首页

> 学术发表知识库

首页 学术发表知识库 问题

偶氮燃料的研究进展论文

发布时间:

偶氮燃料的研究进展论文

目录:杨超, 杨传秀. 王锦蛇( Elaphe carinata) Sox 基因保守区的克隆及测序. 安徽师范大学学报(自然科学版),2008,31(1):53-56.杨超, 花兆合,周伍,张贺京,王媛,李志红,孙凯. 智能发育不全患者的跖纹研究. 安徽师范大学学报(自然科学版),2007,30(5):580-583杨 超,蔡亚非,龚仁敏,邵登辉,孙影芝.莴苣皮生物材料吸附水溶液中阳离子染料的研究. 南京农业大学学报,2006, 29 (2) : 45-49.杨超,柯丽霞,龚仁敏,刘慧君,孙影芝.花生壳粉作为生物吸附剂去除水溶液中偶氮染料的研究. 生物学杂志, 2005,22(2):45-48.杨超,龚仁敏,刘必融,刘慧君,孙影芝,柯丽霞.花生壳粉生物吸附水溶液中阴离子染料的研究. 应用生态学报, 2004,11(15):2195-2198.杨 超,杨传秀,聂刘旺.赤链蛇不同组织Sox基因表达的RT-PCR分析.激光生物学报, 2004,13(5):334-338.杨 超,杨传秀 聂刘旺.两种蛇Sox基因的PCR-SSCP分析. 动物学杂志, 2003, 38(1): 8-12.杨 超,聂刘旺. 两栖爬行动物性别决定的研究进展. 安徽师范大学学报(自然科学版),2003,26(2):169-172.杨 超,聂刘旺.赤链蛇Sox基因的克隆及序列分析.激光生物学报, 2002, 11(1):15-18.杨 超,聂刘旺.乌梢蛇赤链蛇Sox基因的PCR扩增研究.皖南医学院学报,2002, 21(3):174-176.杨 超,聂刘旺.乌梢蛇Sox基因的克隆及测序.两栖爬行动物学研究,2002, 10.杨 超,聂刘旺.虎斑颈槽蛇Sox基因的克隆及测序.发育与生殖生物学报, 2002,12.孙影芝,张小平,龚仁敏,刘慧君,杨超.化学修饰对花生壳吸附染料能力的影响. 安徽师范大学学报(自然科学版),2006,29(1):60-63.Renmin Gong, Yi Ding, Mei Li, Chao Yang, Huijun Liu, Yingzhi Sun. Utilization of powdered peanut hull as biosorbent for removal of anionic dyes from aqueous solution. Dyes Pigments, 2005. 64: 187-192.孙影芝,龚仁敏,张小平,刘慧君,杨 超.甘蓝皮生物吸附去除水中的阳离子染料. 中国环境科学 2005(suppl.),2005,25(Suppl.):61-64.Renmin Gong, Yingzhi Sun, Jian Chen, Huijun Liu, Chao Yang. Effect of chemical modification on dye adsorption capacity of peanut hull. Dyes Pigments, 2005. 67: 175-181.Renmin Gong, Mei Li, Chao Yang, Yingzhi Sun, Jian Chen, Removal of cationic dyes from aqueous solution by adsorption on peanut hull. J. Hazard. Mater., 2005. 121: 247-250.孙影芝,龚仁敏,张小平,刘慧君,杨超.苤蓝皮生物吸附去除水体中的阴离子染料 安徽师范大学学报(自然科学版),2005,28(1):80-83.杨传秀杨超陈壁辉 扬子鳄大脑皮层后期胚胎发育的超微结构.解剖学杂志, 2004,27(2):152-156.杨传秀杨超陈壁辉 扬子鳄胚胎大脑皮层神经元核内包涵体的超微结构特征.动物学杂志, 2003,38(2):20-22.柯丽霞,杨 超. 安徽清凉峰自然保护区大型真菌的生态分布.应用生态学报, 2003, 14(10):1739-1742.花兆合, 周伍, 杨 超, 张贺京, 王媛, 李志红, 孙凯. 智力低下患者的手纹分析. 人类学学报,2002 , 21(3):239-244.杨传秀杨超.陈壁辉初孵扬子鳄端脑基底中枢的组织学研究. 安徽师范大学学报(自然科学版),2002,25(3):270-273.杨传秀,杨超.陈壁辉初孵扬子鳄大脑皮层组织学结构观察. 安徽师范大学学报(自然科学版),2000,23(1):43-46.杨传秀,杨超,陈壁辉.初生扬子鳄嗅球、嗅束的组织学结构研究 安徽师范大学学报(自然科学版)1999,22(4):321-323蔡亚非 杨 超 李君陈壁辉. 虎斑颈槽蛇Duvernoy腺超微结构.解剖学杂志,1999, 22(6): 492-495.

近来,一些报刊上频频出现“欧盟将禁止使用偶氮染料”的文章,其实,这种说法是不妥的,应该是“欧盟将禁止使用有害的偶氮染料”,少了一个定语,其内容却大相径庭。染料按应用分类,有直接染料、酸性染料、分散染料、活性染料、阳离子染料等,按结构分类有偶氮染料、硝基染料、硫化染料、蒽醌染料等。染料分子结构中,凡是含有偶氮基(-N=N-)的统称为偶氮染料,其中偶氮基常与一个或多个芳香环系统相连构成一个共轭体系而作为染料的发色体。偶氮染料广泛应用于纺织品、皮革制品等染色及印花,在合成染料中,偶氮染料是品种和数量最多的一类,约占一半以上,目前印染厂使用的偶氮染料品种多达600-700种,是不可能被全部禁止的,有很多直接染料、酸性染料、分散染料、活性染料、阳离子染料都是偶氮染料。偶氮染料具有很广的色谱范围,包括红、橙、黄、兰、紫、黑等,色种齐全,色光良好,并有一定的牢度,因此广泛地应用于各类纤维的染色。德国政府于1994年颁布的日用法令规定,凡输德皮革、纺织品必须进行禁用偶氮染料检测(简称AZO检测),这里的“禁用偶氮染料”并不是“禁止使用所有的偶氮染料”,而是“禁止使用有害的偶氮染料”。该检测项目也是国际纺织品生态研究和检验协会发布的Oeko-100标准(即通常所称的环保标准)规定的检测项目之一,标准规定纺织品中不得含有23种偶氮染料中间体,若检出其中一种即为不合格产品。禁用偶氮染料染色的服装与人体皮肤长期接触后,会与代谢过程中释放的成分混合并产生还原反应形成致癌的芳香胺化合物,这种化合物会被人体吸收,经过一系列活化作用使人体细胞的DNA发生结构与功能的变化,成为人体病变的诱因。欧盟是我国纺织品服装和皮革制品输入量较多的市场之一,据海关统计,2001年,我国出口到欧盟的纺织品服装和皮革制品的总值超过64亿美元,约占当年同类商品出口总值的11%,欧盟对禁用偶氮染料检测的新规定,已引起我国纺织界及染料界的高度重视,含有有害芳香胺中间体的偶氮染料的合格代用染料已纷纷出台。只要我们对欧盟的法规引起重视,是不会影响企业产品出口的。(来源)

汽车代替燃料的研究进展论文

汽车油耗的高低,依据汽车生产到汽车使用这个过程进行分析,是由汽车本身的耗油量、汽车的使用驾驶因素以及汽车维护保养水平的高低决定的。我整理了浅析汽车节能技术论文,欢迎阅读!

汽车节能实用技术浅析

摘要:随着汽车工业的高速发展,巨大的市场需求与严峻的能源环境约束之间的矛盾异常尖锐。发展节能环保汽车,促进能源转型与实现产业振兴势在必行。首先从汽车生产到使用过程中分析了汽车耗油量的影响因素,然后阐述了目前汽车节能的实用途径。通过有效的节能技术研究可以大大降低汽车的能耗,减少汽车工业的能源压力。

关键词:汽车节能 耗油量 影响因素 途径

1、汽车节能的意义

随着经济的发展和人民生活水平的提高,能源的消耗必然随之增加,如何节约能源,提高能源使用效率,以较少的能源消耗,产生更多的物质财富,是转变经济增长方式的重要内容。能源的开发与节约并重,把节约放在优先地位,这是我国的能源发展方针。在当前汽车工业高速发展的时代,汽车的节能技术将是汽车工业中的一项重要工作。加强汽车节能工作,提高汽车燃油经济性,是降低汽车能源消耗,保护生态环境,减轻环境污染,提高能源利用效率的有效途径。

2、影响汽车油耗的因素分析

汽车油耗的高低,依据汽车生产到汽车使用这个过程进行分析,是由汽车本身的耗油量、汽车的使用驾驶因素以及汽车维护保养水平的高低决定的。汽车本身的耗油量多少,是汽车一旦生产出来就决定好的,它跟汽车的结构设计有关;汽车生产出来以后,不同的消费者,驾驶技能有高低,驾驶习惯不一样,汽车的耗油量就不相同;汽车使用过程中,保养程度不一样,出现故障,维修水平不一样,耗油量就不同。

2.1汽车结构设计方面

汽车要想跑,就得满足驱动条件和附着条件。汽车在使用过程中受到力有驱动力、附着力、滚动阻力、加速阻力、空气阻力和坡道阻力,这些力跟发动机的结构、整车结构、汽车总质量、汽车外形、轮胎等因素有关,它们直接影响了汽车耗油量的高低。

发动机的油耗对汽车的油耗有决定性的影响,而发动机的油耗决定于发动机的结构。发动机的压缩比高、有合理的燃烧室形状,采用电子燃油喷射系统及电子点火系统等都能降低发动机的比油耗。使用柴油发动机机比汽油发动机机的油耗要低。发动机在负荷率约为80% -90%时,比油耗最低,低负荷和全负荷时比油耗都将增加。

汽车传动系效率越高,传递动力的过程中能量损失越小,汽车的油耗就越低。

汽车总质量影响到汽车的滚动阻力、坡度阻力和加速阻力,对汽车的油耗影响很大。在汽车上广泛采用轻质材料,减轻汽车自重,是提高汽车油耗的一个主要方向。

为克服空气阻力而消耗的发动机功率与汽车行驶速度的3次方成正比。空气阻力主要和汽车的外形设计有关。

轮胎结构对滚动阻力影响很大,轮胎的结构、花纹及胎压对汽车的油耗都有较大的影响。

2.2汽车使用方面

汽车使用方面,影响汽车耗油量高低的因素主要汽车的行驶车速和换挡时机。

通过无数次对汽车等速百公里燃油消耗量试验曲线研究可知,汽车在接近于低速的中等车速行驶时燃油消耗量最低;高速时随车速的增加百公里燃油消耗量迅速加大。

在一定道路上,汽车用不同的挡位行驶,燃油消耗量是不一样的。显然,在同一道路条件与车速下,虽然发动机发出的功率相同,但挡位越低,后备功率越大,发动机的负荷率越低,燃油消耗率越高,百公里燃油消耗量越大,而使用高挡时的情况则相反。

2.3汽车维护保养方面

汽车维护保养是汽车使用阶段的重要环节,汽车的调整与保养会影响到发动机的性能与汽车行驶阻力,所以对百公里油耗有相当影响。如汽车发动机技术故障、点火不正常、离合器配合不好、喷油量不当、变速器调整不合理、汽车悬架参数不正确、汽车电子设备故障、汽车空调压缩机故障等都可能影响汽车性能及能源消耗。正确的汽车维修手段和良好的维修质量对汽车节能的作用较大。

3、实施汽车节能的有效途径

汽车节能是一个综合问题。有资料显示我国汽车平均油耗比国际水平高15%~30%,其中有两个重要原因:一是汽车本身的结构和性能水平有待提高;二是汽车使用者的素质,也即使用者的操作技术和节能意识不够。

3.1大力宣传节能,增强节能意识

汽车操作者要树立良好的节能意识, 并掌握各种节油方法,才能在使用过程中更好地执行各种节能措施。这就需要政府大力宣传节能,增强人们的节能意识,并通过一定的法律法规,促进人们在使用过程中合理操作,减少汽车耗能量。

3.2优化汽车结构设计

发动机柴油化是实现节能的重要途径。随着汽车进入家庭的步伐加快,轿车和轻型车等燃油消耗非常可观。国家需重点支持轿车和轻型汽车发动机柴油化工作,从轻型高速柴油机技术的研究开发和车用柴油品质的提高和质量保证两方面来实现节能。

整车轻量化是汽车节能的重要措施,应积极开展新型高强度、轻质材料 (如:镁合金、非金属材料等) 的研究和应用工作。

3.3寻找替代燃料

开发和研制醇类燃料汽车。醇类燃料的来源广,制取方式多。甲醇可以从煤炭、天然气、煤层气,可再生生物资源、分类垃圾等物资中制取;乙醇的原料主要是含糖、含淀粉的农作物,如甜菜、甘蔗、玉米、草杆等。甲醇和乙醇都属机化合物,是无色透明、易挥发的可燃液体。与汽油相比,醇类燃料具有热值低、汽化潜热大、抗爆性好、含氧量高等优点。

3.4混合动力汽车技术

混合动力汽车技术具有非常突出的节能效果,技术相对成熟,而且在国际上已经实现产业化和商业化。此外,混合动力技术对所有以内燃机为动力的汽车,具有普遍的适用性,具有几乎可以实现在任何节能技术的基础上,进一步大幅度提高节能效果的可能性。国家需重点支持混合动力技术的开发、产业化和推广应用。根据技术的难易程度,可以首先在城市公交客车上自主研发和推广应用混合动力技术,然后,利用自主研发和引进技术相结合的方式,在轿车上应用混合动力技术。

3.5推广使用节能技术

3.5.1安装节能档位提示器

安装有具备换档推荐功能的指示设备,该系统运用电脑运算比较当前发动机转速和扭矩,显示适合当前驾驶状况的最佳档位,提示驾驶员采取更为经济的驾驶模式。这一功能可以使汽车在城市驾驶中节油最高达25%。

3.5.2安装节能导航系统

新一代电子地图系统能够识别多达25个不同级别的道路,有的能识别道路信号灯、路标及等高线。在整个驾驶途中,电脑不断分析驾驶风格和交通路况,不断进行路线计算,计算出预期的油耗。为驾驶者提供选择快速路线、最短路线或经济路线的依据。

3.5.3制动能回收利用

通常汽车在减速时,其动能通过制动部分转化为热能,并未利用。而在轿车上采用能量回收系统,可以将动能回收并转化为能够利用的电能,再提供给汽车的电气系统,缓解交流发电机上或发动机停止运行时汽车蓄电池的负荷。

结语

我国汽车节能技术的应用,从汽车技术进步的观点看,主要是不断完善国产汽车技术性能;从使用方面来讲,主要是大力推广汽车节能技术的应用,并不断增强汽车操作者和维修人员的节能意识。

参考文献:

[1]许文靖.现代汽车节能技术探析[J].科技创新导报,2009, (24).

[2]倪晋尚.我国汽车节能途径分析[J].科技信息,2010, (35).

