”课题研究开题报告各位领导、各位专家、老师们:大家好!我们巴东县民族实验小学于2007年4月向湖北省教研室申报立项,承担湖北省“十五”规划重点课题子课题——“小学数学有效课堂教学设计”的课题研究活动。今年9月获得正式立项,今天,我们正式开题。该项研究是以中共中央国务院《关于深化教育改革,全面推进素质教育的决定》和国务院《关于基础教育改革和发展的决定》的精神为指针,以教育部制定的《全日制义务教育数学课程标准》(实验稿)的要求为依据,以全面提高学生数学素养为目的的教研活动。一、本课题研究的理论和实践价值1、建构主义理论;2、行动学习理论;3、人本主义理论/。关于课堂有效学习的内涵(1)课堂有效学习是相对于无效和低效学习而言的。(2)学生的发展就其内涵,应包括知识与技能、过程与方法、情感态度与价值观三维目标的整合,缺少任一维度都无法实现真正意义上的发展;发展就其层次,包括现有发展区和最近发展区,教学促进发展,就是把最近发展区不断转化为现有发展区;发展就其形式,有内在发展与外在发展,外在发展是一种以追求知识的记忆、掌握为标志的发展,新课程强调着重追求以知识的鉴赏、判断力与批判力为标志的内在发展;发展就其机制,有预设性发展和生成性发展,新课程在注重从已知推出未知,从已有的经验推出未来发展的预设性发展的同时,强调不可预知的生成性发展;发展就其时间,有当下发展和终身发展,新课程既注重即时的可测性和量化的当下发展,更关注面向未来、着眼于可持续和发展后劲与潜力的终身发展。 二、本课题研究的主要内容课题研究将从调研课堂上无效教学现象、分析致因入手,研究课堂“有效学习”个案,发掘、预设并生成有效学习的操作点,引领教师积极应用,构建以“有效学习”为主导的教学体系。对课堂上无效教学现象进行调研,分析致因,针对无效学习现象,开展对应策略研究。立足于科学性、可行性、灵活性和有创意性,开展有效课堂教学评价内容与方式的研究。通过对新课程背景下教师教育教学行为与课堂教学效果的研究、教师专业化发展水平与教学效果的研究,小学生数学学习水平和能力的科学评价与课堂教学效果的研究,从理论和实践上丰富、完善小学数学课程评价体系,丰富课堂教学效果的研究,生成有效学习的操作要点与基本策略。三、本课题省内、外研究现状,预计有哪些突破为了了解《小学数学有效课堂教学设计研究》这一课题在同一领域的研究现状,把握发展趋势,我们查阅了大量的教育理论专箸、期刊、报纸及网络资料。从中我们发现,在新课程理念的指导下,人们越来越关注学生在课堂中是否进行有效的学习,如何组织、实施有效的课堂教学的研究。这些研究呈现以下特点:(1)改变或改善学生的学习方式。新一轮课程改革的目的,不仅仅是换套新的教材,或是说用了新的标准问题,其目的是要改变学生的学习方式,使课堂里面的情况发生变化,从而推进素质教育的进程。课程标准提出,有效的学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习的重要方式。人们十分关注课堂教学中的学习,是否是探索性的、自主性的、研究性的学习。(2)越来越重视学生个性的发展。人本主义心理学讨论的是个体的人,是理性和感性相结合的人.当代教育研究把培养学生的独立人格和独特个性当作优先追求的目标。通过实施一定的课堂教学策略,使学生在人格中达成理性与情感意志、科学与人文等方面素质的和谐统一。使每一个学生在各个方面都得到不同程度的发展和提高。 (3)该领域研究发展趋势分析 新世纪的基础教育需要加快全面推进素质教育的步伐,努力培养具有创新精神和实践能力的有理想、有道德、有文化、有纪律的德、智、体、美等全面发展的一代新人,作为基础教育的一门重要学科,在课堂教学中,以人为本,实施有效教学,在探索性、自主性、研究性的学习活动中发展学生的创新思维,提高学生的实践能力,是课程改革发展的必然趋势。虽然该领域的研究取得了一些成绩,但对于正确的效益观、影响课堂教学效果的相关因素、有效教学和学习的方法与策略、有效教学评价的标准等缺乏全面、系统的研究、实践,在实施推广上也存在不足和不平衡。因此开展“小学数学课堂教学效果研究课题研究”,对构建小学数学课程评价体系所作的理念与实践的探索,将对课改的深入开展起到积极作用。我们课题研究人员应该以饱满的工作热情,系统的学习“建构主义”等相关理论,学习外地老师的教研教改经验。积极提供研究课,写好研究课设计方案、教学后记、案例分析等材料。还要认真地听研究课,参加说课、评课、信息交流、心得体会交流等研讨活动。最后,祝愿我们的课题研究工作在上级领导的关怀下,在大家的共同努力下取得圆满成功!

