首页

> 学术发表知识库

首页 学术发表知识库 问题

大一数学论文1000字

发布时间:

大一数学论文1000字

《勾股定理的证明方法探究》 勾股定理又叫毕氏定理:在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。 据考证,人类对这条定理的认识,少说也超过 4000 年!又据记载,现时世上一共有超过 300 个对这定理的证明! 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 勾股定理的证明:在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。 1.中国方法:画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。 左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是 a^2+b^2=c^2。 这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。 2.希腊方法:直接在直角三角形三边上画正方形,如图。 容易看出, △ABA’ ≌△AA'C 。 过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。 △ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。 于是, S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC, 即 a2+b2=c2。 至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。 这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。 这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。 赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。 如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。 这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。 在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。 由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。 这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。 在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。 欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。 勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。 总之,在勾股定理探索的道路上,我们走向了数学殿堂

巧赢硬币 记得暑假里的一天,我们到叔叔家里玩,正玩到兴头上,叔叔拿了10个硬币走了过来,说:“你们想要这些硬币吗?”“当然想啦!”大家异口同声地回答道。我望着叔叔,真有点丈二和尚——摸不着头脑,我心里琢磨着,不知道叔叔葫芦里卖的是什么药。“你们想要这些硬币,就要回答我的问题,谁答对,硬币就全归他了。”说完,叔叔就提出一个问题:“怎样才能把10个硬币放进3个杯子里,使每个杯子里的硬币数都是奇数,看谁能找出最多的方法。” 听完叔叔的题目,大家冥思苦想。只见表弟在客厅里走来走去,表姐坐在椅子上冷静地思考着。不一会,我看见妹妹找来了材料,试着做。可是,做了很久,妹妹还是没找到具体解题的方法。我也不甘示弱,开动脑筋想着。哎,要是能把这硬币拿到手,那该多好啊! 过了十多分钟,大家都没有想到怎么做,叔叔见此情景,对我们说:“给你们一点提示吧!解这道题要学会多转几个弯,不要……”“等等!”话没说完,表弟好象想到了什么似的。只见他拿起10个硬币,先把第1个硬币放到第1个杯子里去,然后把3个硬币投进第2个杯子里,看到这里,我不禁想道:这个办法嘛,我早就想过了,根本就不行,剩下的硬币有6个,6是偶数,我可以肯定地说一句:“这个办法是行不通的。”当表弟把剩下的6个硬币放到第3个杯子时,我插嘴道:“这办法根本……”我的话还没说完,表弟就把我的话打断了,“表姐,你还是看我的表演吧!”表弟神气地说。只见他拿起第1个杯子,把那个硬币放到第3个杯子里去。“这就是第一种方法。”表弟得意地扮了个鬼脸。“哎呀!我真笨,怎么想到第三步就放弃了呢?真不值得!”接着,表弟按照第一次那样做,先把3个硬币放到第1个杯子里,然后在第二个杯子里放5个硬币,接着把剩下的硬币放到第三个杯子里,最后,把第一个杯子里的硬币放到第三个杯里去。这样第二种方法就完成了。按着这样的方法,表弟连续做了13次。 看到这里,站在一旁的叔叔拍起了手掌,点点头说:“真想不到,你这小鬼还会有动脑筋的时候,这回你赢了,10个硬币都归你了。”叔叔一边称赞表弟,一边抚摸着他的小脑袋。“不过,小瑜呀,你可得加把劲了,这回连表弟都赢了你。记住,凡事多动脑筋,别轻易放弃。” 是呀,叔叔说得对,凡事多动脑筋,别轻易放弃。如果我刚才想到第三步没放弃的话,再动动脑筋,那道题就被我解开了。以后,真的要加把劲,要努力学好数学,掌握好数学,更要学会在生活中灵活运用好数学。

探究三角形的等积分割线如何将一个三角形面积分割成两个相等的部分,是我们已熟知的问题,只要沿三角形的中线,即可把三角形分割成面积相等的两个部分,许多同学认为,这样的分割线只有三条,但是,这样的分割线到底有多少条呢?问题1:请用一条直线,把△ABC分割为面积相等的两部分。解:取BC的中点,记为点D,连结AD,则AD所在直线把△ABC分成面积相等的两个部分。大家知道,这样分割线一共有三条,分别是经过△ABC的三条中线的直线,能把△ABC的面积分成相等两部分。除了这三条以外,还有很多种,并且对于△ABC边上任意一点,都可以找到一条经过这点且把三角形面积平分的直线。问题2:点E是△ABC中AB边上的任意一点,且AE≠BE,过点E求作一条直线,把△ABC分成面积相等的两部分。解:如图2,取AB的中点D,连结CD,过点D作DF∥CE,交BC于点F,则直线EF就是所求的分割线。证明:设CD、EF相交于点P∵点D是AB的中点∴AD=BD∴S△CAD=S△CBD∴S四边形CAEP+S△PED=S四边形DPFB+S△PCF又∵DF∥CE∴S△FED=S△DCF(同底等高)即:S△PED=S△PCF∴S四边形CAEP=S四边形DPFB∴S四边形CAEP+SPCF=S四边形DPFB+S△PED即S四边形AEFC=S△EBF由此可知,把三角形面积进行平分的直线有无数条,而本文来自第一论文网来源于毕业论文望可以帮到您。。