点击下页还有更多>>>浅析汽车节能技术论文

摘要:随着我国汽车保有量的持续增长,汽车排放污染跟能源问题将会越来越严峻。现在我们国家提 摘要 倡低碳生活和可持续发展,为了响应国家的政策。我们必须寻找一种对环境零污染或低污染的汽车,而目 前公认最为理想可行的就是纯电动汽车了。而作为内燃机跟纯电动汽车的过渡产物就是混合动力汽车,混 合动力汽车已经不是什么新鲜的产物了,目前已经有很多车企生产了。在近两年,我国的车企对纯电动汽 车的热情很高,可惜都只是雷声大雨点小。大都只是处于概念车的阶段。发动纯电动汽车还有一段很曲折 艰辛的路要走。 关键词:内燃机:混合动力: 电动汽车:汽车: 关键词 内燃机 像我们这代人,对于汽车并不会感到很陌生.特别是近几年中国车市出现井喷的现象,据保 守的估计,中国现在的机动车保有量已经超过两亿.而且还保持上升的趋势,去年的产销量达 1360 万辆,首次超过美国而位居世界第一.今年 1 到 9 月份的产销已经达到去年全年的水平了, 保守估计今年的产销量将达 1700 万辆.而且在接下来的几年会稳居榜首,产销量持续增长.在 这数据中,又有多少是属于电动汽车的呢?统计数据显示是非常非常的少,几乎可以被忽视. 汽车的产销量不断的增长,这也将引起一系列的问题.内燃机技术发展到今天已经可说是 炉火纯青的地步了,想到再进一步改善是非常的困难了.我们都是知道无论是汽油机还是柴油 机,都会排放一些对大气有害的气体,如:CO HC Nox 等.虽然说排放标准不断的在提高,但是污 染还是存在的.这将跟我们提倡的低碳生活有点格格不入,因此我们就必须找出其它代替品. 就目前而言,就有新燃料发动机,如:醇燃料 氢燃料 石油气燃料 天然气燃料 太阳能燃料混合动力汽车 电动车等等.在这些新能源汽车中,纯电动汽车将是我们发展的趋势.因为其它 的,不是技术太难攻关,就是使用经济性和燃料来源困难等等.电动汽车的优点是零排放 零污 染 燃料来源方便 动力性良好等.但就目前的现状而言,电动汽车的缺点也是显而易见的, 目 前电动汽车尚不如内燃机汽车技术完善,尤其是动力电源(电池)的寿命短,使用成本高。 电池的储能量小,一次充电后行驶里程不理想,电动车的价格较贵。但从发展的角度看,随 着科技的进步,投入相应的人力物力,电动汽车的问题会逐步得到解决。扬长避短,电动汽 车会逐渐普及, 其价格和使用成本必然会降低。 现在处于内燃机跟纯电动汽车的过渡产物是HEV 混合动力汽车, 混合动力汽车的种类目前主要有 3 种。一种是以发动机为主动力,电 动马达作为辅 串联混合动力电动汽车原理。 另外一种是, 在低速时只靠电动马达驱动行驶, 速度提高时发动机和电动马达相配合驱动的“串联、并联方式” 。还有一种是只用电动马达 驱动行驶的电动汽车“串联方式” ,发动机只作为动力源,汽车只靠电动马达驱动行驶,驱 动系统只是电动马达,但因为同样需要安装燃料发动机,所以也是混合动力汽车的一种。 现在车市的混合动力车主要有,PRIUS 思域 凯美瑞 凯越 LS600H S400 SMART F3DM 等等. 由于我们国家提倡低碳生活,国家的政策便大力的支持发展纯电动汽车.目前几乎所有的车企都积极的响应国家的号召,如:比亚迪的 E6 奇瑞 S18 众泰 2008EV 长安奔奔 MINI 日 产的 LEAF 通用的 VOLT 等等.虽然推出的车型很多,但也只是雷声大雨点小.技术都不啥的, 而且销量也是少之又少. 电动汽车并不是现代才有的产物, 早在 19 世纪后半叶的 1873 年,英国人罗伯特·戴维 森 (Robert Davidsson) 制作了世界上最初的可供实用的电动汽车。 这比德国人戴姆勒 (Gottlieb Daimler)和本茨(Karl Benz)发明汽油发动机汽车早了 10 年以上。戴维森发明的电动汽车 是一辆载货车,长 4800mm,宽 1800mm,使用铁、锌、汞合金与硫酸进行反应的一次电池。 其后,从 1880 年开始,应用了可以充放电的二次电池。从一次电子表池发展到二次电池, 这对于当时电动汽车来讲是一次重大的技术变革,由此电动汽车需求量有了很大提高。在 19 世纪下半叶成为交通运输的重要产品,写下了电动汽车需求量有了很大提高。在 19 世纪 下半叶成为交通运输的重要产品,写下了电动汽车在人类交通史上的辉煌一页。1890 年法 国和英伦敦的街道上行驶着电动大客车,当时电动汽车生产的车用内燃机技术还相当落后, 行驶里程短,故障多,维修困难,而电动汽车却维修方便. 电池是电动汽车发展的首要关键,汽车动力电池难在 “低成本要求”“高容量要求”及 、 “高安全要求”等三个要求上。要想在较大范围内应用电动汽车,要依靠先进的蓄电池经过 10 多年的筛选,现在普遍看好的氢镍电池,铁电池,锂离子和锂聚合物电池。氢镍电池单 位重量储存能量比铅酸电池多一倍, 其它性能也都优于铅酸电池。 但目前价格为铅酸电池的 4-5 倍,正在大力攻关让它降下来。铁电池采用的是资源丰富、价格低廉的铁元素材料,成 本得到大幅度降低,也有厂家采用。锂是最轻、化学特性十分活泼的金属,锂离子电池单位 重量储能为铅酸电池的 3 倍,锂聚合物电池为 4 倍,而且锂资源较丰富,价格也不很贵,是 很有希望的电池。 我国在镍氢电池和锂离子电池的产业化开发方面均取得了快速的发展。 电 动汽车其他有关的技术,近年都有巨大的进步,如:交流感应电机及其控制,稀土永磁无刷 电机及其控制,电池和整车能量管理系统,智能及快速充电技术,低阻力轮胎,轻量和低风 阻车身,制动能量回收等等,这些技术的进步使电动汽车日见完善和走向实用化。我国大城 市的大气污染已不能忽视,汽车排放是主要污染源之一,我国已有 16 个城市被列入全球大 气污染最严重的 20 个城市之中。我国现今人均汽车是每 1000 人平均 10 辆汽车,但石油资 源不足,每年已进口几千万吨石油,随着经济的发展,假如中国人均汽车持有量达到现在全 球水平---每 1000 人有 110 辆汽车, 我国汽车持有量将成 10 倍地增加, 石油进口就成为大问 题。因此在我国研究发展电动汽车不是一个临时的短期措施,而是意义重大的、长远的战略 考虑。 下面是一些专家对我国发展电动汽车的看法: 锂电池大规模用于电动车还需一定时间 河南环宇集团锂电池产业技术副总工程师邓伦浩 目前国内锂电池的研究工作和国外相比,差距主要体现在电池的控制系统和电源 管理系统上。邓伦浩对记者说,现在国内对锂电池的研究处于各自开发的状态。目前,有的公司已经能 够为电 动汽车提供相应 的锂电 池配套产品,配 套的锂 电池一般能跑 200~500 公里左右。 邓伦浩告诉记者,现在国内锂电池的价格太高,电源管理系统的问题还没得到很 好地解决。电动汽车还面临充电的问题。目前,家里的一般线路不能为电动汽车锂电 池充电,必须配一个小型的专用充电器,而且充电的时间很长,很麻烦。在国外,为 了解决这一问题,一般都把充电站和加油站放在一起。现在国内的充电站还没有大规 模地建立起来。 国内锂电池研究存在三大问题 中国汽车工程学会电动汽车分会主任陈全世 陈全世告诉记者,目前国内锂电池研究存在三大问题。首先是制造的一致性问题。 由于在锂电池的制造工艺和设备上存在差距,使得国内锂电池的生产工艺参差不齐, 制造标准还达不到一致性。电动汽车所用的锂电池都是串联或并联在一起,如果一致 性问题解决不好,那么所生产的锂电池也就无法大规模应用于电动汽车。 其次是知识产权问题。目前国内在磷酸铁锂电池的研究上已经取得突破,但是由 于美国在这方面有专利,所以虽然我们在一些环节上能够自主研发,但是在知识产权 问题上,还不知如何应对。 第三是原材料的筛选问题。现在用于锂电池生产的原材料不可能全部进口,主要 还是取自国内, 但是国内的原材料要通过国际认证, 生产出的锂电池才能被国际认可, 所以在原材料认证环节上目前还存在一些问题。 大力发展电动汽车将增加能源供需紧张形势 中国国际经济合作学会经济合作部副主任杨金贵 目前中国 80%的二氧化碳排放来自燃煤,超过 50%的煤炭消费用于火力发电,而同时, 火力发电量占到总发电量的 70%以上。加之目前我国煤炭发电平均效率只有 35%,在这样 的情况下,发展电动汽车,无异于增加电力消耗,同时也就意味着增加碳排放量。随着我国 城镇化、工业化步伐的加快,电力资法律论文 源将更为紧张。而在风能、核能发电尚在发展阶段的我 国而言,大力发展电动汽车,势必将增加能源供需紧张形势,相反不利于低碳产业的发展布 局。对于政府来说,在不遗余力地支持电动汽车发展、支持相关企业开发新产品的同时,更 需要解决源头问题。以电动汽车为例,用煤炭替换石油的作为并不可取,电动汽车成为低碳 经济时代先锋的前提是解决电力资源问题,否则,前景并不乐观。 从以上各个专家的看法,可以看出我国要发展电动汽车是非常艰辛的和曲折的。但这并 不代表不可能, 只是时间问题, 只要我们攻关了那些技术难题, 电动汽车将会造福我们国民, 甚至全人类。因此,发展纯电动汽车势不可挡。

大功率燃料电池电堆研究进展论文

燃料电池是一种把燃料所具有的化学能直接转换成电能的化学装置,又称电化学发电器。它是继水力发电、热能发电和原子能发电之后的第四种发电技术。由于燃料电池是通过电化学反应把燃料的化学能中的吉布斯自由能部分转换成电能,不受卡诺循环效应的限制,因此效率高; 另外,燃料电池用燃料和氧气作为原料;同时没有机械传动部件,故没有噪声污染,排放出的有害气体极少。由此可见,从节约能源和保护生态环境的角度来看,燃料电池是最有发展前途的发电技术。我国燃料电池研究始于20世纪50年代末,70年代国内的燃料电池研究出现了第一次高峰,主要是国家投资的航天用AFC,如氨/空气燃料电池、肼/空气燃料电池、乙二醇/空气燃料电池等.80年代我国燃料电池研究处于低潮,90年代以来,随着国外燃料电池技术取得了重大进展,在国内又形成了新一轮的燃料电池研究热潮.1996年召开的第59次香山科学会议上专门讨论了“燃料电池的研究现状与未来发展”,鉴于PAFC在国外技术已成熟并进入商品开发阶段,我国重点研究开发PEMFC、MCFC和SOFC.中国科学院将燃料电池技术列为“九五”院重大和特别支持项目,国家科委也相继将燃料电池技术包括DAFC列入“九五”、“十五”攻关、“ 863”、“973”等重大计划之中.燃料电池的开发是一较大的系统工程,“官、产、研”结合是国际上燃料电池研究开发的一个显著特点,也是必由之路.目前,我国政府高度重视,研究单位众多,具有多年的人才储备和科研积累,产业部门的兴趣不断增加,需求迫切,这些都为我国燃料电池的快速发展带来了无限的生机。另一方面,我国是一个产煤和燃煤大国,煤的总消耗量约占世界的25%左右,造成煤燃料的极大浪费和严重的环境污染.随着国民经济的快速发展和人民生活水平的不断提高,我国汽车的拥有量(包括私人汽车)迅猛增长,致使燃油的汽车越来越成为重要的污染源.所以开发燃料电池这种洁净能源技术就显得极其重要,这也是高效、合理使用资源和保护环境的一个重要途径。[7]2020年7月10日,著名期刊《科学》刊发中国地质大学(武汉)科研团队学术论文,宣布通过半导体异质界面电子态特性,把质子局限在异质界面,设计和构造了具有低迁移势垒的质子通道。高离子电导率的电解质开发,是解决目前燃料电池应用的关键。中国地质大学(武汉)科研团队的研究如同给质子修建高速公路,即利用半导体异质界面场诱导金属态,助推超质子实现又快又好地‘跑起来’,从而获得优异的电导率。

一、燃料电池发展背景 燃料电池原理很早被提出,但受技术所限与高昂的成本,发展速度十分缓慢。近些年燃料电池相关技术不断进步,特别是丰田等日本公司的大力推进下,部分燃料电池汽车已实现量产。燃料电池汽车历史资料来源:智研咨询整理 相较全球汽车销量,目前电动汽车销量占比仍不足1%,按照IEA预测,2030年电动汽车渗透率将达到15%,2018年-2030年每年则需要增长30%。插电混动汽车2012年后开始进入市场,目前,中国市场占比约为25%,美国约为43%,欧洲市场的PHEV占比更高。 二、燃料电池汽车定义及结构 燃料电池汽车英文缩写FCV,是一种利用氢燃料作为长时间续航,传统电池作为瞬间大电流输出互相配合的一种新型动力汽车。车用燃料电池系统通常使用高纯度的压缩氢气或者甲醇、甲酸、固态储氢等其他介质加重整系统所得到的高纯度氢气。与传统的电动汽车相比较,燃料电池汽车的电力来源为氢气通过燃料电池系统发电,传统电动汽车的能源来自于电网。燃料电池汽车结构示意图资料来源:智研咨询整理 动力控制单元,动力控制单元能在不同的行驶工况下控制不同的充放电策略。 电机,它由驱动电池和燃料电池来供电,受前端的动力控制单元控制。 升压逆变器,它把电池输出的低压DC,转换成高压AC,供给交流电机。 燃料电池反应堆,输出功率为114kW,是整车的动力来源。 驱动电池,用来回收制动能量(再生制动),加速时辅助燃料电池供电。 储氢罐,由三层碳纤维强化塑料结构构成,700个大气压,氢气解压后以液态氢的方式储存在燃料电池中,添加液态氢的过程加满大约需要3-5min。 三、中国燃料电池产业发展现状 (1)燃料电池汽车市场 整车开发方面,目前,我国已经初步掌握整车、动力系统与核心部件的核心技术并具有整车生产能力。 但是,在燃料电池汽车车型平台开发方面,以上汽股份、上海大众、一汽、长安、奇瑞等公司为代表开发的燃料电池轿车均基于传统内燃车或纯电动汽车进行改制,尚未掌握燃料电池汽车专用车身、底盘开发、底盘动力学主动控制等关键技术。 根据智研咨询发布的《2020-2026年中国氢燃料电池汽车行业发展动态分析及投资方向研究报告》数据显示:2019年1-9月,新能源汽车产销分别完成88.8万辆和87.2万辆,比2018年同期分别增长20.9%和20.8%。其中燃料电池汽车产销分别完成1315辆和1251辆,比2018年同期分别增长7.7倍和7.6倍。2015-2019年9月全国中国燃料电池汽车销量情况统计资料来源:中国汽车工业协会、智研咨询整理 (2)燃料电池电堆 燃料电池电堆开发方面,已形成包括明天氢能、新源动力、武汉理工新能源、弗尔赛、等在内的具有自主知识产权的燃料电池电堆生产厂家,在电堆上游配套方面,MEA、碳纸、质子膜、石墨双极板和金属双极板等均已实现国产化。目前已具备60kW以内的单个燃料电池电堆开发能力,体积比功率基本可达到2.0kW/L,与国际领先水平3.1kW/L仍有差距。

