首页

> 学术发表知识库

首页 学术发表知识库 问题

b镀层制备及性能研究论文

发布时间:

b镀层制备及性能研究论文

1.微孔HA的制备及PLA/HA复合材料的性能研究. 《材料科学与工程学报》.2007,25(1)2.聚丙烯/蒙脱土纳米复合材料的流变性能研究《塑料科技》,2007,25(3)3.宽峰聚乙烯/蒙脱土纳米复合材料的制备与性能研究。《中国塑料》,2007(4)4.mLLDPE结构及流变性能研究。《弹性体》,2007,17(2)5.聚乙烯醇/蒙脱土纳米复合材料的制备及性能研究。《中国塑料》,2007(6)6.PVA/HA复合水凝胶的制备及性能。《长春工业大学学报》,2007,28(3)7.mLLDPE薄膜的光氧化及热力学降解,《合成树脂及塑料》,2006,23(5)8.共混聚合物界面张力的测定方法.《高分子材料科学与工程》,2006,22(5)9.Study on insulating thermal conductive BN/HDPE composites .thermochimica acta.452(2007)36-42.10.聚丙烯/蒙脱土纳米复合材料的制备与性能。《塑料科技》2006,34(5)11.PP/MMT纳米复合材料的制备。《2006年中国工程塑料年会论文集》12.Properties of Compatibilized Nylon6/ABS Polymer Blends, Journal of Macromolecular Science,Part B:Physics,45:557-56113.POE-g-GMA的制备及其对纳米CaCO3/PA66的增韧. 《塑料科技》2006,34(4)14.聚乙烯/蒙脱土纳米复合材料结构与力学性能的研究.《塑料科技》,2006,34(1)15.原位聚合法制备宽峰聚乙烯/蒙脱土纳米复合材料。《2006年全国高分子材料科学与工程年会论文集》16.m-LLDPE/纳米SiO2的力学性能和光学性能研究 《河北化工》2006(1)17.医用聚乙烯醇水凝胶的制备及性能研究. 《长春工业大学学报》,2006,27(3)18.PVB/TiO2纳米复合材料的制备和表征。《中国塑料》,2006,20(6)19.Crystalline Morphologies of Poly(L-lactide) Thin Films,《2006年国际高分子物理年会》20.聚乙烯醇缩丁醛/纳米TiO2复合材料的制备及性能研究。《化工新型材料》,2006,34(1)21.吡唑林荧光化合物的合成与红外光谱研究。《光谱学与光谱分析》,2005,25(3)22.一种水容器壳体湿法缠绕环氧树脂体系。《复合材料学报》,2005,22(3)23.GMA熔融接枝SBS及其对PA6增容研究。《工程塑料应用》,2005,33(2)24.m-LLDPE/nano-SiO2复合材料的性能和形态结构研究。《塑料科技》,2005(5)25.EPDM增韧聚丙烯及其脆韧转变机理的研究。《弹性体》,2005,15(5)26.熔融法制备POE-g-GMA及影响因素的研究。《弹性体》,2005,15(6)27.GMA熔融接枝SBS的研究。《弹性体》,2005,15(6)28.POE-g-GMA的制备及其对PA66/纳米CaCO3的增韧研究 《05年中国工程塑料年会论文集》29.聚丙烯的官能化及其与尼龙6相容性。《长春工业大学学报》,2005,26(3)30.分子量对PP/PA6体系界面张力的影响。《2005年全国高分子学术年会论文集》31.PP/EPDM-g- GMA共混物的形态结构和力学性能。《长春工业大学学报》,2005,26(1)32.熔融法制备EPDM-g-GMA及其对PEN脆韧转变的研究。《工程塑料应用》,2004,32(12)33.水处理容器湿法缠绕用环氧树脂体系。《纤维复合材料》,2004,21(1)34.熔融法制备EPDM-g-MAH及其对PEN的脆韧转变研究。《塑料科技》,2004(6)35.水玻璃在练漂液中稳定双氧水的探讨。《纺织学报》2004,25(4)36.熔融法制备EPDM-g-MAH及其对PEN的脆韧转变研究。《塑料科技》,2004(6)37.马来酸酐接枝SBS及其对PA6的增容作用。《长春工业大学学报》,2004,25(2)38.Brrttle-ductile transition in PP/EPDM blends,effect of notch radius.《POLYMER》.polymer44 (2003)3125—313139.结合科研进行教学 提高专业人才素质。《长春工业大学学报》(高教研究版),2004(25)40.聚丙烯的官能化及其与尼龙66相容性研究。《工程塑料应用》:2003,31(3)41.纳米SiOx改性不饱和聚酯树脂。《纤维复合材料》,2003,20(4)42.增容剂在PC/ABS合金中的应用。《2003年全国高分子学术年会论文集》43.聚丙烯的官能化及其与尼龙1010相容性的研究。《2003年全国高分子学术年会论文集》44.PMMA增韧PVC/ABS共混物共混工艺的探讨。《长春工业大学学报》,2003,24(1)45.Mechanical properties of compatibilized Nylon/ABS polymer blends 《2002年国际高分子物理年会》46.聚丙烯与尼龙共混物相容特性。《长春工业大学学报》:2002,23(2)