这个问题也不太难啊,你可以向你的学长和学姐们请教一下,或者向你的老师问问

线性代数研究方向论文

关于线性代数,首先搞清楚线代都能干什么:求Ax=B的时候,我们不是基于求解具体的解,而是先研究A的各种特性,看看这些特性是如何影响Ax=B的解的。所有的特性就是行列式,矩阵,秩,特征向量和特征值,等等。这就是线性代数的主要内容。它的应用就是对于向量和方程作正交分解(对角化,特征向量),达到降低方程组维数的作用,使得经典方法那一求解的问题变得可解,应用在图像处理,天气预测等诸多领域。具体的你可以看看我的blog的讲解。--------------------------------------漫谈高数(二)方程和矩阵的物理含义漫谈高数(三)线性相关和秩的物理意义漫谈高数(四)特征向量物理意义漫谈高数(七)正交,相关,消元漫谈高数(八)正交分析和谱分析

线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意 , 而且写了成千篇关于这两个课题的文章。向量的概念 , 从数学的观点来看不过是有序三元数组的一个集合 , 然而它以力或速度作为直接的物理意义 , 并且数学上用它能立刻写出 物理上所说的事情。向量用于梯度 , 散度 , 旋度就更有说服力。同样 , 行列式和矩阵如导数一样(虽然 dy/dx 在数学上不过是一个符号 , 表示包括△y/△x的极限的长式子 , 但导数本身是一个强有力的概念 , 能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。 线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。 行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在 1683 年写了一部叫做《解伏题之法》的著作,意思是 “ 解行列式问题的方法 ” ,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家, 微积分学奠基人之一 莱布 尼 兹 ( Leibnitz , 1693 年) 。 1750 年 克莱姆( Cramer ) 在他的《线性代数分析导言》( Introduction d l'analyse des lignes courbes alge'briques )中 发表了求解线性系统方程的重要基本公式(既人们熟悉的 Cramer 克莱姆法则)。 1764 年 , Bezout 把确定行列式每一项的符号的手续系统化了。对给定了含 n 个未知量的 n 个齐次线性方程 , Bezout 证明了系数行列式等于零是这方程组有非零解的条件。 Vandermonde 是第一个对行列式理论进行系统的阐述 ( 即把行列 ' 式理论与线性方程组求解相分离 ) 的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。 Laplace 在 1772 年的论文《对积分和世界体系的探讨》中 , 证明了 Vandermonde 的一些规则 , 并推广了他的展开行列式的方法 , 用 r 行中所含的子式和它们的余子式的集合来展开行列式,这个方法现在仍然以他的名字命名。 德国数学家雅可比( Jacobi )也于 1841 年总结并提出了行列式的系统理论。另一个研究行列式的是法国最伟大的数学家 柯西 (Cauchy) ,他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了 laplace 的展开定理。相对而言,最早利用矩阵概念的是 拉格朗日( Lagrange ) 在 1700 年后的双线性型工作中体现的。拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日迭代法。为了完成这些,他首先需要一阶偏导数为 0 ,另外还要有二阶偏导数矩阵的条件。这个条件就是今天所谓的正、负的定义。尽管拉格朗日没有明确地提出利用矩阵。 高斯( Gauss ) 大约在 1800 年提出了高斯消元法并用它解决了天体计算和后来的地球表面测量计算中的最小二乘法问题。(这种涉及测量、求取地球形状或当地精确位置的应用数学分支称为测地学。)虽然高斯由于这个技术成功地消去了线性方程的变量而出名,但早在几世纪中国人的手稿中就出现了解释如何运用“高斯”消去的方法求解带有三个未知量的三方程系统。在当时的几年里,高斯消去法一直被认为是测地学发展的一部分,而不是数学。而高斯 - 约当消去法则最初是出现在由 Wilhelm Jordan 撰写的测地学手册中。许多人把著名的数学家 Camille Jordan 误认为是“高斯 - 约当”消去法中的约当。 矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。 1848 年英格兰的 J.J. Sylvester 首先提出了矩阵这个词,它来源于拉丁语,代表一排数。 1855 年矩阵代数得到了 Arthur Cayley 的工作培育。 Cayley 研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换 ST 的系数矩阵变为矩阵 S 和矩阵 T 的乘积。他还进一步研究了那些包括矩阵逆在内的代数问题。著名的 Cayley- Hamilton 理论即断言一个矩阵的平方就是它的特征多项式的根,就是由 Cayley 在 1858 年在他的矩阵理论文集中提出的。利用单一的字母 A 来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式 det( AB ) = det( A )det( B ) 为矩阵代数和行列式间提供了一种联系。 数学家 Cauchy 首先给出了特征方程的术语,并证明了阶数超过 3 的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论, 数学家试图研究向量代数,但在任意维数中并没有两个向量乘积的自然定义。第一个涉及一个不可交换向量积(既 v x w 不等于 w x v )的向量代数是由 Hermann Grassmann 在他的《线性扩张论》( Die lineale Ausdehnungslehre ) 一 书中提出的。 (1844) 。他的观点还被引入一个列矩阵和一个行矩阵的乘积中,结果就是现在称之为秩数为 1 的矩阵,或简单矩阵。在 19 世纪末美国数学物理学家 Willard Gibbs 发表了关于《向量分析基础》 ( Elements of Vector Analysis ) 的著名论述。其后物理学家 P. A. M. Dirac 提出了行向量和列向量的乘积为标量。我们习惯的列矩阵和向量都是在 20 世纪由物理学家给出的。 矩阵的发展是与线性变换密切相连的。到 19 世纪它还仅占线性变换理论形成中有限的空间。现代向量空间的定义是由 Peano 于 1888 年提出的。二次世界大战后随着现代数字计算机的发展,矩阵又有了新的含义,特别是在矩阵的数值分析等方面。 由于计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。于是作为处理离散问题的线性代数,成为从事科学研究和工程设计的科技人员必备的数学基础。

相关百科

热门百科

首页
发表服务