作者: Raymond George Klaus Hassmann【摘要】燃料电池具有非同寻常的性能: 电效率可达60%以上,而且可以在带着部分负荷运行的情况下进行维修,除了有低比率碳氧化物排放外几乎没有任何有害的排放物。文章介绍按温度划分的4种主要燃料电池(PEMFC、PAFC、MCFC和SOFC)的性能,重点介绍高温固体氧化物燃料电池(SOFC)的应用及其发展前景。 With demonstration projects fuel cells are Well uder way toward penetrating the power market,covering a wide range of application.This paper introduces the main four types of fuel cells which are PEMFC,PAFC,MCFC and SOFC.Then it puts the emphasis on SOFC and its application market. 燃料电池是通过由电解液分隔开的2个电极中间的燃料(如天然气、甲醇或纯净氢气)的化学反应直接产生出电能。与汽轮发电机生产的电能相比,燃料电池具有非同寻常的特性:它的电效率可达60%以上,可以在带部分负荷运行的情况下进行维修,而且除了排放低比率碳氧化物外,几乎没有任何其他的有害排放物。1 燃料电池的分类 目前研制的燃料电池技术在运行温度上有不同的类型,从比室温略高直到高达1000℃的范围。大多数工业集团公司的注意力集中在以下4种主要类型上:(1)运行温度在60-80℃之间的聚合物电解液隔膜型燃料电池(PEMFC);(2)运行温度在160-220℃之间的磷酸类燃料电池(PAFC);(3)运行温度在620-660℃之间的熔融碳酸盐类燃料电池(MCFC);(4)运行温度在880-1000℃之间的固体氧化物燃料电池(SOFC)。 可以将这些类型的燃料电池划分为低温型(100℃及以下)、中温型(约200℃左右)及高温型(600-l000℃)燃料电池。 表1简要地列出了各种类型燃料电池的性能。中温型和高温型燃料电池适于用在静止式装置上,而低温型燃料电池对于静止装置和移动式装置都适用。 实用装置的功率容量差别也很大,可以给笔记本电脑及移动电话供电(数以W计),也可以给居民住宅(数kW)或是分散的电热设备和动力设备(数百KW到数MW)供电。 最适于用来驱动汽车的是低温型燃料电池。 根据使用期限成本进行的经济性比较结果表明,就发电成本而言,SOFC型燃料电池要PEM型低30%。这个结果是根据SOFC型燃料电池的电效率比PEM型的高,这2种燃料电池最终都可以达到l000美元/KW的投资成本这一假设条件而推导出来的。 2 高温燃科电池 高温型燃料电池具有许多适于在静止式装置上使用的特性。但是在高温型燃料电池产生出电能之前需要较长的加热过程,因而这种技术不能应用于要求在短时间内频繁起动的各种实用装置。此外,高温型燃料电池还具有以下特点: (1)不需要使用贵金属来催化电化学反应。一般情况下使用陶瓷材料。 (2)对CO完全没有限制。CO参加到电化学反应过程并像H2一样被氧化。 (3)对燃料表现出高度灵活性。可以给这类燃料电池发电设备供应天然气,天然气在设备内部被转换成H2和CO。这意味着无需任何外部燃料,从而大大简化了发电设备的平衡问题。 (4)高温可以将燃气轮机连接到该系统上,在这种情况下,燃料电池发电设备是在300kPa压力下运行,并在不考虑燃气轮机输出的情况下将燃料电池的功率密度提高约20%,因此使总的电效率提高10%,可成倍地降低使用期限成本。 (5)较高的运行温度也为排热提供了更多的灵活性。在电效率达60%或更高水平的联合循环系统中可限制废热排放,而在单循环下则会排放出更多的热量。 MCFC和SOFC是这类高温型燃料电池的2种技术。它们使用的材料不同。MCFC是在一只陶瓷容器中放入液态的金属碳酸盐作为电解液,如果没有采取防止电极老化的措施,燃料电他的使用寿命会受到影响。 在MCFC中电化学反应是由CO3离子引发的。MCFC采用的是颊型电池,和SOFC型的管形设计方案相比,这种颊型电他的功率密度要稍微高一些。这在成本上要比SOFC型装置优越。但在另一方面,由于SOFC所用的陶瓷材料非常稳定,可以用在950-1000℃范围内,所以SOFC装置在抗老化性能上更具优越性。到目前为止,所有的长期电池试验和正在运行的试验性机组都表明SOFC型装置的使用寿命可以达到70 000-80 000h,是MCFC型的2倍。 MCFC和SOFC 2种技术在进行100-250kW功率范围的单循环现场试验中,成本都有大幅度的下降。目前在MCFC开发上占有主导地位的是美国的Fuel Cell Energy公司及其在德国的授权单位MTU,日本的Ishikawajima-Harima重工(IHI)和三菱公司等。而Siemens Westinghouse在SOFC开发上处于领先水平。3 中温型燃料电池 目前磷酸类燃料电池(PAFC)是具有最先进技术的燃料电池。80年代,IFC(国际燃料电池公司)决定对其前期商业化生产线进行投资,制造和销售200kW的PAFC装置,并将其投入市场。东芝公司在80年代末就已经努力使PAFC技术进入商用市场。从此,PAFC技术就一直在静止燃料电池的市场中占据着显赫的位置。迄今为止,全球已经安装了150多套PAFC燃料电池装置。 研究表明,这种燃料电池未能实现市场商业化的原因大致有以下几方面: (1)电效率最高为40%,超过维修期限后会降到35%甚至更低水平。通常情况下设备的使用期限不超过20 000运行h。 (2)有些试验性的设备(如东芝公司管理的1套11MW设备未能达到顶期的性能水平。 (3)美国和日本政府大幅度削缩用于PAFC技术研究和开发的投资。 (4)从迄今积累的经验及在改善设计参数和降低产品成本方面的潜力来看,让PAFC技术成功地跻身于当今的市场中的可能性是极低的。4 SOFC在配电市场方面的潜力 Siemens Westinghouse公司根据对市场的分析,决定采取必要的措施加快SOFC技术进入市场的步伐。预计在2003-2004年提供第l批产品,进入商业性生产前的试验阶段,装置容量从目前的2MW扩大到15MW。 北美和欧洲被认为是SOFC燃料电池技术最有希望的市场。Hagler Bailly公司和西门子公司对功率范围为250 kW-l MW的市场进行了调查,结果表明到2005年SOFC燃料电池的市场容量为每年10000MW。北美和欧洲几乎各占50%。考虑到北美洲用户的结构和他们的需求,在北美洲各类小型发电机组的总容量在2010年可能达到每年约1000MW,其中600MW可能是燃料电池发电装置。在各种类型的燃料电池中,SOFC的市场份额约占40%,到2010年在北美洲SOFC的全年销售额将达到2.4亿美元。 在竞争日益激烈的配电市场中的另一个获胜者是微型燃气轮机,主要是作为备用电源或辅助电源。由于SOFC和微型燃气轮机的特性适于不同的应用场所,SOFC效率高但投资成本也高,而微型燃气轮机成本低但效率也低,因而这2种技术不会产生市场上竞争。而往复式发动机会逐渐失去其在市场中的份额。 欧洲电网要比北美洲电网强大得多,欧洲电网强化了集中的大型发电厂的作用。因此在北美洲经常出现的分散式电热设备和动力装置的供电质量和供电可靠性问题在欧洲是不突出的。但另一方面,在欧洲对能量储存更为敏感。 此外,一些国家政府将颁布新的规程和法律及新的能源价格,预计欧洲各国之间市场份额会有重大差异。在有些情况下这个过程会给SOFC用于配电装置起到一定的促进作用。此外,欧洲的自由化近程落后于北美洲。因此,市场预测结果会有很大程度的不确定性。5 SOFC技术应用的扩展 使用天然气作为燃料的SOFC是车载式装置,其扩展应用可有以下几种形式:(1)家庭应用:新一代燃料电池将是扁平管型的,其功率密度是目前所用圆柱型燃料电池技术的2倍,因而将制造出5kW的燃料电池装置。这种设计方案是可行的,在配电市场中可以替代圆柱型燃料电池。(2)l0MW以上的系统装置:很显然,只要SOFC技术占有了功率范围在250-10MW的市场,那么下一步最必然的是要争取占有l0MW以上更大规模发电设备的市场。通过把更多SOFC链接起来便能实现这个目标,也满足了高效率低成本的要求。20MW级规模燃料电池的电效率已经接近甚至超过70%。(3)用液态燃料运行:使用天然气作为燃料将SOFC的应用局限在靠近天然气供气网的区域内,从而使这项新技术的应用受到限制。因此存在着让SOFC使用液态燃料的迫切要求。因此,应与大型石油公司合作进行该课题的研究开发,选择一种适宜的液体燃料并设计出最适于使用这种新燃料的SOFC发电装置,以便为边远的用户服务。 (4)C02的分离:Shell公司和 Siemens Westinghouse公司正在共同研制一种能将CO2从完全反应后的燃料中分离的SOFC设飞方案。例如,当把其装在用于回收油的平台上时,可以把CO2用泵压到地下储层中,这不但可省去CO2的排放税,还可提高原油的产出量。 (5)综合性应用:CO2分离装置可能是点火的火花装置,它使得SOFC在一种封闭且可再生的能量循环中成为关键性部件。经过-段时间,SOFC能产生出热量和电力,例如用于大型暖房的设施中,SOFC装置产生的C02可用来加快植物的生长。而任何一种农作物收获后的剩余有机物都可以转化为气体供给SOFC作燃料。