多孔金属材料的制备工艺及性能分析多领域有着广泛的应用前景。本文概述了多孔金属材料的常用制备方法及其主要性能。关键词:多孔金属材料;制备;性能;应用摘 要 :多孔金属材料是一种性能优异的新型功能材料和结构材料 ,具有独特的结构和性能 ,在很科学家极大的兴趣 ,成为材料类研究的热点方向之1 引言一 ,自 20世纪 90年代以来 ,美国的哈佛大学、英国在传统的金属材料中 ,孔洞 (宏观的或微观的 )的剑桥大学、德国的 Fraunhofer材料研究所、日本的被认为是一种缺陷 ,因为它们往往是裂纹形成和扩东京大学等对多孔金属材料的制备工艺和性能进行展的中心 ,对材料的理化性能及力学性能产生不利了广泛的研究 ,获得了一批研究成果 [2-5]。在我国 ,的影响。但是 ,当材料中的孔洞数量增加到一定程多孔金属材料的基础和应用研究也逐步得到重视和度时 ,材料就会因孔洞的存在而产生一些奇异的功发展。近年来 ,研究队伍不断壮大 ,在制备技术、结能 ,从而形成一类新的材料 ,这就是多孔金属材料。构和物性等方面的基础研究以及在各种民用和国防按照孔之间是否连通 ,可以把多孔金属材料分为闭领域的应用研究均取得了一定的进展 ,已经引起我孔和通孔两类 ,如图 1所示。该类材料具有良好的国政府、中科院和航空航天等部门的高度重视 ,尤其吸能性能、高阻尼性能、吸声性能、电磁屏蔽性能及值得一提的是 ,我国在 2005年立项的国家重大基础良好的导热导电性能 [1] ,因而在一般工业领域 (如研究计划 (973计划 )“超轻多孔材料和结构创新构汽车工业 )、国防科技领域及环境保护领域等有着型的多功能化基础研究 ” ,更是体现了对该类材料广泛的应用前景 ,它的设计、开发和应用引起了中外研究的重要性和迫切性。水化物等,然后将均混的混合物压制成密实块体即到目前为止 ,已开发的制备多孔金属的方法很多 ,涉及到的领域也非常广。根据在制备过程中金属所处的状态 ,可将多孔金属的制备工艺分为以下三类 :液相法、粉末烧结法和沉积法。 2. 1 液相法液相法包括的种类比较多 ,且较易制备大块的多孔金属和产品易商业化 ,成为多孔金属材料制备的主要手段,液相法主要包括以下几种: 2. 1. 1 颗粒渗流法颗粒渗流法[ 6 ]原理是首先将颗粒在模具内压实,烘干形成预制块。然后通过压力将金属液渗入中,并强烈搅拌使空心小球分散,最后得到空心球与金属基体形成的多孔金属材料。空心球铸造法的特点是孔径和孔隙率易于控制,材料综合力学性能好。2. 2 粉末冶金法粉末冶金法主要包括粉末烧结发泡法、烧结-脱溶法、松散粉末烧结法、中空球烧结法等。2. 2. 1 粉末烧结发泡法这种工艺[ 12 ]是首先将金属粉末和相应的发泡剂按一定比例均匀混合,发泡剂可以是金属氢化物、半成品,最后将此半成品加热到接近或高于混合物熔点的温度,使发泡剂分解,金属熔化,从而形成多孔泡沫材料。此种方法易于制作近半成品的零件和到颗粒预制块的间隙中,最后将颗粒溶除即可得到通孔结构的多孔金属材料。2. 1. 2 精密铸造法精密铸造法 [8]是首先用耐火材料浆料填满海绵状泡沫塑料的孔隙 ,待耐火材料固化后 ,加热除去塑料 ,即形成一个多孔预制块体。然后把液态金属液浇入到预制块上 ,加压渗流 ,这一点类似于渗流过程。最后再除去耐火材料 ,就形成与原来海绵状塑料结构相同的多孔金属材料。 2. 1. 3 熔融金属发泡法熔融金属发泡工艺可分为两种 ,发泡剂发泡和通气发泡 [9, 10 ]。前者是在熔融的金属液中加入发泡剂 (如 TiH2 ) ;后者则是在金属液中通入气体 (如惰性气体 )。这两种工艺的共同特点是可制备孔隙率高、尺寸大、闭孔结构的多孔金属 ,但过程控制较为复杂 ,孔结构分布均匀性不高。 2. 1. 4 空心球铸造法空心球铸造法 [11 ]的原理是先采用商用酚醛塑料小球在惰性气体环境中加热直至塑料碳化 ,形成中空的小球。然后将这些中空的小球加入到金属液三明治式的复合材料 ,而且孔隙率较高 ,孔分布均匀。 2. 2. 2 烧结 -脱溶法这种制备工艺 [13 ]首先是将金属粉末和可去除填充颗粒均匀混合 ,其中可去除填充颗粒一般包括两类 ,一类为可溶于水或其它溶剂的盐 (如 NaCl等 ),一类为可分解有机物 (如尿素、碳酸氢氨等 ),均混后把混合物压制成致密的半成品 ,然后在一合适的温度烧结。若填充颗粒为可分解有机物 ,则烧结过程中颗粒会分解气化 ;若填充颗粒为可溶性盐 ,则在烧结后可用溶剂将其溶去便得到多孔金属材料。2. 2. 3 松散粉末烧结法松散粉末烧结 [14 ]是把松散状态的金属粉末不经压实直接进行烧结的方法。此种方法可用于生产多孔金属电极。 2. 2. 4 中空球烧结法通过将金属中空球烧结 ,使之扩散结合而制造多孔材料的方法。此方法制造的多孔材料兼有通孔和闭孔。金属中空球可通过下述方法制备 :在球形树脂上化学沉积或电沉积一层金属 ,然后将树脂除 明显的三阶段特征 ,即初始的弹性段 (Linear Elasticity)、中间的平台段 ( Plateau)和最后的致密段 (Densification)。其中 ,平台段的起始点应力称为泡沫材料的屈服或坍塌强度 ,此强度远小于其基体的屈服强度 [1]。当多孔金属材料受到外加载荷时 ,因屈服强度低很容易发生变形 ,而且变形量大、流动应力低 ,在变形过程中通过孔的变形、坍塌、破裂、胞壁摩擦等形式消耗大量能量而不使应力升的。高 ,从而能有效地吸收冲击能。这种在较低应力水形成金属烟。金属烟在自身重力作用及惰性气流的平下吸收大量冲击能的特征正是冲击缓冲所需要携带下沉积和冷却。因其温度低 ,原子难以迁移和扩散 ,故金属烟微粒只是疏散地堆砌起来 ,形成多孔3. 2 高阻尼性能泡沫结构 [16 ]。 多孔金属材料可看作是由三维网络状金属骨架去 ,或将树脂球和金属粉一同混合 ,随后烧结使金属粉结合 ,同时树脂球挥发 [ 15 ]。 2. 3 沉积法沉积法主要包括金属气相蒸发沉积法、原子溅射沉积法和电化学沉积法三种。 2. 3. 1 金属气相蒸发沉积法在较高惰性气氛中 ,缓慢蒸发金属材料 ,蒸发出来的金属原子在前进过程中与惰性气体发生一系列碰撞作用 ,使之迅速失去动能 ,从而部分凝聚起来 ,与高压惰性气体原子碰撞 2. 3. 2 原子溅射沉积法在惰性气体的压力下,元素原子在飞溅路程中,金属原子一方面捕获气体原子 ,另一方面凝聚成金属液滴 ,然后到达衬底。在衬底上获得均匀包裹气体原子的金属体 ,最后在高于金属熔点的温度下把金属加热足够长的时间使捕获的气体膨胀 ,形成多孔金属材料。这种方法的特点是孔结构非常理想 ,但成本昂贵 ,不易制备大件 [ 17 ]。 2. 3. 3 电化学沉积法这种方法是以聚氨基甲酸乙脂发泡材料为骨架 ,进行电解沉积 ,然后加热去除有机聚合物骨架 ,得到多孔金属材料。这种方法制备的多孔材料不但孔隙率高 ,孔分布均匀 ,且孔互相连通呈三维网状结构 [ 18 ]。 3 多孔金属材料的主要性能多孔金属材料作为一类区别于致密材料的新型材料 ,具有一些其基体或母体所不具备的特殊性能和功能 ,主要表现如下 : 3. 1 吸能性能图 4 多孔金属材料典型的压缩应力 -应变曲线多孔金属材料的应力 -应变 (σ -ε)响应具有与孔洞所组成的两相复合材料。除了孔洞与金属基体之间所形成的界面外 ,材料内部还存在其它大量微观的 (主要是位错 )和宏观的 (较小的孔洞和裂纹 )缺陷 ,其组织状态和缺陷分布极不均匀。因此当外力作用于多孔金属材料上时 ,将在基体中产生不均匀的应变 ,特别是在孔洞 (宏观的或微观的 )或裂纹附近 ,其应变情况更为复杂 ,从而引起缺陷区域原子重排。缺陷区的这种响应是粘滞性的 ,因而引起粘滞性应变 ,造成能量的损耗 ,导致材料的阻尼增加。 3. 3 吸声性能多孔金属材料的高孔隙率结构使其具有良好的吸声性能 [19 ]。一般来讲 ,通孔或半通孔多孔金属的吸声效果比闭孔的好。多孔金属材料的吸声机制主要可归为两种 ,即声波经过多孔金属时流动阻力的升高造成的粘性损失以及声波与孔洞表面热量交换造成的热损失。 3. 4 电磁屏蔽、导热和导电性能多孔金属具有良好的导电性和很高的比表面积 ,因此具备很高的电磁屏蔽性能 ,即良好的吸收和反射电磁波的能力。同时又具有良好的导热性能 [ 20, 21 ]。 3. 5 其它性能质轻 ,易着色 ,易加工 ,耐高温。 4 结语 (1)多孔金属材料具有良好的理化性能和力学性能 ,因而可以作为功能材料和结构材料 ,具有良好的应用前景。多孔金属材料的制备工艺很多 ,因而可以满足多样化的需求 ,可以根据不同的应用需求 采用不同的制备工艺。 and energy absorbing characteristic of foamed aluminum. (2)部分制备工艺在结构的可控性、孔径的均Metall[J]. Mater. Trans, 1998 (A29): 2497-2502. 匀性、样品的大尺寸化等方面仍存在局限性 ,因而制[10 ]Cymat Corp, Canada. Product Information Sheets. http: / / 备工艺还需要进一步的探索和完善。 www. cymat. com. (3)随着工业和科技的进步 ,人们对多孔金属[11 ]张勇 ,舒光冀 ,何德坪 .用低压渗流法制备泡沫铝合金 [J ].材料科学进展 , 1993 (7) : 473 -47. 材料的需求量越来越大 ,要求也越来越高 ,但目前的[12]J. Baumeister, J. Banhart, M. Weber[M]. German Pa2研究也只是涉及到了多孔金属材料的一部分性能特terntDE 4426627. 1997. 点 ,相当多的潜在价值尚未被开发出来 MechanicalBehaviorofMetailicFomas[J]. . Mater. Sci, 2000 (30):191-227. Olurin,N.A. ,或仅局限在(44) : 105 -110. [ 14 ]B. C.社,1982. [13]YA Novel sintering processformanufacturingAlfoams[J]. . Y. Zhao, D. X. Sun. -dissolution 实验室阶段 ,因而对性能的研究又提出了新课题。Scr. Mater, 2001 参考文献 : [1]L. J. Gibson, M. F. Ashby. Cellular Solids: Structure and 拉科夫斯基 .工程烧结材料 [M ].冶金工业出版Properties. 2nd ed[M ], Cambridge University Press, UK, 1997. [15]O. Andersen, U. Waag, L. Schneider, G. Stephani, B. [2 ]L. J. Gibson. Kieback. Novel Metallic Hollow Sphere Structures [ J ]. Annu. RevAdv. Eng. Mater, 2000 (2) : 192 -195. [3]O. B. Fleck, M. F. Ashby, Deformation and [16]张流强 ,常富华 .低密度金属泡沫的研制 [J ].功能材FractureofAluminum Foams[J]. Mater. Sci. Eng. 2000 料 , 1996, 27 (1) : 88 -91. (A291): 136-146. [17]E.J. Lavernia,N. J. Grant. SprayDepositionofMetals?: [4]J. Banhart, W. Brinkrs. FatigureBehaviorofAluminum AReview[J]. Mater. Sci. Eng, 1998 (98):381-394. Foams[J]. J. Mater. Sci, 1999 (18):617-619. [18]X. Badiche, S. Forest, T. Guibert, Y. Bienvenu, M. [5]Y. Yamada, C. Wen, K. Shimojima,M. Mabuchi. Effects Corset, H. Bernet. MechanicalPropertiesandNon-Hom2 ofCellGeometryon theCompressivePropertiesofNickelFo2 ogeneousDeformation of Open -Cell Nicked Foams?: Ap2 mas[J]. Mater. Trans, 2000 (41):1136-1138. plicationoftheMechanicsofCellularSolidsandPorousMa2 [6]张勇 ,舒光冀 ,何德坪 .用低压渗流法制备泡沫铝合金 terials[J]. Mater. Sci. Eng, 2000 (A289):276-288. [J ].材料科学进展 ,1993 (7):473 -478. [19]许庆彦 ,陈玉勇 ,李庆春 .加压渗流铸造多孔铝合金及[7 ]J. Banhart. Manufacture, characterization and application 其吸声性能 [J]1铸造 ,1998 (4):1 -4. ofcellularmetalsandmetalfoams[J]. ProgressinMateri2 [20 ]黄福祥 ,金吉琰 ,范嗣元等 .发泡金属的电磁屏蔽性能als Science, 2001 (46) : 559 -632. 研究 [J]1功能材料 , 1996 (27) : 52 -54. [8]F. Frei, V. Gergely, A. Mortensen, T.W. Clyne. The [21]J. Kovacik, F. Simancik.Aluminum FoamModulusofE2 effectofpriordeformationon thefoamingbehaviorof“form2 lasticity and Electrical Conductivity According To Percola2 grip”precursormaterial[J ] 1Adv. Eng. Mater, 2002 (4): tionTheory[J]. Scr. Mater, 1998 (39):239-246. 749 -752. [责任编辑 朱联营 ] [9]F. S. Han, Z. G. Zhu , J. C. Gao. Compressive deformation On the Preparation and Properties of the PorousMetallicMaterials HAO Gang -ling1 , HAN Fu -sheng2 , LIWei-dong1, BAIShao-min1,YANGNeng-xun 1 (1. College of Physics and Electronic Information, Yanan University, Yanan, Shaanxi 716000 2. KeyLaboratoryofMaterialsPhysics, InstituteofSolidStatePhysics, Chinese Academy of Sciences, Hefei, Anhui 230031) Abstract: Porousmetallicmaterialswithuniqueexcellentstructuresandpropertiescanbeutilizedasnew function2 aland structuralmaterials, which indicatsthattheporousmetallicmaterialshaveawidelypromisingapplication in manyfields. Thevariouspopularmanufacturingmethodsandthemainpropertiesoftheporousmetallicmaterials, in the present paper, were summarized. Key words: porousmetallic materials; preparation; properties; ppplication