毕业论文燃料电池的新进展

编辑本段国际发展状况 燃料电池发达国家都将大型燃料电池的开发作为重点研究项目,企业界也纷纷斥以巨资,从事燃料电池技术的研究与开发,现在已取得了许多重要成果,使得燃料电池即将取代传统发电机及内燃机而广泛应用于发电及汽车上。值得注意的是这种重要的新型发电方式可以大大降低空气污染及解决电力供应、电网调峰问题,2MW、4.5MW、11MW成套燃料电池发电设备已进入商业化生产,各等级的燃料电池发电厂相继在一些发达国家建成。燃料电池的发展创新将如百年前内燃机技术突破取代人力造成工业革命,也像电脑的发明普及取代人力的运算绘图及文书处理的电脑革命,又如网络通讯的发展改变了人们生活习惯的信息革命。燃料电池的高效率、无污染、建设周期短、易维护以及低成本的潜能将引爆21世纪新能源与环保的绿色革命。如今,在北美、日本和欧洲,燃料电池发电正以急起直追的势头快步进入工业化规模应用的阶段,将成为21世纪继火电、水电、核电后的第四代发电方式。燃料电池技术在国外的迅猛发展必须引起我们的足够重视,现在它已是能源、电力行业不得不正视的课题。 磷酸型燃料电池(PAFC) 燃料电池受1973年世界性石油危机以及美国PAFC研发的影响,日本决定开发各种类型的燃料电池,PAFC作为大型节能发电技术由新能源产业技术开发机构(NEDO)进行开发。自1981年起,进行了1000kW现场型PAFC发电装置的研究和开发。1986年又开展了200kW现场性发电装置的开发,以适用于边远地区或商业用的PAFC发电装置。 富士电机公司是目前日本最大的PAFC电池堆供应商。截至1992年,该公司已向国内外供应了17套PAFC示范装置,富士电机在1997年3月完成了分散型5MW设备的运行研究。作为现场用设备已有50kW、100kW及500kW总计88种设备投入使用。下表所示为富士电机公司已交货的发电装置运行情况,到1998年止有的已超过了目标寿命4万小时。 东芝公司从70年代后半期开始,以分散型燃料电池为中心进行开发以后,将分散电源用11MW机以及200kW机形成了系列化。11MW机是世界上最大的燃料电池发电设备,从1989年开始在东京电力公司五井火电站内建造,1991年3月初发电成功后,直到1996年5月进行了5年多现场试验,累计运行时间超过2万小时,在额定运行情况下实现发电效率43.6%。在小型现场燃料电池领域,1990年东芝和美国IFC公司为使现场用燃料电池商业化,成立了ONSI公司,以后开始向全世界销售现场型200kW设备"PC25"系列。PC25系列燃料电池从1991年末运行,到1998年4月,共向世界销售了174台。其中安装在美国某公司的一台机和安装在日本大阪梅田中心的大阪煤气公司2号机,累计运行时间相继突破了4万小时。从燃料电池的寿命和可靠性方面来看,累计运行时间4万h是燃料电池的长远目标。东芝ONSI已完成了正式商用机PC25C型的开发,早已投放市场。PC25C型作为21世纪新能源先锋获得日本通商产业大奖。从燃料电池商业化出发,该设备被评价为具有高先进性、可靠性以及优越的环境性设备。它的制造成本是$3000/kW,近期将推出的商业化PC25D型设备成本会降至$1500/kW,体积比PC25C型减少1/4,质量仅为14t。明年即2001年,在中国就将迎来第一座PC25C型燃料电池电站,它主要由日本的MITI(NEDO)资助的,这将是我国第一座燃料电池发电站。 PAFC作为一种中低温型(工作温度180-210℃)燃料电池,不但具有发电效率高、清洁、无噪音等特点,而且还可以热水形式回收大部分热量。下表给出先进的ONSI公司PC25C型200kWPAFC的主要技术指标。最初开发PAFC是为了控制发电厂的峰谷用电平衡,近来则侧重于作为向公寓、购物中心、医院、宾馆等地方提供电和热的现场集中电力系统。 PAFC用于发电厂包括两种情形:分散型发电厂,容量在10-20MW之间,安装在配电站;中心电站型发电厂,容量在100MW以上,可以作为中等规模热电厂。PAFC电厂比起一般电厂具有如下优点:即使在发电负荷比较低时,依然保持高的发电效率;由于采用模块结构,现场安装简单,省时,并且电厂扩容容易。 质子交换膜燃料电池(PEMFC) 著名的加拿大Ballard公司在PEMFC技术上全球领先,现在它的应用领域从交通工具到固定电站,其子公司BallardGenerationSystem被认为在开发、生产和市场化零排放质子交换膜燃料电池上处于世界领先地位。BallardGenerationSystem最初产品是250kW燃料电池电站,其基本构件是Ballard燃料电池,利用氢气(由甲醇、天然气或石油得到)、氧气(由空气得到)不燃烧地发电。Ballard公司正和世界许多著名公司合作以使BallardFuelCell商业化。BallardFuelCell已经用于固定发电厂:由BallardGenerationSystem,GPUInternationalInc.,AlstomSA和EBARA公司共同组建了BallardGenerationSystem,共同开发千瓦级以下的燃料电池发电厂。经过5年的开发,第一座250kW发电厂于1997年8月成功发电,1999年9月送至IndianaCinergy,经过周密测试、评估,并提高了设计的性能、降低了成本,这导致了第二座电厂的诞生,它安装在柏林,250kW输出功率,也是在欧洲的第一次测试。很快Ballard公司的第三座250kW电厂也在2000年9月安装在瑞士进行现场测试,紧接着,在2000年10月通过它的伙伴EBARABallard将第四座燃料电池电厂安装在日本的NTT公司,向亚洲开拓了市场。在不同地区进行的测试将大大促进燃料电池电站的商业化。第一个早期商业化电厂将在2001年底面市。下图是安装在美国Cinergy的Ballard燃料电池装置,目前正在测试。 图是安装在柏林的250kW PEMFC燃料电池电站: 在美国,PlugPower公司是最大的质子交换膜燃料电池开发公司,他们的目标是开发、制造适合于居民和汽车用经济型燃料电池系统。1997年,PlugPower模块第一个成功地将汽油转变为电力。最近,PlugPower公司开发出它的专利产品PlugPower7000居民家用分散型电源系统。商业产品在2001年初推出。家用燃料电池的推出将使核电站、燃气发电站面临挑战,为了推广这种产品,1999年2月,PlugPower公司和GEMicroGen成立了合资公司,产品改称GEHomeGen7000,由GEMicroGen公司负责全球推广。此产品将提供7kW的持续电力。GE/Plug公司宣称其2001年初售价为$1500/kW。他们预计5年后,大量生产的燃料电池售价将降至$500/kW。假设有20万户家庭各安装一个7kW的家用燃料电池发电装置,其总和将接近一个核电机组的容量,这种分散型发电系统可用于尖峰用电的供给,又因分散式系统设计增加了电力的稳定性,即使少数出现了故障,但整个发电系统依然能正常运转。 在Ballard公司的带动下,许多汽车制造商参加了燃料电池车辆的研制,例如:Chrysler(克莱斯勒)、Ford(福特)、GM(通用)、Honda(本田)、Nissan(尼桑)、VolkswagenAG(大众)和Volvo(富豪)等,它们许多正在使用的燃料电池都是由Ballard公司生产的,同时,它们也将大量的资金投入到燃料电池的研制当中,克莱斯勒公司最近给Ballard公司注入4亿5千万加元用于开发燃料电池汽车,大大的促进了PEMFC的发展。1997年,Toyota公司就制成了一辆RAV4型带有甲醇重整器的跑车,它由一个25kW的燃料电池和辅助干电池一起提供了全部50kW的能量,最高时速可以达到125km/h,行程可达500km。目前这些大的汽车公司均有燃料电池开发计划,虽然现在燃料电池汽车商业化的时机还未成熟,但几家公司已确定了开始批量生产的时间表,Daimler-Benz公司宣布,到2004年将年产40000辆燃料电池汽车。因而未来十年,极有可能达到100000辆燃料电池汽车。 PEMFC是一种新型、有远大前途的燃料电池,经过从80年代初到现在的近20年的发展,质子交换膜燃料电池起了翻天覆地的变化。这种变化从其膜电极的演变过程可见一斑。膜电极是PEMFC的电化学心脏,正是因为它的变化,才使得PEMFC呈现了今天的蓬勃生机。早期的膜电极是直接将铂黑与起防水、粘结作用的Tefion微粒混合后热压到质子交换膜上制得的。Pt载量高达10mg/cm2。后来,为增加Pt的利用率,使用了Pt/C催化剂,但Pt的利用率仍非常低,直到80年代中期,PEMFC膜电极的Pt载量仍高达4mg/cm2。80年代中后期,美国LosAlamos国家实验室(LANL)提出了一种新方法,采用Nafion质子交换聚合物溶液浸渍Pt/C多孔气体扩散电极,再热压到质子交换膜上形成膜电极。此法大大提高了Pt的利用率,将膜电极的载铂量降到了0.4mg/cm2。1992年,LANL对该法进行了改进,使膜电极的Pt载量进一步降低到0.13mg/cm2。1995年印度电化学能量研究中心(CEER)采用喷涂浸渍法制得了Pt载量为0.1mg/cm2的膜电极,性能良好。据报道,现在LANL试验的一些单电池中,膜电极上铂载量已降到0.05mg/cm2。膜电极上铂载量的减少,直接可以使燃料电池的成本降低,这就为其商品化的实现准备了条件。 熔融碳酸盐燃料电池(MCFC) 50年代初,熔融碳酸盐燃料电池(MCFC)由于其可以作为大规模民用发电装置的前景而引起了世界范围的重视。在这之后,MCFC发展的非常快,它在电池材料、工艺、结构等方面都得到了很大的改进,但电池的工作寿命并不理想。到了80年代,它已被作为第二代燃料电池,而成为近期实现兆瓦级商品化燃料电池电站的主要研究目标,研制速度日益加快。现在MCFC的主要研制者集中在美国、日本和西欧等国家。预计2002年将商品化生产。 美国能源部(DOE)去年已拨给固定式燃料电池电站的研究费用4420万美元,而其中的2/3将用于MCFC的开发,1/3用于SOFC的开发。美国的MCFC技术开发一直主要由两大公司承担,ERC(EnergyResearchCorporation)(现为FuelCellEnergyInc.)和M-CPower公司。他们通过不同的方法建造MCFC堆。两家公司都到了现场示范阶段:ERC1996年已进行了一套设于加州圣克拉拉的2MW的MCFC电站的实证试验,目前正在寻找3MW装置试验的地点。ERC的MCFC燃料电池在电池内部进行无燃气的改质,而不需要单独设置的改质器。根据试验结果,ERC对电池进行了重新设计,将电池改成250kW单电池堆,而非原来的125kW堆,这样可将3MW的MCFC安装在0.1英亩的场地上,从而降低投资费用。ERC预计将以$1200/kW的设备费用提供3MW的装置。这与小型燃气涡轮发电装置设备费用$1000/kW接近。但小型燃气发电效率仅为30%,并且有废气排放和噪声问题。与此同时,美国M-CPower公司已在加州圣迭戈的海军航空站进行了250kW装置的试验,现在计划在同一地点试验改进75kW装置。M-CPower公司正在研制500kW模块,计划2002年开始生产。 日本对MCFC的研究,自1981年"月光计划"时开始,1991年后转为重点,每年在燃料电池上的费用为12-15亿美元,1990年政府追加2亿美元,专门用于MCFC的研究。电池堆的功率1984年为1kW,1986年为10kW。日本同时研究内部转化和外部转化技术,1991年,30kW级间接内部转化MCFC试运转。1992年50-100kW级试运转。1994年,分别由日立和石川岛播磨重工完成两个100kW、电极面积1m2,加压外重整MCFC。另外由中部电力公司制造的1MW外重整MCFC正在川越火力发电厂安装,预计以天然气为燃料时,热电效率大于45%,运行寿命大于5000h。由三菱电机与美国ERC合作研制的内重整30kWMCFC已运行了10000h。三洋公司也研制了30kW内重整MCFC。目前,石川岛播磨重工有世界上最大面积的MCFC燃料电池堆,试验寿命已达13000h。日本为了促进MCFC的开发研究,于1987年成立了MCFC研究协会,负责燃料电池堆运转、电厂外围设备和系统技术等方面的研究,现在它已联合了14个单位成为日本研究开发主力。 欧洲早在1989年就制定了1个Joule计划,目标是建立环境污染小、可分散安装、功率为200MW的"第二代"电厂,包括MCFC、SOFC和PEMFC三种类型,它将任务分配到各国。进行MCFC研究的主要有荷兰、意大利、德国、丹麦和西班牙。荷兰对MCFC的研究从1986年已经开始,1989年已研制了1kW级电池堆,1992年对10kW级外部转化型与1kW级内部转化型电池堆进行试验,1995年对煤制气与天然气为燃料的2个250kW系统进行试运转。意大利于1986年开始执行MCFC国家研究计划,1992-1994年研制50-100kW电池堆,意大利Ansodo与IFC签定了有关MCFC技术的协议,已安装一套单电池(面积1m2)自动化生产设备,年生产能力为2-3MW,可扩大到6-9MW。德国MBB公司于1992年完成10kW级外部转化技术的研究开发,在ERC协助下,于1992年-1994年进行了100kW级与250kW级电池堆的制造与运转试验。现在MBB公司拥有世界上最大的280kW电池组体。 资料表明,MCFC与其他燃料电池比有着独特优点: a.发电效率高比PAFC的发电效率还高; b.不需要昂贵的白金作催化剂,制造成本低; c.可以用CO作燃料; d.由于MCFC工作温度600-1000℃,排出的气体可用来取暖,也可与汽轮机联合发电。若热电联产,效率可提高到80%; e.中小规模经济性与几种发电方式比较,当负载指数大于45%时,MCFC发电系统成本最低。与PAFC相比,虽然MCFC起始投资高,但PAFC的燃料费远比MCFC高。当发电系统为中小规模分散型时,MCFC的经济性更为突出; f.MCFC的结构比PAFC简单。 固体氧化物燃料电池(SOFC) SOFC由用氧化钇稳定氧化锆(YSZ)那样的陶瓷给氧离子通电的电解质和由多孔质给电子通电的燃料和空气极构成。空气中的氧在空气极/电解质界面被氧化,在空气燃料之间氧的分差作用下,在电解质中向燃料极侧移动,在燃料极电解质界面和燃料中的氢或一氧化碳反应,生成水蒸气或二氧化碳,放出电子。电子通过外部回路,再次返回空气极,此时产生电能。 SOFC的特点如下: 由于是高温动作(600-1000℃),通过设置底面循环,可以获得超过60%效率的高效发电。 由于氧离子是在电解质中移动,所以也可以用CO、煤气化的气体作为燃料。 由于电池本体的构成材料全部是固体,所以没有电解质的蒸发、流淌。另外,燃料极空气极也没有腐蚀。l动作温度高,可以进行甲烷等内部改质。 与其他燃料电池比,发电系统简单,可以期望从容量比较小的设备发展到大规模设备,具有广泛用途。 在固定电站领域,SOFC明显比PEMFC有优势。SOFC很少需要对燃料处理,内部重整、内部热集成、内部集合管使系统设计更为简单,而且,SOFC与燃气轮机及其他设备也很容易进行高效热电联产。下图为西门子-西屋公司开发出的世界第一台SOFC和燃气轮机混合发电站,它于2000年5月安装在美国加州大学,功率220kW,发电效率58%。未来的SOFC/燃气轮机发电效率将达到60-70%。 被称为第三代燃料电池的SOFC正在积极的研制和开发中,它是正在兴起的新型发电方式之一。美国是世界上最早研究SOFC的国家,而美国的西屋电气公司所起的作用尤为重要,现已成为在SOFC研究方面最有权威的机构。 早在1962年,西屋电气公司就以甲烷为燃料,在SOFC试验装置上获得电流,并指出烃类燃料在SOFC内必须完成燃料的催化转化与电化学反应两个基础过程,为SOFC的发展奠定了基础。此后10年间,该公司与OCR机构协作,连接400个小圆筒型ZrO2-CaO电解质,试制100W电池,但此形式不便供大规模发电装置应用。80年代后,为了开辟新能源,缓解石油资源紧缺而带来的能源危机,SOFC研究得到蓬勃发展。西屋电气公司将电化学气相沉积技术应用于SOFC的电解质及电极薄膜制备过程,使电解质层厚度减至微米级,电池性能得到明显提高,从而揭开了SOFC的研究崭新的一页。80年代中后期,它开始向研究大功率SOFC电池堆发展。1986年,400W管式SOFC电池组在田纳西州运行成功。 1987年,又在日本东京、大阪煤气公司各安装了3kW级列管式SOFC发电机组,成功地进行连续运行试验长达5000h,标志着SOFC研究从实验研究向商业发展。进入90年代DOE机构继续投资给西屋电气公司6400余万美元,旨在开发出高转化率、2MW级的SOFC发电机组。1992年两台25kW管型SOFC分别在日本大阪、美国南加州进行了几千小时实验运行。从1995年起,西屋电气公司采用空气电极作支撑管,取代了原先CaO稳定的ZrO2支撑管,简化了SOFC的结构,使电池的功率密度提高了近3倍。该公司为荷兰Utilies公司建造100kW管式SOFC系统,能量总利用率达到75%,已经正式投入使用。目前,SiemensWestinghouse宣布有两座250kWSOFC示范电厂很快将在挪威和加拿大的多伦多附近建成。下图为西屋公司在荷兰安装的SOFC示范电厂,它可以提供110kW的电力和64kW的热,发电效率达到46%,运行14000h。 燃料电池 编辑本段评估 燃料电池运行时必须使用流动性好的气体燃料。低温燃料电池要用氢气,高温燃料电池可以直接使用天然气、煤气。这种燃料的前景如何呢?我国的天然气储量是十分丰富的,现已探明陆地上储量为1.9万亿m3,专家认为我国已探明天然气储量为30万亿m3。中国还将利用丰富的邻国天然气资源,俄罗斯西西伯利亚已探明天然气储量为38.6万亿m3,可向我国年供气200~300亿m3;俄罗斯的东西伯利亚已探明天然气储量3.13万亿m3,可向我国年供气100~200亿m3;俄远东地区、萨哈林岛探明天然气储量1万亿m3,可向我国东北年供气100亿m3以上。中亚地区的哈萨克斯坦、乌兹别克斯坦和土库曼斯坦三国探明的天然气储量6.77万亿m3,可向外供气300亿m3。我国规划在2010年以前铺设天然气管线9000km,届时有望在全国形成“两纵、两横、四枢纽、五气库”的格局,形成可靠的供气系统。其中的两纵是南北的输气干线,即萨哈林岛--大庆--沈阳干线和伊尔库茨克--北京--日照--上海输气干线。目前我国的生产能力约为300亿m3/a,2010年为700亿m3,2020年为1000~1100亿m3。天然气主要成分为CH4(占90%左右),热值高(每立方米天然气热值为8600~9500千卡),便于运输,在3000公里的距离内运用管道输送都是十经济的。 半个世纪以来,世界大多数国家时早以完成了由煤炭时代向石油时代的转换,正在向石油、天然气时代过度。如1950年在世界能源结构中煤炭所占的比例为57.5%,而到1996年则下降为26.9%,天然气占23.5%石油占39%两者共占63%。能源界预测目前的消费量,石油只能再用20年,而天然气则可用100年,为此称21世纪是"天然气世纪"。中国的能源工业也必将跟上世界能源消费潮流。 另外由于环保的需要和IGCC技术的推动,煤的大型气化装置技术已经过关。煤炭部门的有关专家介绍,目前的技术完全可以把煤转换为氢气,转换效率可达80%,供给燃料电池作燃料,其效率要比常规热动力装置效率高得多。编辑本段经济性 燃料电池是一种正在逐步完善的能源利用方式。其投资正在不断的降低,目前PEMFC的中国国外商业价格为$1500/kW,PAFC的价格为$3000/kW。中国国内富原公司公布其PEMFC接受订货的价格为10000元/kW。其他燃料电池国内暂无商业产品。 燃料电池发电与常规的火电投资比较不能单考虑电源投资,还应将长距离输电、配电投资与厂用电、输电能耗和两种能源转换装置的效率考虑在内。如此来计算综合投资大型的火电厂每千瓦约为1.3~1.5万元。发电消耗的燃料为燃料电池的两倍以上,按目前在中国天然气最低市价(产地市价人民币1元/m3)计算,当发电时间超过70000h以后,用燃料电池发电将比用传统的热机发电更经济。在实际发电工程中还应考虑传统的热机发电占地面积大,环境污染重的问题。随着燃料电池发电技术的不断完善,造价将不断的降低,特别是在规模化生产后,其造价将大幅度的下降,有理由相信,不久的将来这种发电方式会对传统热机发电构成挑战。编辑本段展望 中国稀土资源丰富,发展MCFC和SOFC技术具有十分有利的条件。以天然气和净化煤气为燃料的MCFC和SOFC发电效率高达55%~65%,而且还可提供优质余热用于联合循环发电,是一种优良的区域性供电电站。热电联供时,燃料利用率高达80%以上。专家们认为它与各种大型中心电站的关系,颇类似于个人电脑与大型中心计算机的关系,二者互为补充。二十一世纪,这种区域性、环境友好的、高效的发电技术有可能发展成为一种主要的供电方式。 最近日本提出2010年普及燃料电池的应用,并向发达欧美国家建议制定安全基准和通用规格。随着其生产成本的降低,燃料电池也将在我国获得快速的发展,它将对传统的热机发电构成有利的挑战。展望其对电力系统的影响如下:调峰能力增加 应用氢气做燃料PEMFC已经商业化,在国外容量为3kW、5kW、7kW等热电联用的燃料电池正在源源不断地进入家庭,数百kW的燃料电池正在源源不断地进入旅馆、饭店商厦等场所。这些电力装置同小型光伏发电装置一样可以独立发电,也可与电力网相连。为了获得氢燃料,目前在非纯氢燃料电池前均加了燃料改质器。据专家介绍,碳纳米管储氢技术已获得突破,随着其商业化的发展,实行家庭发电将像用煤气灶与煤气罐配合使用一样方便,购一罐氢气可以发电数月(3kg氢气能量可以使一般轿车行驶500km)。在有煤节约配电网的建设费用 中国有许多偏远的山村和海岛,远离电网或处在电网的末端,用电量不大。从商业角度考虑,架设高电压等级的线路是不合算的,但不架设又难以实现村村通电的目标。有了燃料电池,用当地生物质气体为燃料,再配合当地的风能、太阳能等,就可以满足当地的长期的电能需求。这样可以使投资更加合理,又提高电网的经济效益。提高电网的安全性 电网均采用高压长距离输电的方式使偏僻山区的水电和坑口、路口以及海口处的火电输送到负荷中心地带。中外近年多次电网事故证明,在地震、水灾、暴风、冰雪、雷电等自然灾害面前,这种系统往往是十分脆弱的。而星罗棋布的燃料电池加入到电网中供电,将会大大提高电网的安全性。在某个远距离的基本负荷电源跳闸时,燃料电池可以对电网起到一定的支承作用,保证重要用户的电能需求。随着MCFC、SOFC技术的突破、天然气管线的铺通和大型煤气化技术的解决,届时人们会看到,对于大规模的应用化石能源的电力系统来说,变长距离输电为长距离输气,应用大中小相结合的各种燃料电池靠近负荷供电供热会更经济、更安全。电网管理 燃料电池发电将增加管理的复杂性。一是燃料电池发的均是直流电,需变频后入网,如此将需要对谐波进行控制;二是价格管理,每一个小的系统与电网均有电量交换,需要进行合理的价格管理,这与其他新能源入网问题一样(如太阳能、风能、生物质能发电),入网电量小,管理量不小。