荧光粉的制备及性能研究论文

高强度夜光粉制作方法一、特点:本夜光粉不同于一般的萤光粉,它无放射性,光照短却光效长,成本低,色彩艳丽。二、设备:电炉、坩锅、球磨机、干燥设备。三、配方:红色液光粉:硫酸钡55克、硫酸镁40克、磷酸锂2 克、硝酸铜3克、蓝色夜光粉:硫化钙63克、硫酸钠5 克、硫酸钾5 克、硫酸锶10克、氯化钠6 克、硝酸银1 克、硫化镁10克。紫色夜光粉:硫化钙63克、硫化镁26克、硫化钠10克、硝酸锶1 克。绿色夜光粉:硫化钙55克、硫化钾1 克、硫化钠10克、硝酸钡12克、硝酸铟13克。黄色夜光粉:硫化钡55克、硫化镁40克、硫化铝2 克、硝酸钾3 克。四、工艺品:配好原料后,把耐高温坩锅放在电炉上加热,原料在锅内,也可不用锅,直接把原料混匀后放在电炉上烧,温度为133 度,烧50分钟后,用手挑出不全色的杂质,然后把烧好的原料放在球磨机内磨成细粉再用水浸泡沉淀,去掉清水,把沉下的粉状物放在干燥箱中干燥即可。五、使用:把无色透明的有机玻璃一份溶解在二份香蕉水中。72小时后加入适量夜光粉即可涂在手表、钟表、仪表和工艺品上。

Color flat-panel plasma display panel (PDP) has many because of its excellent performance, becoming the most promising one color monitors. To improve the performance of PDP, the PDP with the three primary colors phosphor research is essential. Preparation of high-temperature solid-state green phosphor BaA112019: Mn2 + industrial production is the first choice. However, due to its uneven preparation of the phosphor particles, the easier reunion, poor dispersion of shortcomings. So that it can not meet the requirements of display technology. The high temperature solid-state papers prepared by starting the PDP high-intensity green phosphor BaA112019: Mn2 +. Experimental and parallel-law and two orthogonal experimental design the best method of treatment after the experimental conditions were chosen. Found that small molecule acid solution, ultrasound treatment, powder and solvent than are listed on the phosphor of the existence of impact. PDP phosphor through the test system testing Phosphor Properties, environmental scanning electron microscope observation and took the phosphor grain size and morphology, the average particle size analysis to measure the average size of the phosphor, X-ray powder Crystal diffraction (XRD) phase of the powder form. Results from the analysis, after handling the powder, its luminous intensity, size, dispersion and stability, have been greatly improved. Compensate for the high-temperature solid-state prepared by the green phosphor BaA112019: Mn2 + deficiencies. Key words: green phosphor post-processing orthogonal experimental design Properties

colored plasma flat-panel display (PDP), because it has many fine performance, becomes most has one of prospects for development colored monitors. Must enhance PDP the performance, uses three primary color luminous powder to PDP the research to be very important. The high temperature solid phase legal system prepares green luminous powder BaA112019:Mn2+ is the present industrial production first choice. But because its preparation's luminous powder pellet non-uniform, easy to reunite, the dispersivity badly and so on shortcomings. Causes it to be unable to achieve the display technology the request The present paper uses the high temperature solid phase legal system to prepare embarking light intensity high PDP to use the green luminous powder BaA112019:Mn2+. And passed the parallel cut-and-try method and the orthogonal experimental design two experimental techniques has carried on the choice to the best post-processing experimental condition. Discovered that the small molecular acid solution, supersonic processing, the resolver and the powder body compare the row to the luminous powder various performance existence influence. Crossed the PDP luminous powder test system test luminous powder the illumination performance, under the environment scanning electron microscope observes and has photographed the luminous powder grain size and the appearance, the average grain diameter analyzer determination luminous powder's average grain diameter, the X- beam powder crystal diffractometer (XRD) determined the powder body's phase constitution. Obtains from the result analysis, the powder body after the post-processing, its luminous intensity, the particle size, the dispersivity, the stability, obtains improves greatly. Made up the high temperature solid phase legal system to prepare green luminous powder BaA112019:Mn2+ the insufficiency. 绿色荧光粉 Green luminous powder后处理 post-processing正交实验设计 orthogonal experimental design发光性能illumination performance

却光效长,成本低,色彩艳丽。二、设备:电炉、坩锅、球磨机、干燥设备。三、配方:红色液光粉:硫酸钡55克、硫酸镁40克、磷酸锂2 克、硝酸铜3克、蓝色夜光粉:硫化钙63克、硫酸钠5 克、硫酸钾5 克、硫酸锶10克、氯化钠6 克、硝酸银1 克、硫化镁10克。紫色夜光粉:硫化钙63克、硫化镁26克、硫化钠10克、硝酸锶1 克。绿色夜光粉:硫化钙55克、硫化钾1 克、硫化钠10克、硝酸钡12克、硝酸铟13克。黄色夜光粉:硫化钡55克、硫化镁40克、硫化铝2 克、硝酸钾3 克。四、工艺品:配好原料后,把耐高温坩锅放在电炉上加热,原料在锅内,也可不用锅,直接把原料混匀后放在电炉上烧,温度为133 度,烧50分钟后,用手挑出不全色的杂质,然后把烧好的原料放在球磨机内磨成细粉再用水浸泡沉淀,去掉清水,把沉下的粉状物放在干燥箱中干燥即可。五、使用:把无色透明的有机玻璃一份溶解在二份香蕉水中。72小时后加入

石墨烯的制备及其性能研究论文

石墨烯目前是一种热门材料,起用途也是它的特性决定的,首先石墨烯不仅是已知材料中最薄的一种,还非常牢固坚硬;其次作为单质,它在室温下传递电子的速度比已知导体都快。应用前景可做"太空电梯"缆线据科学家称,地球上很容易找到石墨原料,而石墨烯堪称是人类已知的强度最高的物质,它将拥有众多令人神往的发展前景。它不仅可以开发制造出纸片般薄的超轻型飞机材料、可以制造出超坚韧的防弹衣,甚至还为"太空电梯"缆线的制造打开了一扇"阿里巴巴"之门。美国研究人员称,"太空电梯"的最大障碍之一,就是如何制造出一根从地面连向太空卫星、长达23000英里并且足够强韧的缆线,美国科学家证实,地球上强度最高的物质"石墨烯"完全适合用来制造太空电梯缆线!人类通过"太空电梯"进入太空,所花的成本将比通过火箭升入太空便宜很多。为了激励科学家发明出制造太空电梯缆线的坚韧材料,美国NASA此前还发出了400万美元的悬赏。代替硅生产超级计算机科学家发现,石墨烯还是目前已知导电性能最出色的材料。石墨烯的这种特性尤其适合于高频电路。高频电路是现代电子工业的领头羊,一些电子设备,例如手机,由于工程师们正在设法将越来越多的信息填充在信号中,它们被要求使用越来越高的频率,然而手机的工作频率越高,热量也越高,于是,高频的提升便受到很大的限制。由于石墨烯的出现,高频提升的发展前景似乎变得无限广阔了。这使它在微电子领域也具有巨大的应用潜力。研究人员甚至将石墨烯看作是硅的替代品,能用来生产未来的超级计算机。光子传感器石墨烯还可以以光子传感器的面貌出现在更大的市场上,这种传感器是用于检测光纤中携带的信息的,现在,这个角色还在由硅担当,但硅的时代似乎就要结束。去年10月,IBM的一个研究小组首次披露了他们研制的石墨烯光电探测器,接下来人们要期待的就是基于石墨烯的太阳能电池和液晶显示屏了。因为石墨烯是透明的,用它制造的电板比其他材料具有更优良的透光性。其它应用石墨烯还可以应用于晶体管、触摸屏、基因测序等领域,同时有望帮助物理学家在量子物理学研究领域取得新突破。中国科研人员发现细菌的细胞在石墨烯上无法生长,而人类细胞却不会受损。利用这一点石墨烯可以用来做绷带,食品包装甚至抗菌T恤;用石墨烯做的光电化学电池可以取代基于金属的有机发光二极管,因石墨烯还可以取代灯具的传统金属石墨电极,使之更易于回收。这种物质不仅可以用来开发制造出纸片般薄的超轻型飞机材料、制造出超坚韧的防弹衣,甚至能让科学家梦寐以求的2.3万英里长太空电梯成为现实。石墨烯-特性电子运输石墨烯结构示意图在发现石墨烯以前,大多数(如果不是所有的话)物理学家认为,热力学涨落不允许任何二维晶体在有限温度下存在。所以,它的发现立即震撼了凝聚态物理界。虽然理论和实验界都认为完美的二维结构无法在非绝对零度稳定存在,但是单层石墨烯在实验中被制备出来。这些可能归结于石墨烯在纳米级别上的微观扭曲。石墨烯还表现出了异常的整数量子霍尔行为。其霍尔电导=2e2/h,6e2/h,10e2/h....为量子电导的奇数倍,且可以在室温下观测到。这个行为已被科学家解释为“电子在石墨烯里遵守相对论量子力学,没有静质量”。导电性石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。这种稳定的晶格结构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。石墨烯最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。这使得石墨烯中的电子,或更准确地,应称为“载荷子”(electricchargecarrier),的性质和相对论性的中微子非常相似。石墨烯有相当的不透明度:可以吸收大约2.3%的可见光。而这也是石墨烯中载荷子相对论性的体现。机械特性石墨烯是人类已知强度最高的物质,比钻石还坚硬,强度比世界上最好的钢铁还要高上100倍。哥伦比亚大学的物理学家对石墨烯的机械特性进行了全面的研究。在试验过程中,他们选取了一些之间在10—20微米的石墨烯微粒作为研究对象。研究人员先是将这些石墨烯样品放在了一个表面被钻有小孔的晶体薄板上,这些孔的直径在1—1.5微米之间。之后,他们用金刚石制成的探针对这些放置在小孔上的石墨烯施加压力,以测试它们的承受能力。研究人员发现,在石墨烯样品微粒开始碎裂前,它们每100纳米距离上可承受的最大压力居然达到了大约2.9微牛。据科学家们测算,这一结果相当于要施加55牛顿的压力才能使1米长的石墨烯断裂。如果物理学家们能制取出厚度相当于普通食品塑料包装袋的(厚度约100纳米)石墨烯,那么需要施加差不多两万牛的压力才能将其扯断。换句话说,如果用石墨烯制成包装袋,那么它将能承受大约两吨重的物品。电子的相互作用利用世界上最强大的人造辐射源,美国加州大学、哥伦比亚大学和劳伦斯·伯克利国家实验室的物理学家发现了石墨烯特性新秘密:石墨烯中电子间以及电子与蜂窝状栅格间均存在着强烈的相互作用。