在中国的燃料电池研究始于1958年,原电子工业部天津电源研究所最早开展了MCFC的研究。70年代在航天事业的推动下,中国燃料电池的研究曾呈现出第一次高潮。其间中国科学院大连化学物理研究所研制成功的两种类型的碱性石棉膜型氢氧燃料电池系统(千瓦级AFC)均通过了例行的航天环境模拟试验。1990年中国科学院长春应用化学研究所承担了中科院PEMFC的研究任务,1993年开始进行直接甲醇质子交换膜燃料电池(DMFC)的研究。电力工业部哈尔滨电站成套设备研究所于1991年研制出由7个单电池组成的MCFC原理性电池。“八五”期间,中科院大连化学物理研究所、上海硅酸盐研究所、化工冶金研究所、清华大学等国内十几个单位进行了与SOFC的有关研究。到90年代中期,由于国家科技部与中科院将燃料电池技术列入"九五"科技攻关计划的推动,中国进入了燃料电池研究的第二个高潮。在中国科学工作者在燃料电池基础研究和单项技术方面取得了不少进展,积累了一定经验。但是,由于多年来在燃料电池研究方面投入资金数量很少,就燃料电池技术的总体水平来看,与发达国家尚有较大差距。我国有关部门和专家对燃料电池十分重视,1996年和1998年两次在香山科学会议上对中国燃料电池技术的发展进行了专题讨论,强调了自主研究与开发燃料电池系统的重要性和必要性。近几年中国加强了在PEMFC方面的研究力度。 2000年大连化学物理研究所与中科院电工研究所已完成30kW车用用燃料电池的全部试验工作。北京富原公司也宣布,2001年将提供40kW的中巴燃料电池,并接受订货。科技部副部长徐冠华在EVS16届大会上宣布,中国将在2000年装出首台燃料电池电动车。此前参与燃料电池研究的有关概况如下:1:PEMFC的研究状况中国最早开展PEMFC研制工作的是长春应用化学研究所,该所于1990年在中科院扶持下开始研究PEMFC,工作主要集中在催化剂、电极的制备工艺和甲醇外重整器的研制已制造出100WPEMFC样机。1994年又率先开展直接甲醇质子交换膜燃料电池的研究工作。该所与美国CaseWesternReserve大学和俄罗斯氢能与等离子体研究所等建立了长期协作关系。 中国科学院大连化学物理所于1993年开展了PEMFC的研究,在电极工艺和电池结构方面做了许多工作,现已研制成工作面积为140cm2的单体电池,其输出功率达0.35W/cm2。复旦大学在90年代初开始研制直接甲醇PEMFC,主要研究聚苯并咪唑膜的制备和电极制备工艺。厦门大学与香港大学和美国的CaseWesternReserve大学合作开展了直接甲醇PEMFC的研究。1994年,上海大学与北京石油大学合作研究PEMFC(“八五”攻关项目),主要研究催化剂、电极、电极膜集合体的制备工艺。北京理工大学于1995年在兵器工业部资助下开始了PEMFC的研究,单体电池的电流密度为150mA/cm2。中国科学院工程热物理研究所于1994年开始研究PEMFC,主营使用计算传热和计算流体力学方法对各种供气、增湿、排热和排水方案进行比较,提出改进的传热和传质方案。天津电源研究所1997年开始PEMFC的研究,拟从国外引进1.5kW的电池,在解析吸收国外先进技术的基础上开展研究。1995年北京富原公司与加拿大新能源公司合作进行PEMFC的研制与开发,5kW的PEMFC样机现已研制成功并开始接受订货。2:MCFC的研究简况在中国开展MCFC研究的单位不太多。哈尔滨电源成套设备研究所在80年代后期曾研究过MCFC,90年代初停止了这方面的研究工作。1993年中国科学院大连化学物理研究所在中国科学院的资助下开始了MCFC的研究,自制LiAlO2微粉,用冷滚压法和带铸法制备出MCFC用的隔膜,组装了单体电池,其性能已达到国际80年代初的水平。90年代初,中国科学院长春应用化学研究所也开始了MCFC的研究,在LiAlO2微粉的制备方法研究和利用金属间化合物作MCFC的阳极材料等方面取得了很大进展。北京科技大学于90年代初在国家自然科学基金会的资助下开展了MCFC的研究,主要研究电极材料与电解质的相互作用,提出了用金属间化合物作电极材料以降低它的溶解。3:SOFC的研究简况最早开展SOFC研究的是中国科学院上海硅酸盐研究所他们在1971年就开展了SOFC的研究,主要侧重于SOFC电极材料和电解质材料的研究。80年代在国家自然科学基金会的资助下又开始了SOFC的研究,系统研究了流延法制备氧化锆膜材料、阴极和阳极材料、单体SOFC结构等,已初步掌握了湿化学法制备稳定的氧化锆纳米粉和致密陶瓷的技术。吉林大学于1989年在吉林省青年科学基金资助下开始对SOFC的电解质、阳极和阴极材料等进行研究组装成单体电池,通过了吉林省科委的鉴定。1995年获吉林省计委和国家计委450万元人民币的资助,先后研究了电极、电解质、密封和联结材料等,单体电池开路电压达1.18V,电流密度400mA/cm2,4个单体电池串联的电池组能使收音机和录音机正常工作。1991年中国科学院化工冶金研究所在中国科学院资助下开展了SOFC的研究,从研制材料着手制成了管式和平板式的单体电池,功率密度达0.09W/cm2~0.12W/cm2,电流密度为150mA/cm2~180mA/cm2,工作电压为0.60V~0.65V。1994年该所从俄罗斯科学院乌拉尔分院电化学研究所引进了20W~30W块状叠层式SOFC电池组,电池寿命达1200h。他们在分析俄罗斯叠层式结构、美国Westinghouse的管式结构和德国Siemens板式结构的基础上,设计了六面体式新型结构,该结构吸收了管式不密封的优点,电池间组合采用金属毡柔性联结,并可用常规陶瓷制备工艺制作。华南理工大学于1992年在国家自然科学基金会、广东省自然科学基金、汕头大学李嘉诚科研基金、广东佛山基金共一百多万元的资助下开始了SOFC的研究,组装的管状单体电池,用甲烷直接作燃料,最大输出功率为4mW/cm2,电流密度为17mA/cm2,连续运转140h,电池性能无明显衰减。 发达国家都将大型燃料电池的开发作为重点研究项目,企业界也纷纷斥以巨资,从事燃料电池技术的研究与开发,已取得了许多重要成果,使得燃料电池即将取代传统发电机及内燃机而广泛应用于发电及汽车上。值得注意的是这种重要的新型发电方式可以大大降低空气污染及解决电力供应、电网调峰问题,2MW、4.5MW、11MW成套燃料电池发电设备已进入商业化生产,各等级的燃料电池发电厂相继在一些发达国家建成。燃料电池的发展创新将如百年前内燃机技术突破取代人力造成工业革命,也像电脑的发明普及取代人力的运算绘图及文书处理的电脑革命,又如网络通讯的发展改变了人们生活习惯的信息革命。燃料电池的高效率、无污染、建设周期短、易维护以及低成本的潜能将引爆21世纪新能源与环保的绿色革命。如今,在北美、日本和欧洲,燃料电池发电正以急起直追的势头快步进入工业化规模应用的阶段,将成为21世纪继火电、水电、核电后的第四代发电方式。燃料电池技术在国外的迅猛发展必须引起我们的足够重视,它已是能源、电力行业不得不正视的课题。磷酸型燃料电池(PAFC)受1973年世界性石油危机以及美国PAFC研发的影响,日本决定开发各种类型的燃料电池,PAFC作为大型节能发电技术由新能源产业技术开发机构(NEDO)进行开发。自1981年起,进行了1000kW现场型PAFC发电装置的研究和开发。1986年又开展了200kW现场性发电装置的开发,以适用于边远地区或商业用的PAFC发电装置。 富士电机公司是日本最大的PAFC电池堆供应商。截至1992年,该公司已向国内外供应了17套PAFC示范装置,富士电机在1997年3月完成了分散型5MW设备的运行研究。作为现场用设备已有50kW、100kW及500kW总计88种设备投入使用。下表所示为富士电机公司已交货的发电装置运行情况,到1998年止有的已超过了目标寿命4万小时。东芝公司从70年代后半期开始,以分散型燃料电池为中心进行开发以后,将分散电源用11MW机以及200kW机形成了系列化。11MW机是世界上最大的燃料电池发电设备,从1989年开始在东京电力公司五井火电站内建造,1991年3月初发电成功后,直到1996年5月进行了5年多现场试验,累计运行时间超过2万小时,在额定运行情况下实现发电效率43.6%。在小型现场燃料电池领域,1990年东芝和美国IFC公司为使现场用燃料电池商业化,成立了ONSI公司,以后开始向全世界销售现场型200kW设备"PC25"系列。PC25系列燃料电池从1991年末运行,到1998年4月,共向世界销售了174台。其中安装在美国某公司的一台机和安装在日本大阪梅田中心的大阪煤气公司2号机,累计运行时间相继突破了4万小时。从燃料电池的寿命和可靠性方面来看,累计运行时间4万h是燃料电池的长远目标。东芝ONSI已完成了正式商用机PC25C型的开发,早已投放市场。PC25C型作为21世纪新能源先锋获得日本通商产业大奖。从燃料电池商业化出发,该设备被评价为具有高先进性、可靠性以及优越的环境性设备。它的制造成本是$3000/kW,将推出的商业化PC25D型设备成本会降至$1500/kW,体积比PC25C型减少1/4,质量仅为14t。2001年,在中国就将迎来第一座PC25C型燃料电池电站,它主要由日本的MITI(NEDO)资助的,这将是我国第一座燃料电池发电站。质子交换膜燃料电池(PEMFC)著名的加拿大Ballard公司在PEMFC技术上全球领先,它的应用领域从交通工具到固定电站,其子公司BallardGenerationSystem被认为在开发、生产和市场化零排放质子交换膜燃料电池上处于世界领先地位。BallardGenerationSystem最初产品是250kW燃料电池电站,其基本构件是Ballard燃料电池,利用氢气(由甲醇、天然气或石油得到)、氧气(由空气得到)不燃烧地发电。Ballard公司正和世界许多著名公司合作以使BallardFuelCell商业化。BallardFuelCell已经用于固定发电厂:由BallardGenerationSystem,GPUInternationalInc.,AlstomSA和EBARA公司共同组建了BallardGenerationSystem,共同开发千瓦级以下的燃料电池发电厂。经过5年的开发,第一座250kW发电厂于1997年8月成功发电,1999年9月送至IndianaCinergy,经过周密测试、评估,并提高了设计的性能、降低了成本,这导致了第二座电厂的诞生,它安装在柏林,250kW输出功率,也是在欧洲的第一次测试。很快Ballard公司的第三座250kW电厂也在2000年9月安装在瑞士进行现场测试,紧接着,在2000年10月通过它的伙伴EBARABallard将第四座燃料电池电厂安装在日本的NTT公司,向亚洲开拓了市场。在不同地区进行的测试将大大促进燃料电池电站的商业化。第一个早期商业化电厂将在2001年底面市。下图是安装在美国Cinergy的Ballard燃料电池装置,正在测试。图是安装在柏林的250kW PEMFC燃料电池电站:在美国,PlugPower公司是最大的质子交换膜燃料电池开发公司,他们的目标是开发、制造适合于居民和汽车用经济型燃料电池系统。1997年,PlugPower模块第一个成功地将汽油转变为电力。PlugPower公司开发出它的专利产品PlugPower7000居民家用分散型电源系统。商业产品在2001年初推出。家用燃料电池的推出将使核电站、燃气发电站面临挑战,为了推广这种产品,1999年2月,PlugPower公司和GEMicroGen成立了合资公司,产品改称GEHomeGen7000,由GEMicroGen公司负责全球推广。此产品将提供7kW的持续电力。GE/Plug公司宣称其2001年初售价为$1500/kW。他们预计5年后,大量生产的燃料电池售价将降至$500/kW。假设有20万户家庭各安装一个7kW的家用燃料电池发电装置,其总和将接近一个核电机组的容量,这种分散型发电系统可用于尖峰用电的供给,又因分散式系统设计增加了电力的稳定性,即使少数出现了故障,但整个发电系统依然能正常运转。 在Ballard公司的带动下,许多汽车制造商参加了燃料电池车辆的研制,例如:Chrysler(克莱斯勒)、Ford(福特)、GM(通用)、Honda(本田)、Nissan(尼桑)、VolkswagenAG(大众)和Volvo(富豪)等,它们许多正在使用的燃料电池都是由Ballard公司生产的,同时,它们也将大量的资金投入到燃料电池的研制当中,克莱斯勒公司给Ballard公司注入4亿5千万加元用于开发燃料电池汽车,大大的促进了PEMFC的发展。1997年,Toyota公司就制成了一辆RAV4型带有甲醇重整器的跑车,它由一个25kW的燃料电池和辅助干电池一起提供了全部50kW的能量,最高时速可以达到125km/h,行程可达500km。这些大的汽车公司均有燃料电池开发计划,虽然燃料电池汽车商业化的时机还未成熟,但几家公司已确定了开始批量生产的时间表,Daimler-Benz公司宣布,到2004年将年产40000辆燃料电池汽车。因而未来十年,极有可能达到100000辆燃料电池汽车。熔融碳酸盐燃料电池(MCFC)50年代初,熔融碳酸盐燃料电池(MCFC)由于其可以作为大规模民用发电装置的前景而引起了世界范围的重视。在这之后,MCFC发展的非常快,它在电池材料、工艺、结构等方面都得到了很大的改进,但电池的工作寿命并不理想。到了80年代,它已被作为第二代燃料电池,而成为实现兆瓦级商品化燃料电池电站的主要研究目标,研制速度日益加快。MCFC的主要研制者集中在美国、日本和西欧等国家。预计2002年将商品化生产。美国能源部(DOE)2000年已拨给固定式燃料电池电站的研究费用4420万美元,而其中的2/3将用于MCFC的开发,1/3用于SOFC的开发。美国的MCFC技术开发一直主要由两大公司承担,ERC(EnergyResearchCorporation)(现为FuelCellEnergyInc.)和M-CPower公司。他们通过不同的方法建造MCFC堆。两家公司都到了现场示范阶段:ERC1996年已进行了一套设于加州圣克拉拉的2MW的MCFC电站的实证试验,正在寻找3MW装置试验的地点。ERC的MCFC燃料电池在电池内部进行无燃气的改质,而不需要单独设置的改质器。根据试验结果,ERC对电池进行了重新设计,将电池改成250kW单电池堆,而非原来的125kW堆,这样可将3MW的MCFC安装在0.1英亩的场地上,从而降低投资费用。ERC预计将以$1200/kW的设备费用提供3MW的装置。这与小型燃气涡轮发电装置设备费用$1000/kW接近。但小型燃气发电效率仅为30%,并且有废气排放和噪声问题。与此同时,美国M-CPower公司已在加州圣迭戈的海军航空站进行了250kW装置的试验,计划在同一地点试验改进75kW装置。M-CPower公司正在研制500kW模块,计划2002年开始生产。日本对MCFC的研究,自1981年"月光计划"时开始,1991年后转为重点,每年在燃料电池上的费用为12-15亿美元,1990年政府追加2亿美元,专门用于MCFC的研究。电池堆的功率1984年为1kW,1986年为10kW。日本同时研究内部转化和外部转化技术,1991年,30kW级间接内部转化MCFC试运转。1992年50-100kW级试运转。1994年,分别由日立和石川岛播磨重工完成两个100kW、电极面积1m2,加压外重整MCFC。另外由中部电力公司制造的1MW外重整MCFC正在川越火力发电厂安装,预计以天然气为燃料时,热电效率大于45%,运行寿命大于5000h。由三菱电机与美国ERC合作研制的内重整30kWMCFC已运行了10000h。三洋公司也研制了30kW内重整MCFC。石川岛播磨重工有世界上最大面积的MCFC燃料电池堆,试验寿命已达13000h。日本为了促进MCFC的开发研究,于1987年成立了MCFC研究协会,负责燃料电池堆运转、电厂外围设备和系统技术等方面的研究,它已联合了14个单位成为日本研究开发主力。欧洲早在1989年就制定了1个Joule计划,目标是建立环境污染小、可分散安装、功率为200MW的"第二代"电厂,包括MCFC、SOFC和PEMFC三种类型,它将任务分配到各国。进行MCFC研究的主要有荷兰、意大利、德国、丹麦和西班牙。荷兰对MCFC的研究从1986年已经开始,1989年已研制了1kW级电池堆,1992年对10kW级外部转化型与1kW级内部转化型电池堆进行试验,1995年对煤制气与天然气为燃料的2个250kW系统进行试运转。意大利于1986年开始执行MCFC国家研究计划,1992-1994年研制50-100kW电池堆,意大利Ansodo与IFC签定了有关MCFC技术的协议,已安装一套单电池(面积1m2)自动化生产设备,年生产能力为2-3MW,可扩大到6-9MW。德国MBB公司于1992年完成10kW级外部转化技术的研究开发,在ERC协助下,于1992年-1994年进行了100kW级与250kW级电池堆的制造与运转试验。现在MBB公司拥有世界上最大的280kW电池组体。资料表明,MCFC与其他燃料电池比有着独特优点:a.发电效率高比PAFC的发电效率还高;b.不需要昂贵的白金作催化剂,制造成本低;c.可以用CO作燃料;d.由于MCFC工作温度600-1000℃,排出的气体可用来取暖,也可与汽轮机联合发电。若热电联产,效率可提高到80%;e.中小规模经济性与几种发电方式比较,当负载指数大于45%时,MCFC发电系统成本最低。与PAFC相比,虽然MCFC起始投资高,但PAFC的燃料费远比MCFC高。当发电系统为中小规模分散型时,MCFC的经济性更为突出;f.MCFC的结构比PAFC简单。固体氧化物燃料电池(SOFC)SOFC由用氧化钇稳定氧化锆(YSZ)那样的陶瓷给氧离子通电的电解质和由多孔质给电子通电的燃料和空气极构成。空气中的氧在空气极/电解质界面被氧化,在空气燃料之间氧的分差作用下,在电解质中向燃料极侧移动,在燃料极电解质界面和燃料中的氢或一氧化碳反应,生成水蒸气或二氧化碳,放出电子。电子通过外部回路,再次返回空气极,此时产生电能。SOFC的特点如下:由于是高温动作(600-1000℃),通过设置底面循环,可以获得超过60%效率的高效发电。由于氧离子是在电解质中移动,所以也可以用CO、煤气化的气体作为燃料。由于电池本体的构成材料全部是固体,所以没有电解质的蒸发、流淌。另外,燃料极空气极也没有腐蚀。l动作温度高,可以进行甲烷等内部改质。与其他燃料电池比,发电系统简单,可以期望从容量比较小的设备发展到大规模设备,具有广泛用途。在固定电站领域,SOFC明显比PEMFC有优势。SOFC很少需要对燃料处理,内部重整、内部热集成、内部集合管使系统设计更为简单,而且,SOFC与燃气轮机及其他设备也很容易进行高效热电联产。下图为西门子-西屋公司开发出的世界第一台SOFC和燃气轮机混合发电站,它于2000年5月安装在美国加州大学,功率220kW,发电效率58%。未来的SOFC/燃气轮机发电效率将达到60-70%。被称为第三代燃料电池的SOFC正在积极的研制和开发中,它是正在兴起的新型发电方式之一。美国是世界上最早研究SOFC的国家,而美国的西屋电气公司所起的作用尤为重要,现已成为在SOFC研究方面最有权威的机构。 早在1962年,西屋电气公司就以甲烷为燃料,在SOFC试验装置上获得电流,并指出烃类燃料在SOFC内必须完成燃料的催化转化与电化学反应两个基础过程,为SOFC的发展奠定了基础。此后10年间,该公司与OCR机构协作,连接400个小圆筒型ZrO2-CaO电解质,试制100W电池,但此形式不便供大规模发电装置应用。80年代后,为了开辟新能源,缓解石油资源紧缺而带来的能源危机,SOFC研究得到蓬勃发展。西屋电气公司将电化学气相沉积技术应用于SOFC的电解质及电极薄膜制备过程,使电解质层厚度减至微米级,电池性能得到明显提高,从而揭开了SOFC的研究崭新的一页。80年代中后期,它开始向研究大功率SOFC电池堆发展。1986年,400W管式SOFC电池组在田纳西州运行成功。燃料电池另外,美国的其它一些部门在SOFC方面也有一定的实力。位于匹兹堡的PPMF是SOFC技术商业化的重要生产基地,这里拥有完整的SOFC电池构件加工、电池装配和电池质量检测等设备,是目前世界上规模最大的SOFC技术研究开发中心。1990年,该中心为美国DOE制造了20kW级SOFC装置,该装置采用管道煤气为燃料,已连续运行了1700多小时。与此同时,该中心还为日本东京和大阪煤气公司、关西电力公司提供了两套25kW级SOFC试验装置,其中一套为热电联产装置。另外美国阿尔贡国家实验室也研究开发了叠层波纹板式SOFC电池堆,并开发出适合于这种结构材料成型的浇注法和压延法。使电池能量密度得到显著提高,是比较有前途的SOFC结构。 在日本,SOFC研究是“月光计划”的一部分。早在1972年,电子综合技术研究所就开始研究SOFC技术,后来加入"月光计划"研究与开发行列,1986年研究出500W圆管式SOFC电池堆,并组成1.2kW发电装置。东京电力公司与三菱重工从1986年12月开始研制圆管式SOFC装置,获得了输出功率为35W的单电池,当电流密度为200mA/cm2时,电池电压为0.78V,燃料利用率达到58%。1987年7月,电源开发公司与这两家公司合作,开发出1kW圆管式SOFC电池堆,并连续试运行达1000h,最大输出功率为1.3kW。关西电力公司、东京煤气公司与大阪煤气公司等机构则从美国西屋电气公司引进3kW及2.5kW圆管式SOFC电池堆进行试验,取得了满意的结果。从1989年起,东京煤气公司还着手开发大面积平板式SOFC装置,1992年6月完成了100W平板式SOFC装置,该电池的有效面积达400cm2。现Fuji与Sanyo公司开发的平板式SOFC功率已达到千瓦级。另外,中部电力公司与三菱重工合作,从1990年起对叠层波纹板式SOFC系统进行研究和综合评价,研制出406W试验装置,该装置的单电池有效面积达到131cm2。在欧洲早在70年代,联邦德国海德堡中央研究所就研究出圆管式或半圆管式电解质结构的SOFC发电装置,单电池运行性能良好。80年代后期,在美国和日本的影响下,欧共体积极推动欧洲的SOFC的商业化发展。德国的Siemens、DomierGmbH及ABB研究公司致力于开发千瓦级平板式SOFC发电装置。Siemens公司还与荷兰能源中心(ECN)合作开发开板式SOFC单电池,有效电极面积为67cm2。ABB研究公司于1993年研制出改良型平板式千瓦级SOFC发电装置,这种电池为金属双极性结构,在800℃下进行了实验,效果良好。现正考虑将其制成25~100kW级SOFC发电系统,供家庭或商业应用。