科学家借助了美国劳伦斯伯克利国家实验室的“先进光源(ALS)”电子同步加速器。这个加速器产生的光辐射亮度相当于医学上X射线强度的1亿倍。科学家利用这一强光源观测发现,石墨烯中的电子不仅与蜂巢晶格之间相互作用强烈,而且电子和电子之间也有很强的相互作用。[1]石墨烯-研究成果中国石墨烯薄膜在国家自然科学基金委员会、科技部和中国科学院的资助下,中国科学院金属研究所沈阳材料科学国家(联合)实验室先进炭材料研究部研究员成会明、任文才研究小组在石墨烯的控制制备、结构表征与物性的研究方面取得了一系列新的进展,相关的研究成果发表在国际期刊上。该论文被美国化学会的ACSNano杂志选为该期“亮点”进行了重点介绍;同时也被《自然—中国》选为来自中国大陆和香港的突出科研成果,《自然—中国》化学领域的评论员VickiCleave博士撰文写道:“来自中国科学院的任文才、成会明及其合作者提出了一种快速、无损、可进行大面积石墨烯表征的光学方法,该工作有助于确定和制备适于应用的理想石墨烯样品。”韩国韩国研究人员09年7月发现了一种制备大尺寸石墨烯薄膜的方法。由韩国成均馆大学和三星先进技术研究院的研究人员制备出的这种最新石墨烯薄膜有1厘米厚,透光率达80%;在弯曲或延展过程中,它不仅不会断裂,其电学特性也不会有任何改变。他们的这一成果已于1月14日发表在英国《自然》杂志网络版上。[1]石墨烯-应用石墨烯的应用范围很广,从电子产品到防弹衣和造纸,甚至未来的太空电梯都可以以石墨烯为原料。1.可做“太空电梯”缆线据科学家称,地球上很容易找到石墨原料,而石墨烯堪称是人类已知的强度最高的物质,它将拥有众多令人神往太空电梯的发展前景。它不仅可以开发制造出纸片般薄的超轻型飞机材料、可以制造出超坚韧的防弹衣,甚至还为“太空电梯”缆线的制造打开了一扇“阿里巴巴”之门。美国研究人员称,“太空电梯”的最大障碍之一,就是如何制造出一根从地面连向太空卫星、长达23000英里并且足够强韧的缆线,美国科学家证实,地球上强度最高的物质“石墨烯”完全适合用来制造太空电梯缆线。人类通过“太空电梯”进入太空,所花的成本将比通过火箭升入太空便宜很多。为了激励科学家发明出制造太空电梯缆线的坚韧材料,美国NASA此前还发出了400万美元的悬赏。2.代替硅生产超级计算机据科学家称,石墨烯除了异常牢固外,还具有一系列独一无二的特性,石墨烯还是目前已知导电性能最出色的材料,这使它在微电子领域也具有巨大的应用潜力。研究人员甚至将石墨烯看作是硅的替代品,能用来生产未来的超级计算机。IBM宣布研发出号称全世界速度最快的石墨烯(graphene)场效晶体管(FET),可在26GHz频率下运作。该公司ThomasJ.Watson研究中心的研究人员并预测,碳元素更高的电子迁移率,可望使该种材料超越硅的极限,达到100GHz以上的速度跨入兆赫(terahertz)领域。石墨烯-荣获诺贝尔奖2010年10月5日,英国曼彻斯特大学的两位科学家康斯坦丁·诺沃肖洛夫和安德烈·海姆因在石墨烯方面的研究荣获2010年诺贝尔物理学奖。[2]石墨烯-部分石墨烯研究成果2009年12月1日在美国召开的材料科学国际会议上,日本富士通研究所宣布,他们用石墨烯制作出了几千个晶体管。富士通研究所的研究人员将原料气体吹向事先涂有用做催化剂的铁的衬底,在这种衬底上制成大面积石墨烯薄膜。大面积的石墨烯制备一直是个难题。富士通用上述方法制成了高质量的7.5厘米直径的石墨烯膜。在此基础上,再配置电极和绝缘层,制成了石墨烯晶体管。由于石墨烯面积较大,富士通在上面制成了几千个晶体管。石墨烯晶体管比硅晶体管功耗低和运行速度快,可制作出性能优良的半导体器件。如果改进技术后有望进一步扩大石墨烯面积,这样能够制作出更多的晶体管和石墨烯集成电路,为生产高档电子产品创造了条件。2009年11月日本东北大学与会津大学通过合作研究发现,石墨烯可产生太赫兹光的电磁波。研究人员在硅衬底上制作了石墨烯薄膜,将红外线照射到石墨烯薄膜上,只需很短时间就能放射出太赫兹光。如果今后能够继续改进技术,使光源强度进一步增大,将开发出高性能的激光器。研究团队在硅衬底上使用有机气体制作一层碳硅化合物。然后,进行热处理,使其生长出石墨烯的薄膜。该石墨烯薄膜只需极短暂的时间照射红外线,就能从石墨烯上发送出太赫兹光。目前,该团队正致力于开发能将光粒封闭在内部,使光源强度增加的器件,期望能够开发出在接近室温条件下可工作的太赫兹激光器。2010年,美国莱斯大学利用该石墨烯量子点,制作单分子传感器。莱斯大学将石墨烯薄片与单层氦键合,形成石墨烷。石墨烷是绝缘体。氦使石墨烯由导体变换成为绝缘体。研究人员移除石墨烯薄片两面的氦原子岛,就形成了被石墨烷绝缘体包围的、微小的导电的石墨烯阱。该导电的石墨烯阱就可作为量子阱。量子点的半导体特性要优于体硅材料器件。这一技术可用来制作化学传感器、太阳能电池、医疗成像装置或是纳米级电路等。如果看了以上介绍还有不明白的地方,请详询平顶山市信瑞达石墨制造有限公司

你做这个是做什么用的

石墨烯的制备主要可分成固相,液相,气相三种方法,现在应用比较多的就是固相法的机械剥离法(操作简单,产量极低),外延生长法(可获得高质量的石墨烯,但对设备要求较高),液相法的氧化还原法(操作简单,产量高,但产品质量较低),气相法的化学气相沉积法(可制备大面积高质量的石墨烯)。目前应用最广泛的就是化学气相沉积法,国内许多石墨烯厂家制备石墨烯基本都是这个,像合肥微晶的CVD石墨烯产品,质量在行业中都是很好的!但化学气相沉积法生长的条件决定了生长石墨烯的质量,首先基底的选择决定了石墨烯的生长机制,然后是反应的温度对晶体生长至关重要,1000度为生长石墨烯的最佳温度。(升温至1000度,需要给基底预热时间,保证与基底形成碳原子晶体的结构),还有在生长的过程中需要通入氢气与氩气,通入气体的纯度也影响着石墨烯的生长。最后冷却速度对石墨烯的生长也十分重要,需要较快的冷却速度。要说工艺的难点就在于确保各项工艺参数的选择,否则石墨烯的质量就会有很大的影响!

荧光粉的制备及性能研究毕业论文

荧光粉制备方法有很多,比如1)高温固相法,把原材料按一定比例配好放入高温炉中烧结2)溶胶凝胶法3)共沉淀法其它还有诸如水热法、微波法、燃烧法等方法,但都不是主流。目前工业生产都是采用高温固相法,产能大、成本低,其它方法只是实验室在用。

锑、锰激活的卤磷酸钙荧光粉是在氟氯磷灰石基质3Ca3(PO4)2·Ca(F,Cl)2中,掺入少量的激活剂锑(Sb)和锰(Mn)以后制成的荧光粉,通常表示式为: 3Ca3(PO4)2·Ca(F,Cl)2:Sb,Mn这种荧光粉的制备方法很多,采用的原料也可以不同,但对原料的纯度要求较高。配制混料时,各原料的用量首先要从磷灰石结构进行理论计算,在卤磷酸钙中,钙和锰的克原子数之和对磷酸根中磷的克原子比为 4.9:3;随后进行称量、混合、磨细、过筛,再在一定的气氛中(一般用氮气),以1150°C左右恒温烧结几小时;取出冷却后,在紫外灯下进行挑选,再磨细过筛即为成品。 目前国内外夜光材料主要是以ZnS(硫化锌),SrS(硫化锶)和CaS(硫化钙)制成的,发出绿光和黄光。不过SrS,CaS材料易潮解,给广泛应用带来困难。所以市场上主要是以ZnS为基质的夜光材料。但它的余辉时间只有1~3小时,而且在强光(如太阳光)、紫外光和潮湿空气中容易变质发黑,所以在许多领域中应用受到限制。添加钻、铜共激活的ZnS夜光粉虽然有很长的余辉时间,但它有红外淬灭现象,在电灯光(包含较多的红光)照射下,余辉很快熄灭。 荧光粉 、一种铈、钆激活的钇铝石榴石荧光粉及制取方法 02、球形纳米硅酸钇铕荧光粉的自燃烧制备法 03、共沉淀制备铈激活钇铝石榴石超细荧光粉的方法 04、一种新型稀土三基色荧光粉及其制备方法 05、一种半导体照明白光发光二极管荧光粉及其制备方法 06、橡胶块状回收荧光粉的洗净方法 07、显示装置及其荧光面板与荧光粉组成 08、单斜型铝酸钆基荧光粉体及其制备方法 09、一种真空紫外线激发的绿色荧光粉及其制造方法 10、大功率发光二极管荧光粉固化工艺 11、大功率发光二极管荧光粉涂层工艺 12、磷光荧光粉、其制造方法和余辉荧光灯 13、石榴石型铝酸钆基荧光粉体及其制备方法 14、氧化镁包膜荧光粉及其包膜方法 15、氧化铝包膜荧光粉及其膜包覆方法 16、氧化硅包膜荧光粉及其包膜方法 17、共沉淀法制备铝酸盐荧光粉 18、一种铝酸盐蓝色荧光粉的制备方法 19、一种荧光粉的后处理方法 20、一种等离子显示器用铝酸盐绿色荧光粉的制备方法 21、一种硅酸盐绿色荧光粉的制备方法 22、一种小粒径硅酸锌锰绿色荧光粉的制备方法 23、一种硅酸镁钡绿色荧光粉的制备方法 24、一种硼铝酸盐荧光粉及其制备方法 25、一种发射绿色荧光的荧光粉及其制备方法 26、红色荧光粉的制备方法 27、真空紫外激发的稀土硼钒酸盐体系红色荧光粉及制法 28、一种生产荧光粉的助溶剂 29、红色荧光粉及制法及发光二极管和活性动态液晶装置 30、等离子体显示板用荧光粉和使用荧光粉的等离子体显示板 31、蓝光激发的白光荧光粉及其用途、制造工艺和制造装置 32、低温固相反应制备掺锰硅酸锌绿色荧光粉的方法 33、采用介孔二氧化硅制备掺锰硅酸锌绿色荧光粉的方法 34、一种显影型荧光粉体涂料及其制作阳极荧光粉体层的方法 35、一种高亮度荧光粉的制备方法 36、纳米钒酸钇铕荧光粉的制备方法 37、快蓄光长余辉荧光粉及其制备方法 38、一种长余辉荧光粉及其制备方法 39、一种将荧光粉烧结在陶瓷、玻璃制品表面的工艺 40、稀土红色荧光粉及其制备方法 41、一种荧光粉的喷涂液及其喷涂方法 42、光致发光荧光粉的包覆处理方法 43、显像管用荧光粉浆料的配制方法 44、Ba1-xMxMgAI10O17:Eu2+荧光粉的制造方法 45、一种紫光或紫外激发的硼磷酸盐荧光粉及其制备方法 46、深红色荧光粉及其制造方法和所制成的装置 47、一种绿色长余辉荧光粉的制备方法 48、含硼的白光LED用荧光粉及其制造方法和所制成的电光源 49、一种GaN基发光二极管用荧光粉及其制备方法 50、一种LED用红色荧光粉及其制备方法和所制成的电光源 51、一种高亮度小颗粒发蓝光荧光粉及其制备方法 52、一种制备高效小颗粒蓝色荧光粉体的方法 53、一种超细荧光粉的制造方法及其设备 54、钙钛矿型铝酸钆基荧光粉体及制备方法 55、一种制备高效红色小颗粒荧光粉的方法 56、一种蓝色荧光粉及其应用 57、一种纳米荧光粉及其制备方法