氮唑类抗真菌研究进展论文

一、常用抗真菌药的种类

1.按照作用部位分

治疗浅表真菌感染药物:十一烯酸、醋酸、乳酸、水杨酸、灰黄霉素、克念菌素、克霉唑、咪康唑、益康唑、联苯苄唑、酮康唑等。

抗深部真菌感染药物:氟胞嘧啶、两性霉素B、制霉菌素、球红霉素、甲帕霉素(美帕曲星、克霉灵)、氟康唑(大扶康、麦尼芬、依利康)、伊曲康唑(斯皮仁诺)等。

2.按结构分

有机酸类、多烯类、氮唑类、烯丙胺类(如特比萘芬)等。

二、作用特点及临床应用

多烯类抗生素主要有两性霉素B、两性霉素B脂质体制剂及研究中的多烯类化合物。20世纪50年代以来,两性霉素B已成为治疗各种严重真菌感染的首选药,具有广谱的抗真菌活性,为抗深部真菌感染药物,但两性霉素B严重的肾毒性,限制了它的临床应用。为了降低两性霉素B的肾毒性,目前,已开发了一系列两性霉素B脂质体新剂型。两性霉素脂质体是用脂质体对两性霉素进行了包裹,其特点是对真菌细胞麦角甾醇亲和力较高,对人体细胞膜胆固醇亲和力较低,因而提高了抗真菌活性,减轻了对宿主器官的损伤,降低了两性霉素的毒性反应,可大大提高临床用药剂量,增加了抗真菌药的疗效。国外临床研究结果亦显示它具有与两性霉素相同的疗效,但毒性相对较轻,尤其是肾毒性明显小于后者。

2.三唑类抗真菌药物

三唑类抗真菌药物为合成的抗真菌药,抗菌作用与两性霉素相似,它能选择性抑制真菌细胞色素450依赖性的14-α-去甲基酶,使14-α-甲基固醇蓄积,细胞膜麦角固醇不能合成,使细胞膜通透性改变,导致胞内重要物质丢失而使真菌死亡。本类药物在肝脏代谢,主要经胆汁排出,在患者肾功能不全时不需改变剂量,其主要毒性为贫血、胃肠道反应、皮疹等,没有肾脏毒性,可口服。酮康唑是最先使用的该类口服药。20世纪90年代推出的三唑类抗真菌药物氟康唑、伊曲康唑是唑类抗真菌药物的又一新进展,较咪唑类抗真菌药物酮康唑显示出更广谱的抗真菌活性且毒性更小。

氟康唑是一种新合成的氟代三唑类药物,1990年在美国上市,为广谱抗真菌药物。主要用于各种念珠菌、隐球菌病及各种真菌引起的脑膜炎及艾滋病患者口腔、消化道念珠菌病等。其生物利用度高、半衰期长、水溶性好,可口服给药及静脉注射。氟康唑耐受性好,对手足癣、股癣、花斑癣的有效率为100%。本品是临床上应用较多的系统抗真菌药,耐药性已不断出现,在短程用氟康唑时较少发生耐药,多次应用小剂量氟康唑治疗口咽念珠菌时则很易引起耐药。光滑念珠菌及克柔念珠菌,对氟康唑有天然耐药性,常需用较大剂量进行治疗才可见效。

伊曲康唑为二氧戊环三唑类药物,是替代两性霉素B治疗侵入性曲霉菌病的新药,1992年在美国获准上市。目前,只有口服胶囊,静脉输液和口服液正在临床试验之中。对深部真菌与浅部真菌都有抗菌作用,对皮肤癣菌、酵母菌、曲霉菌属、组织胞浆菌属、申克孢子丝菌、着色真菌属、枝孢霉属、皮炎芽生菌以及各种其他的酵母菌和真菌感染有效。可应用于深部真菌感染如芽生菌病、组织胞浆菌病、球孢子菌病,浅表真菌感染如花斑癣、阴道念珠菌病、足癣、手癣、体癣等,亦可用于维持治疗有助于防止艾滋病患者组织脑浆菌病或隐球菌病复发,还可预防中性粒细胞减少病人发生曲霉菌和念珠菌感染。伊曲康唑对真菌的细胞色素P450的作用更加专一,比酮康唑毒性低、疗效强,然而当它与某些经CYP代谢的其他药物同时服用时,将会发生严重的药物相互作用,尤其与特非那丁、阿司氮唑或西沙必利合用时会发生危及生命的室性心律失常。

伏立康唑是由公司开发的新型广谱三唑类抗真菌药,大量的临床研究数据证明,它是目前氟康唑结构改造最为成功的化合物。伏立康唑对许多致病性真菌,包括曲霉菌克鲁斯念珠菌等耐氟康唑的真菌都显示抗真菌活性,已于2002年在美国上市。在与伏立康唑、氟康唑、伊曲康唑和两性霉素的对比研究中发现,伏立康唑具有更广的抗菌谱,它对新生隐球菌的抗菌活性优于氟康唑和伊曲康唑,并且对临床上难以治疗的烟曲霉菌感染患者具有较好疗效。

3.烯丙胺类及硫代氨甲酸酯类  这两类药物都能竞争性地抑制角鲨烯环氧化酶,阻止角鲨烯转变成羊毛甾醇,使角鲨烯积聚,麦角甾醇合成受阻,影响真菌细胞膜的结构和功能,其代表药物为特比奈芬。特比萘芬于1992年12月获美国FDA批准后上市,对皮肤真菌及一些局部真菌感染有效。它的软膏剂及口服制剂在欧洲已上市,片剂在美国被用来治疗甲癣及其他癣病[8]。目前还没有发现人类致病真菌对烯丙胺类药物产生继发性耐药性,但谷类致病真菌Ustilagomaydisn能对烯丙胺类产生耐药性。

4.其他

除了以上3大类抗真菌药外,目前临床上应用的其他类抗真菌药还有作为1,3-β葡聚糖合成酶抑制剂的棘白菌素类、麦角甾醇生物合成抑制剂的吗啉类、干扰核酸合成的氟胞嘧啶类、抑制线粒体AT合成酶的柠檬醛类等。

伊曲康唑是一种亲脂性三氮唑类衍生物,是一种全身性抗真菌药,具有广谱抗真菌活性,主要用于皮肤、毛发、甲板、黏膜及全身性的真菌感染。 其作用机制是高选择性地抑制真菌细胞的细胞色素酶,进而发挥抗真菌活性 性状 本品为白色或类白色粉末;无臭。 剂型与规格 片剂:200mg。 分散片:100mg。 胶囊:100mg。 口服液:150ml:1.5g。 颗粒:100mg。 注射液:25ml:250mg(附带0.9%氯化钠注射液50ml)。 适应症 主要应用于深部真菌所引起的系统感染,如芽生菌病、组织胞浆菌病、类球孢子菌病、着色真菌病、孢子丝菌病、球孢子菌病等。也可用于念珠菌病和曲菌病。 注意事项 口服给药应伴正餐,且在每日同一时间服药; 分散片应餐后立即给予,可加水分散均匀后服用,也可含于口中吞服; 颗粒剂应餐后立即给予,可加水溶解后服用; 胶囊剂餐后立即用药,整粒吞服; 口服液应空腹服药,用药后1小时不得进食。 不良反应 心血管系统:充血性心力衰竭、心动过速、高血压、水肿。 皮肤:瘙痒、皮疹、Stevens-Johnson综合征。 胃肠道:腹痛、腹泻、恶心、呕吐、坏死性胰腺炎。 肝脏:转氨酶升高、肝毒性。 神经系统:头晕、头痛。 呼吸系统:肺水肿、上呼吸道感染、鼻炎、鼻窦炎。 禁忌症 ①对本药或三唑类药物过敏者。②妊娠期妇女和哺乳期妇女。③伴有充血性心力衰竭的甲真菌病患者。

有,而且不止一篇,但是怎么给您?