稀土发光材料稀土发光材料:Rare Earth Luminescent Materials 稀土发光是由稀土4f电子在不同能级间跃出而产生的,因激发方式不同,发光可区分为光致发光(photoluminescence)、阴极射线发光(cathodluminescence)、电致发光(electroluminescence)、放射性发光(radiation luminescence)、X射线发光(X-ray luminescence)、摩擦发光(triboluminescence)、化学发光(chemiluminescence)和生物发光(bioluminescence)等。稀土发光具有吸收能力强,转换效率高,可发射从紫外线到红外光的光谱,特别在可见光区有很强的发射能力等优点。稀土发光材料已广泛应用在显示显像、新光源、X射线增光屏等各个方面。 稀土发光材料制造方法:(1)气相法:气体冷凝法;真空蒸发法;溅射法;化学气相沉积法(CVD);等离子体法;化学气相输运法等。(2)固相法:高温固相合成法;自蔓延燃烧合成法(SHS);室温和低热固相反应法;低温燃烧合成法;冲击波化学合成法;机械合金化法等。(3)液相法:沉淀法;均相沉淀法;共沉淀法;化合物沉淀法;熔盐法;水热氧化法;水热沉淀法;水热晶化法;水热合成法;水热脱水法;水热阳极氧化法;胶溶法;相转变法;气溶胶法;喷雾热解法;包裹沉淀法;溶胶-凝胶法;微乳液法;微波合成法等。稀土发光材料的主要应用:(1)光源:日光灯 Ca5(PO4)3(Cl,F):[Sb3+,Mn2+]; BaMg2Al16O27:Eu2+; MgAl11O16:[Ce3+, Tb3+]; Y2O3:Eu3+高压汞灯 Y(PV)O4:Eu; YVO4:Eu,Tb黑光灯 YPO4:Ce,Th; MgSrBF3:Eu固体光源 GaP;GaAs;GaN;InGaN;YAG:Ce(2)显示:数字符号显示 发光二极管(LED)平板图像显示 OLED(3)显像:黑白电视 Gd2O2S:Tb彩色电视 Y2O3:Eu; Y2O2S:Eu飞点扫描 Y2SiO5:CeX射线成像 (Zn, Cd)S:Ag; CaWO4; BaFCl:Eu2+; La2O2S:Tb3+; Gd2O2S:Tb3+(4)探测:闪烁晶体 CsI, TlCl(5)激光:固体激光材料 YAG:Nd3+; YAP:Nd3+; YLF:Nd3+玻璃激光材料 掺Nd3+硅酸盐、硼酸盐和磷酸盐玻璃化学计量激光 PrCl3; NdP5O14; NdLiP4O12; NdKP4O12; NdK3(PO4)2; NdAl3(BO3)4; NdK5(MoO4)4液体激光 Eu3+激活的苯酰丙酮(BA)、二苯酰甲烷(DBM)、三氟乙酰丙酮(TFA)和苯三氟丙酮(BTFA)等气体激光 Sm(I), Eu(I), Eu(II), Tm(I), Yb(I), Yb(II), Yb等金属蒸气稀土发光材料专利技术集 1、一种制取长余辉发光材料的方法 2、稀土alo-bo绿色发光材料的制备 3、一种光致长余辉发光材料组合物及其制备方法 4、农膜稀土荧光粉转换剂的制备 5、用于测温技术的稀土荧光体 6、水性蓄能发光涂料 7、一种红外防伪发光材料的制备方法及其应用 8、光致发光釉及其制造方法 9、发光漆及其应用 10、铝酸盐高亮度长余辉发光材料及其制备方法 11、一种发光红磷光体 12、一种艳红色稀土荧光粉及其配制方法 13、稀土荧光探伤渗透液 14、碳还原法合成灯用稀士兰.绿两种荧光粉 15、包裹型稀土激活碱土金属铝酸盐发光材料及其制备工艺 16、稀土铝酸盐绿色发射荧光体的制备方法 17、稀土材料发光粉 18、一类高聚物稀土荧光组合物及其用途 19、稀土高分子光致发光材料及其合成方法 20、自发光颜料的生产方法 21、一种在254纳米紫外光下发光的复合材料 22、陶瓷发光材料及其制造工艺 23、一类高效稀土有机配合物电致发光材料及其制备方法 24、陶瓷发光材料制造工艺及制品 25、稀土石榴石绿色荧光体及制备方法 26、新型上转换发光材料及其制备方法 27、一种含稀土的氧化物红色发光材料及其制备方法 28、稀土发光材料的制备方法 29、一种半透明度高的发光材料制造方法 30、多色彩稀土荧光粉及其配制方法 31、稀土激活铝硅酸盐长余辉发光材料及其制备方法 32、长余辉无机发光材料的制备方法 33、一种新型的发光材料及其应用 34、用紫光二极管转换成发白光的稀土发光材料 35、稀土氧化物红色荧光粉及其制备方法 36、一种硼铝酸盐荧光粉及其制备方法 37、一种合成长余辉发光材料的新方法 38、含稀土有机无机纳米杂化发光材料的合成方法 39、多离子激活的碱土铝酸盐光致长余辉发光材料及制造方法 40、发光材料 41、拟薄水铝石晶种化稀土发光材料制备工艺 42、高聚物稀土化合物纳米杂化发光材料的合成方法 43、夜光材料的合成工艺 44、红色荧光粉的制造工艺 45、红色荧光粉 46、一种紫光或紫外激发的硼磷酸盐荧光粉及其制备方法 47、碱金属锡磷酸盐基发光材料及其制备方法 48、一种稀土激活的y2sio5荧光粉及其制备方法和应用 49、稀土氧化物基纳米发光粉体的制备方法 50、一种稀土掺杂的纳米级氧化钇基发光粉体的制备方法 51、稀土红色荧光粉及其制备方法 52、稀土掺杂钽酸盐透明发光薄膜及其制备方法 53、长余辉高亮度发光材料及其制备方法 54、机器可读荧光磷光防伪材料、该材料的制作方法及其应用 55、一种制备铕激活的钇钆硼酸盐荧光粉的方法 56、稀土绿色长余辉发光材料及其制备方法 57、高色纯度稀土钒磷酸钇钆铕红色荧光体及其制造方法 58、热固性发光粉末涂料及其制造方法 59、一种稀土荧光复合物及其用途 60、一种制备铝酸盐长余辉发光粉的方法 61、稀土包膜转光材料制备工艺 62、新型光存储发光材料及其用途 63、一种光固化稀土红色荧光防伪油墨及其制备方法 64、一种真空紫外激发的绿色硼酸盐发光材料及其制备方法 65、一种红色长余辉发光材料及其合成方法和应用 66、包含稀土元素硫化物的场发射白色发光材料及其制造方法 67、含联吡啶衍生物的稀土配合物及其作为电致发光材料的应用 68、包含稀土元素硫化物的绿色发光材料及其制造方法 69、稀土蓝色荧光材料、其制备方法和用途 70、一种晶格缺陷可调控型长余辉发光材料 71、电致发光材料 72、钇取代的硫代铝酸钡发光材料 73、一种人工合成的长余辉高亮度发光粉及其制备方法 74、用于电致发光荧光体的喷镀沉积方法 75、一种红色荧光粉的制备方法 76、耐蚀性陶瓷、含耐蚀性陶瓷的发光管及发光管的制造方法 77、发红色光余辉性光致发光荧光体和该荧光体的余辉性灯泡 78、含有稀土类元素的微粒和使用其的荧光探针 79、一种功能性纳米稀土荧光微粒及其制备和应用 80、氮化物荧光体,其制造方法及发光装置

楼上的.要什么材料?

镀镍层保护研究论文

镀镍层深与防腐的作用可以保护内面免受腐蚀。镀镍层深与防腐的作用可以保护内面免受腐蚀,镀镍的作用,可以保护内面免受腐蚀;镀镍层的硬度相对较高,可以加深产品表面的奈磨性,镀镍通常用于印刷工业中以改善铅表面的硬度,电镀镍层在空气中的稳定性很高,由于金属镍具有很强的钝化能力,在表面能迅速生成一层极薄的钝化膜,能抵抗大气、碱和某些酸的腐蚀。

你把原文发我邮箱,石英光纤的电镀无非是前处理或化镍,前处理可能使用含氟化合物作为腐蚀,化镍根据实际情况使用合适的有机酸做络合剂,一般是苹果酸、丁二酸等。扣扣1472208044

相关百科

热门百科

首页
发表服务