有邮箱么?

先上个截图,看是不是您要的……

=============

整出稿子给你吧,但字数超过限制了……

中国的食用和药用大型真菌

卵 晓 岚

(中国科学腕最生物研究所,北京)

近年来,国内对蘑菇、多孔菌、腹菌及子囊

菌中太型真菌资源的开发虚用十分重视,研究

范围相当广泛,尤其在食用和药用真菌方面的

应用和研究进展很快,反映出广阔的发展前景。

(一)食用真菌

以蘑菇为主的食用真菌(简称食用菌),风

昧独特,营养丰富,经常食用有益于人体健康。

人工栽培食用菌,繁殖生长快, 经济效益高,已

受到广泛的重视和推广生产。

1.中国食用菌种类资源: 我国大型真菌资

搛相当丰富,其中野生食用菌种类多迭720种,

143属,44科, 几乎包览世界上已知的重要食

用菌种类。其中担子菌有675种,隶属于34科,

1 25属“ ,以伞菌目(Agarieales)中的白蘑科

(Tri曲o1Dmataceae)、红菇科(k~ laceae)、

蘑菇科(Aqaricaceae)、牛肝菌科(Boletaee—

e)、侧耳科(Pleurotaceae)、丝膜菌科(Co—

rtinariaeeae)、及鹅膏科(Amanitaeeae) 为

主“ 】。属于子囊菌的有45种,10科,18屠

‘见表1)。在已知食菌中味道鲜美,质地优良的

有百种以上。目前已经栽培和进行试验栽培的

40—80种。通常栽培的仅l0多种,所以绝大多

数的食用菌仍处于野生状态。但收集利用尚少,

每年不知有多少野生食用菌在山林中腐烂掉。

原因在于现阶段食用和有毒种类的鉴别问题及

食用菌的嘘集加工等具体措施未能解决, 影响

了这类生物资源的充分利用。对于我国食用菌

种类资源的调查研究工作还需要深人进行。

2.食用菌的营养: 食用菌中蛋白质含量一

般较高。其氨基酸多达l8种左右,特别含有一

般蔬菜缺乏的异亮氨酸、亮氨酸,赖氢酸、蛋氨

酸、苯丙氨酸、苏氨酸、缬氨酸、色氨酸等人体必

额的氨基酸。另外还含有多种维生素、糖类和

矿物质元素等。像金针菇[IOlammullna ·

tipes(Fr.)Sing】、毛木耳[Auricularia po·

lytricha(Moot.)Sac~.】、香菇[Lentinus edo—

de s(Berk.)Sing.]、高大环柄菇[Macrolepi—

ota procera (Fr.)Sing_】、菱红菇(Rmsula

~e$co Fr.)、松口蘑[Tricholoraa raa;sutake

(S.Ito et Imai)Sing.】、滑菇[Pholio;a ^d·

m以D(T Ito)S Ito et Imai】等很多食菌含

有人体必须氨基酸7或8种 尤其食菌中赖氨

酸的含量一般都比较丰富。

鸡油菌(Cantharellus cibarius Fr.)、小

鸡油菌(c.minor Peck)、金耳(Tremellu

ouranHa Schw.ex Fr.)台有类胡萝 素。像

羊肚菌[Morchella esculenla(L)Pers.】中

含有稀有的氨基酸即C一3一氨基一L一脯氨酸

(Cis一3'-amino-L-proline),口一氨基异丁酸(

aminoisobutyric), 2,4-2氨基异丁酸(2,4一

diaminobytyric acid)。四孢蘑菇(Aqaricus

campestris L. ex Fr.)、紫丁香蘑[Lepista

nuda(Bul1.ex Fr.) Cooke.】含有丰富的维

生素B 和C等。在食用菌中有1 00多种具有

不同的药用价值 。所以食用菌被誉为“健

康食品”,尤其野生食用菌是极少或没有污染的

“卫生食品 。

3.栽培食用菌的发展概况: 近十多年中,

国内外食用菌栽培业大力发展,特别在中国更

是如此,生产量和销售量大幅度增加。目前已

有近80个国家栽培双孢蘑菇[Aqaricus 6 坤。一

rt4$ (Lange) Sing.】和香菇、侧耳(平菇)

[Pleur OtttS ostreatus(Jaeg ex Fr.)Qud1.】、

白黄侧耳[P.cor~Mcopiae (Pau1. ex Pets.)

RoI1.】等。自第二次世界大战后,蘑菇产量每

年以7—21 的速度增长。1979年垒世界仅

爱1 t甩和药甩真一种羹撬量囊应用羹爿

应用娄刖 真酋种类 科 属 釉 总种数 应 用 方 面

子 1. 食用野生食用菌的于实体

囊 45

菌 2.人工栽培食用菌于实体供食用。

食用 3.利用食用菌菌丝体做深眭发酵培养物食用。

担 4.利用于实体或菌丝体作为诵味品或作为填充香

干 3‘ L25 675 昧物质或作饮料甩

菌 。

1.作为抗癌药物或试验抗癌。

2·抑制致病细菌、真菌和宿‰

子 3.治疗消化系统反病。

囊 1, 28 ●. 医疗心血管系统的疾病。

菌 ,.作用于神经系统。

6.作用于呼吸系巍。

7·作为妇科反崭的药物.

8· 用敢内服稍炎解毒。

9.外敷消曼解毒。

鹤 3B7 lO

. 外伤止血药物。

l1.用于镇慷、明目药物。

l2.治疗痢疾。

用 l3.治疗麻疯瘸。

担 1●

· 用于治疗毒蛇唆伤。

子 ●4 l23 3●, ·治疗血啦虫、蛔虫、啦虫等寄生虫藏

菌 l6.治疗太骨节痛。

l7. 治疗嘟气病

l8.用于食品防腐剂

l9·用于解毒菌中毒。

20·用于生物防冶,除杀农林业害虫.

21. 冶疗神经性应炎。

22· 防冶放射性危害。

他 23.试验治疗爱涟病。

真 3

抗癌真菌 72 266 对内瘤S-IBO和艾氏癌的抑翩率60- t00%

双孢蘑菇的总产量达1 2l,O0 0吨, 1986年已达

21 8万吨。从食用菌栽培业发展状况表明,经济

发达或工业化程度越高的国家和地区,如美国、

联邦德国、法国、日本、南朝鲜及我国台湾省,食

用菌栽培业发达, 同时消费量也大。现在食用

菌栽培正向第三世界国家和地区扩展。据专家

们预言,食用菌将成为人类重要的营养食品。

国外在注重发展食用菌栽培的同时,又重

视采用食用菌菌丝体的深层培养,特别采用那

些风味特殊而鲜美的种类,不过这些食用菌目

前多属于野生或者属于树木的外生菌根菌

ctend0 yc0“hizac) 或者生态习性比较特殊

的种类 ”o像鸡纵菌[Termitomvf j 4lb 一

rainD‘ ‘(Berk.)Helm]、口蘑(Trifholom4

mongolicum Imai)、油口蘑【 . ,Ⅱ 0 ir j

(Pers ex Fr)Lundel1]、虎皮口蘑IT. 一

mbosum (Fr )Gil1.】、大白桩菇[Leucopaxillus

giganteus(Fr) Sing.]、粉紫香蘑[L —

plsta personate(Fr.)Sing.]、松12蘑、斜盖

粉摺菌[Rhodophyllus~aborti “ (Berk. et

Curt)Sing.】、粗壮口蘑[TricholomⅡr06 —

turn (Alb·ct Schw.ex Fr. Ricken]、自香

蘑[Leeista caespitO$a(Bres )Siag.1、黄绿

蜜环菌[Armillaria luteo—virens (A & S

eX Fr)Sacc]、美味牛肝菌(Bolelus edulis

Bull ex Fr.)、鸡油菌 羊肚菌、粗柄羊肚菌

【Morchella crassipes (Vent) Per s]、尖顶

羊肚菌(M.~onica yers.)、黑脉羊肚菌(M

angustip$Pk.)、小羊肚菌(M.deliciosa Fr.)

等 ~。这些种类目前用人工栽培形成子实体

比较困难,但可考虑利用菌丝位培养。

菌丝体的培养物可以新鲜食用、或冷冻和

干燥磨粉,制作富于营养的食品。如羊肚菌的

菌丝培养物同子实体一样鲜美,其风昧不减,在

美国已商业化生产。国内已注意到香菇、金针

菇、侧耳等食用菌的菌丝培养。利用逸些深层

培养的菌丝体还可加工生产,像“宝宝饼干”、

“老人肉”等适应不同对象的多样化食品。另外,

像茯苓[Poria COCO~(Fr)Wolf] 菌核可以

加工成许多花样的食品。我国在制做这类食品

方面具有传统的经验和方法。

在发展食用菌栽培和菌丝培养的同时,国

外曾注意到香味物质的分离提取和化学成分的

分析。已从双孢蘑菇中分离出5 一鸟苦酸,作为

超级增鲜剂。从香菇中分离出香菇精(c H S,),

在日本已人工台成 。另外可在一些蘑菇中

分离出白蘑酸(tricholomic acid), 具有极强

的鲜昧,其鲜度20倍于谷氨酸钠 。在日本还

荆用硫磺多孔莹[Tyromyces sulphureus(Bul

1.ex Fr )Donk]、豹皮香(Lentinus lepi—

deus Fr )、蜜环菌[Armillariella mellf口

(Fr)Kar st】、紫丁香蘑、松口蘑、肉色香蘑

[Lepista irina(n.)Bigelow]、滑菇等l0余

种食用蘑提取香味物质用作增香剂 。

4.可驯化、栽培的食用菌: 食用菌种类虽

多,但目前广泛栽培的一般10多种,最多不超

过20种,栽培种类少的原因是多方面的。有的

能栽培却质味较差,有的不适合人的食用习惯,

而有的产量低或栽培技术较为复杂。所以选育

广受欢迎,昧鲜,质好,高产;色泽具佳的栽培食

菌是发展生产和提高经济效益的重要原则。目

前国内栽培广而产量多的食用菌如下:

双孢蘑菇Agaricus bisporus (Large)

Sing

大肥菇A.bitomquis(Qu*1.)Sacc

香菇Lentinus edodes(Berk)Sing

— Lentinula edodes(Berk.)P电ler

草菇Volvariella volvacea(Bull ex Fr、

Sing.

金针菇Flammulina velutipes (Curt ex

Fr.) Sing.

侧耳(平菇)Pleurotus Ostreatus (Jacq.

eX Fr.)Qu∈I_

黄自侧耳P.f。r co 口 (Pa~i.ex Pe—

r8,)Rol1.

一P sapidus(Schutz ap.Kalchbr)Sacc.

凤尾侧耳[P.saior—caju (Fr)Sing.】(?)

金顶侧耳(P.f打r 。p 口 Sing.)

佛洛里迭侧耳(P.[1oridanus Sing:)

滑菇Pholiota.ameko I.Ito

黄伞P.adiposa(Fr) Qu61

毛头鬼伞Coprlnus comatus (Miill ex

Fc.、Gray

榆耳Gloestereum incanatum S lto et

lm ai

金耳Tremella aurantia Schw.ex Fr.

银耳T fucilormis Berk

、术耳Auricularia auricula(L_eX Hook)

Uriderw

毛术耳A.polytricha(Mont.) Sacc.

褐术耳A.[usco rucclnea (Moat)Fari

灰榭花Grifola frondo sa(Fr )Gray

猴头菌Heri~ium erinaceus (Bull eX

Fr.)Pets.

长裙竹荪Dictyophora in dusiata(Bosc)

Fisther

目前已驯化栽培或未推广的食用菌主要

有:

野蘑菇Aqaricus aroensis Schaefi.ex Fr

阿魏侧耳Pleurotus feralae Lenzi

毛柄库恩菌Kuehneromyces mutabi&}

(Schaef.ex Fr.)Sing.et Smith

砖红韧伞Naematotome Sublateritum

(Fr)Kzrst.

大杯伞clitocybe

Mey ex Fr.)Q ll

紫丁香蘑Leplsta

Cooke

m口 m口 (G tn e

nuda (Bul1.eK Fr)

花睑香蘑L sordida(Fr.)Sing.

蜜环菌Armilla riella mellea (Vahl ex

Fr Karst

假蜜环菌A. tabescen s (Stop.ex Fr.)

Sing

豹皮香菇Lentinu s tigrinus(Bul1.) pr.

榆离褶伞Lyophytlum ulmarius (Bul1.

tax Fr.) Kfihner

银丝草菇Volvariella bombycina (Scha·

efi.ex Fr、Sing.

杨树田头菇Agrocybe ~ylindracea(DC.

ex Fr)Maire

田头菇A. r口 。 (Pets ex Fr)Fayod

粉褶环柄菇Leucoagaricus naacinus(Fr.)

Sing.

茶耳(血耳)Tremella foliacea Pets.ex Fr

皱木耳Auricularia delicata(Fr.)Henri

角术耳A. cornea (Ehrenb ex Fr)

Spreng.

盾形木耳A.Peltata Lloyd

贝形圆孢例耳Pleurocybella porrlgens

(Fr)Sing.

亚侧耳Hohenbuehelia serotin (s:Mad

taK Fr.)Sing

高大环柄菇Maeroleplota procera(Fr)

Sing.

小孢毛鬼伞Coprinus OVa~$ (Schaef )

Fr

羊肚菌Morvhelta f 口(L )Pers.

皱环球盖菇Stropharia rugsoannulata

Farlow

变褐蘑菇Agarivus br~tn#cscens Peck

扇形侧耳Pleurotus [1abelletus (Berk.

cc B r) Sacc.

硬柄小皮伞Ma} asmim oreades Fr.

裂褶苗Schizophyllum corl,$ngu2~$Fr.

雪白蘑菇Agarivu~nlvescen~Mblkr

赭鳞蘑菇Agaricus subrubescens Peck

大紫蘑菇Agaricu~auqustus Fr.

要想筛选优良的食用菌栽培菌种,就必须

加强对野生食用菌种类的调查研究和鉴定分类

工作。在野外分离菌种,首先得掌握各类菌的

生态习性。作者曾将野生食菌生态习性分作五

种类型即I.术生菌,II.粪生菌,III土生菌,

IV 虫生菌,V 菌根真菌 。前两类一般容易

分离活菌种或进行驯化,而后三类则相反。

我国发展人工栽培食用菌很有希望,首先

具备了如下优越的条件:

(1)食用菌种类丰富, 从中筛选质昧优良

的菌种选择余地大。尤其在野生食用菌资源调

查、分类、鉴定方面,已做了大量工作。同时对

影响食用菌利用有关的霉蘑菇种类、分布及生

态习性等方面也做了大量研究工作。(2) 我

发展食用菌栽培业劳动力充足, 即人力资源丰

富o(3)培养料来源多而广泛,如棉籽壳、锯末、

秸秆、玉米芯(穗轴)、甘蔗渣、树叶、草茎、纱]_

废棉、酒糟,还有废茶叶等工、农、林、副产品

全国仅秸秆年产三、四亿吨,部分用于种菇,就

可年产数千万吨。({)我国栽培食用菌历史丝

久,特别是南方具有很大一批菇农以及食用菌

有关的科学技求队伍,近年中迅速壮大,即栽培

技术人员素质比较高。(5)食用菌作为一类营

养丰富的食品。越来越受到广大群众的欢迎,国

内外产品销路广o(6)食用菌栽培投资少,见效

快,经济效益较高,适宜广大农村脱贫致富,又

和城市环保及废物利用相结合,于是受到各级

政府和人民群众的欢迎。综上所述,我国食用

菌发展具有很大的潜力,在科学技术相配合的

情况下, 食用菌生产和研究将会进入世界最前

列,成为世界食用菌生产大国。

(二)药用真菌

1.发展中的药用真筐: 中医中药唯我国特

有。中药里包括了许多真菌类药物。明代李时

珍的《本草纲目》中记载了获苓、猪苓、雷丸、槐

耳、蝉花、芝类等20余种。这类 大型真菌为主

的真菌药物,久经实践考验至今仍在应用,并在

药用的范围、真菌种类、研究方法等方面日益扩

大和深入发展,受到世界关注。

随着科学技术的发展以及药用真菌本身所

具备的优点,越来越显示出这类药物在防病治

病中的独特作用。近十余年来在挖掘祖国医药

学宝库的基础上, 我国科学工作者对真菌类药

物的种类、生化、药理等方面开展了一系列研究

工作。如对灵芝[Ganoderma lucidum (Leyss.

ex Fr) Kar st)、紫芝(G sinensis Zhao,xu

et Zhang)、密纹灵芝(G.teflu S Zhao,XU et

Zhang)、云芝[C0riolus versicolor (L ex

Fr)Qu亡1]、蜜环菌、假蜜环菌(亮篚)、金针

菇、安络小皮伞【Marasmius androsaceus —

ex Fr.) Fr.】、猴头菌[Herivium er~aceu$

(Bull ex Fr.)Pets】、猪苓、【Gri[ola umb·

ellata (Pets) Fr.]、茯苓、银耳、冬虫夏草

【Cordyceps Hnensis(Berk)Sacc.]、亚香棒

虫草(c.haw如sii"Gray)、榆耳、竹黄(Shi·

raia bambuHaola P.Henn) 等多种真菌,进

行了人工培养、菌丝体发酵、临床治疗以及抗癌

研究, 并取得了显著成绩。这些工作在传统药

用真菌的基础上太大的前进了一步。目前还在

攻克癌症、心血管等疑难病方面开展研究工作,

药用真菌将作为重要的药物筛选对象,受到医

药界的高度重视。

2.丰富的药用真菌资源: 目前已知我国传

统药用、试验药效显著以及民间药用的真菌迭

387种,137属,51科。其中担子菌345种,123

属,44科。以多孔菌目(AphyllophorMes)、伞

菌目、和腹菌类种类最多 。其中有子囊菌

类药用真菌28种、1 5属,7科,其他类真菌11

种。作者曾在“药用真菌分类概述” 一文中将

我国药用真菌按分类简单地分作(1)子囊菌类;

42)银耳和木耳类(茇质类);(3)多孔菌类;44)

伞菌(蘑菇)类;(5)蝮菌(马勃)类,其类别不同

则加工方法或药效不同,对研究药用真菌有一

定的好处。

药用真菌的应用范围较广,大约有20多个

方面(见表I)。 还有更多的大型真菌有待研究

试验,特别是在多孔菌、伞菌和腹菌方面种类最

多,筛选新的药用真菌潜力很大

3药用新药的筛选: 目前对人类危害傥较

严重的癌症、心血管病以及近些年发展较快的

爱滋病的治疗,从真菌中筛选药物也不例外。近

年中已有香菇、灵芝等治疗爱滋病的报道o

I.抗癌等新药的筛选: 1930年开始,德国

首先报道了蘑菇属(Aearicu s)、干朽蓖(Me·

rulius lacrymans Fr) 和自鬼笔(Phallus

impudicus L.eX Pet s) 等发酵产物, 经过一

系列处理后,对癌症病人的主观症状有所改善。

5O年代又用美味牛肝菌(Boletus edulis Bul1.

ex Fr)的提取物,证明对小鼠肉瘤 一l80)

的生长有阻滞怍用。从此引起有关方面的注

意,并将大型真菌作为筛选提高机体免疫力药

物的重要对象之一。日本、美国等科学家也在

真菌中进行了大规模筛选、研究。据统计对内

癌(s一1 so)和艾氏癌(Ec) 的抑制率达6O一

100%的真菌266种,7 2属,51科 。像长根

菇[Oudemansiella radlcata(Fr.)Sing.】、野

蘑菇、胶勺【PhlogioHs helvelloides(DC.ex

Fr)Martin]、虎掌菌[Tremellodon gelati一

o m (Scop.ex Fr)Pers.】、香菇、粗柄口

蘑、绒鬼伞(coprinus lagopus Fr.)、黄绿口

蘑 [Tricholoma f m (Sow. ex Fr.)

Qu亡l】、金黄锈伞【Phaeolepio 。aurea(Ma·

rt.ex Fr)Konr.et Maubl】、墨汁鬼伞[Co

prinus atramenturlus(Bul1)n.】、紫绒丝膜

菌【Cortlnarius violaceus (L_) Fr】、毛头

鬼伞、多鳞韧伞[Naematoloma squamosum

(Fr)Sing.】、日本美口菌(Calostoma lapo.

nicum P.Henn) 等,抗癌率达9O一1 00% 的

104种,38属,l4科。

目前认为蘑菇等大型真菌的抗癌物质主要

是多糖 。研究报道较多的有以下数种多糖。

(1)香菇多糖(1entinan)。是香菇子实体

的热水提取物加入酒精后, 产生沉淀再进行精

制而得到的六种多糖之一,分子量为1 O0万。对

小白鼠皮下肉瘤(s一1 8o)有抑制作用,其抑毹

率为80.7% 。香菇多糖可使带瘤而降低的辅助

。r细胞功能得到恢复,增强机体的免疫力,间接

抑制肿瘤。香菇多糖还能活化巨噬细胞,降低

甲基胆蒽诱发肺痛的生长率,对化疗药物起到

增效作用。

(2)银耳酸翌异多糖(acidi 0g11】can)。

是从钣耳子窭体及酵母状分生孢子分离出的一

种酸性异多糖,能提高人体免疫力,对小自鼠肉

瘤18 0有效。另外对肝脏解毒、老年性吏气管

炎及心脏病和厦子辐射有疗效和预防作用。

(3)云芝多糖(PSK)。是从云芝菌丝体用

热水提取而精制成的,是一种分子量为lO万的

蛋白质多糖。日本人首先分离成功并试验对小

白鼠肉瘤(s-lso)有强烈抑制作用。另外,有

活化巨噬细胞的功能。“PSK 作为抗癌药物

已在日本市场销售。近年来我国东北地区已有

云芝多糖药物生产,对白血症、肝炎和气管炎等

疾病均有疗效。

(4)茯苓多糖(pachymaran)。是从茯苓

菌核中分离出的一种多糖,具有较强的抗癌作

用, 对小白鼠肉瘤(s一1 8O)的抑制率高达

96.9% 。

(5)裂摺菌多糖(schiz0phy1lan) 是从裂

褶菌( 。砷y ,“m commun6 Fr) 中提取

的,对肉瘤(s一1 so)和艾氏癌的抑制率达

7O% 。

(6)猪苓多糖(glucan)。是从猪苓菌核

中提取的一种水溶性葡萄糖,对小白鼠肉瘤有

显著的抑制作用,抑制率高达99.5%。另外,对

肺癌、食道癌、宫颈癌、胃癌、肝癌、肠癌、乳腺

癌、白血病等病症等都有显著的疗效。

(7)竹黄异多糖。是竹黄提取物, 由葡萄

糖、半乳糖、甘露糖和阿拉伯糖等四种单糖组

成,对胃癌有效。另外竹黄对风湿性关节性、气

管炎、咳嗽等症有一定的疗效。

(8)猴头菌多糖。是从猴头菌分离的。此

种菌含多糖、多肽等物质,对胃癌、贲门癌等消

化道癌症等疾病有一定的疗效。

(9) 灵芝多糖。是从灵芝子实体申提取的,

对一些疾病有医疗作用,井试验抗癌。另外,灵

芝中锗的含量是人参的4—6倍。近午来已在日

本、台湾省及香港等地区掀起灵芝保健食品热o

(10) 蜜环菌多肽葡聚糖(peptide一~ichglu’

can)。是从蜜环菌子实体中分离而得, 同样对

小白鼠肉瘤(s-1 8 0)有作用,抑铷辜70两,对

艾氏癌的抑制率8 0%。

在我国已知的抗癌真菌中,大约160种是

食用菌。另有34种是毒菌。 某些毒蘑菇对肉

瘤(s—iso) 和艾氏癌(Ec) 的抑制率高述

1O0知t6,71D

II.抗抑菌(细菌、真菌、病毒)羹药用真菌

许多大型真菌具有抗细菌、抗真菌及抗病

毒的活性 。报道较多的有以下种类。

(1)大白桩菇【Leucopaxiltus gigan~eu$

(Fr)Sing.]和白桩菇[L candidus(Bres)

Sing ]中分离出一种杯伞素,对革兰氏阴性、阳

性细菌有抑制作用。堇紫珊瑚菌(Clavarie

zoltlngeri L .) 的发酵液具有抗结核菌的阼

用。

(2) 头状秃马勃[Calvatia craniiJormis

(Schw.) pr 】的培养液申提取的马勃酸

(cal~atlc~cia),邸马勃索(cal~adn),对革兰

氏阴、阳性细菌、霉菌有抑制作用。大秃马勃

【c gigantF (Batsch ex Pers.)Lloyd]同样

产生马勃素,并有抑癌作用。

(3)从长根菇的培养液中提取的奥德蘑酮

(oudenone),能抑制霉菌, 井对大白鼠自发性

高血压经腹腔给药后,显示较强的降压作用。

(4)鲑贝芝[Polystictus consors(Berk)

Teng]的培养液及菌丝体中分离的鲑贝芝素

(coriorin), 抑制革兰氏阳性细菌。双孢蘑菇、

紫丁香蘑等对革兰氏阴、阳性细菌有抑制作用。

(5) 从橄榄杯伞[Clitocybe illudens(So

h )Sate】的发酵物中分离出的杯伞素s

(illudin,S ), 对霉菌有抑制作用和抗癌作用。

从月夜菌[Lampteromyce~ aponicus(Kawa—

m ) Sing ]的子实体中可分离出月夜菌醇

(1amptero1), 同样对某些霉萤有抑制作用。

(6) 从金针菇【Flammullna velutipes

(Fr.)Sing.】子实体的水提取液里分离出的金

·295 ·

针菇素(flammulin), 对小白鼠肉瘤S-1 80

和艾氏峦卿制率分别为81— 1 0O 和8O 。

(7)树皮生卧孔菌【Poria corticola(Fr)

Cooke]的菌丝体水提取液中获得的卧孔 素

(po ricin), 是一种酸生蛋白质,具有强的抗肿

瘤活性。黄白卧孔菌【P.subacida(Pk.)sa一

]也同样有抗癌作用。

48) 白粘奥德蘑【Oudemansiella muc~da

(Fr)Hoehne1]中分离出的粘荤素(mueldin),

是一种具有抗真菌的抗生素。

(9)隆跛黑蛋巢葭(c I“ slri f

Willd.ex Pers) 对金黄色葡萄球菌有显著的

抑制作用。

(10)绣球菌[Sparassis crispa (Wulf.)

Fr.]产生一种绣球菌醇,能抑制霉菌。

(1 1)榆离褶伞【Lyophyllum ulmarius

(Bull ex Fr )Ki[hner], 产生多孔菌酸(po—

lyporenic acid) 可抑制革兰氏阴、阳性细菌的

繁硝。

(1 2)卷边杯伞[Clitocybe inversa(Scop

ex Fr) Qu∈I.]、粗柄杯伞【c.f avipes(F )

Qu ]、油口蘑、皂味口蘑[Tricholoma sepo一

~aecum (Fr)Kummer]、管形鸡油菌(cd —

harell“ tubi]ormis Fr)、四孢蘑菇、黄伞、蜜

环蘸、硬田头菇【Agrocybe dura(Bolt.eK Fr.)

Sing]、尖棱瑚菌【Ramaria apiculata (Fr.)

Pohk]等对某些细菌有抗菌和抑翩作用。后

一种还产生去氧醋酸(dehydroacetlc acid),可

做食 防离荆。

(1 3)美喙牛肝菌、大秃马勃、香菇、莫尔根

环柄菇(Lepiota morganii Pk.)、毒红菇

[Russula emetica(Fr)S F.Gray]、亚环花

褶伞【Panaeol subbalIedl (Berk.et Br)

Sacc.]等,具有抗病毒的作用。

(1 4)从蛹虫草【Cordyceps militaris(L

ex Fr)Link】、冬丑夏草【c HnenHs(Be—

fk)Sacc.]培养物中得到的虫草菌素(cordyce—

pin), 具有抗菌和抑制细菌分裂的作用。冬虫

夏草还抑制多种病源真菌。

(1 5)从香菇和蘑菇中分离出的一种“蘑菇

核糖核酸(mushroom RNA) , 可刺激诱导蛐

胞产生干扰素,抑制流感病毒的增殖。

以上抗细菌、真菌及病毒的真菌至少有3O

种,上述所列举的只不过是已知国内有记载的

各类大型真菌。

III.毒菌的药用价值

目前国内已查明毒菌1 90余种, 8属,26

科。下述种类具有特殊的药理活性。毒光盖伞

……

后面字数超出了,这里放不下

您还是尽快留下联系方式吧,否则没法给你全的

相关百科

热门百科

首页
发表服务