大一大数据论文1000字

大数据论文【1】大数据管理会计信息化解析

摘要:

在大数据时代下,信息化不断发展,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。

同时也面临着一些问题。

本文通过分析管理会计信息化的优势和应用现状以及所面临的的问题,以供企业在实际工作中对这些问题的控制和改善进行参考和借鉴。

关键词:

大数据;管理会计信息化;优势;应用现状;问题

在这个高速发展的信息时代,管理会计的功能已经由提供合规的信息不断转向进行价值创造的资本管理职能了。

而管理会计的创新作为企业管理创新的重要引擎之一,在大数据的时代下,管理会计的功能是否能够有效的发挥,与大数据的信息化,高效性、低廉性以及灵活性等特点是密不可分的。

一、大数据时代下管理会计信息化的优势及应用现状

在大数据时代下,管理者要做到有效地事前预测、事后控制等管理工作,在海量类型复杂的数据中及时高效的寻找和挖掘出价值密度低但是商业价值高的信息。

而管理会计信息化就能够被看做是大数据信息系统与管理会计的一个相互结合,可以认为是通过一系列系统有效的现代方法,

不断挖掘出有价值的财务会计方面的信息和其他非财务会计方面的综合信息,随之对这些有价值的信息进行整理汇总、分类、计算、对比等有效的分析和处理,

以此能够做到满足企业各级管理者对各个环节的一切经济业务活动进行计划、决策、实施、控制和反馈等的需求。

需要掌控企业未来的规划与发展方向就能够通过预算管理信息化来实现;需要帮助管理者优化企业生产活动就能够通过成本管理信息化对

供产销一系列流程进行监控来实现;需要对客观环境的变化进行了解以此帮助管理者为企业制定战略性目标能够通过业绩评价信息化来实现。

(一)预算管理信息化

在这个高速发展的信息时代下,预算管理对于企业管理而言是必不可少的,同时对企业的影响仍在不断加强。

正是因为企业所处的环境是瞬息万变,与此同此,越来越多的企业选择多元化发展方式,选择跨行业经营的模式,经营范围的跨度不断增大。

这就需要企业有较强的市场反应能力和综合实力,对企业的预算管理提出了新的发展挑战要求。

虽然不同企业的经营目标各不相同,但对通过环境的有效分析和企业战略的充分把握,从而进行研究和预测市场的需求是如出一辙的。

企业对需求的考量进而反应到企业的开发研发、成本控制以及资金流安排等各个方面,最终形成预算报表的形式来体现企业对未来经营活动和成果的规划与预测,

从而完成对企业经营活动事后核算向对企业经营活动全过程监管控制的转变。

然而从2013国务院国资委研究中心和元年诺亚舟一起做的一项针对大型国有企业的调研结果中得出,仅仅有4成的企业完成了预算管理的信息化应用,

大型的国有企业在预算管理信息化应用这方面的普及率都不高,足以说明我国整体企业的应用情况也不容乐观。

所以从整体上来讲,预算管理信息化的应用并未在我国企业中获得广泛的普及。

(二)成本管理信息化

企业由传统成本管理企业向精益成本管理企业转换是企业发展壮大的必然选择。

而基于大数据信息系统能够为企业提供对计划、协调、监控管理以及反馈等过程中各类相关成本进行全面集成化管理。

而进行成本管理的重中之重就是对企业价值链进行分析以及对企业价值流进行管理。

企业能够通过成本管理信息化对有关生产经营过程中的原材料等进行有效地信息记录及进行标示,并结合在财务信息系统中产生的单独标签,

使与企业有关的供应商、生产经营过程和销售等的过程全都处于企业的监控。

以此企业可以做到掌握生产经营的全过程,即能够通过财务信息系统实时了解到原材料的消耗,产品的入库及出库等一切企业生产经营活动。

同时,结合价值链的分析和价值流管理,企业通过将生产过程进行有效地分解,形成多条相互连接的价值链,运用信息化手段对企业的

每条价值链的成本数进行有效的追踪监管和综合分析,以此为基础为企业提出改进方案,并使用历史成本进行预测,达到减少企业的不需要的损失及浪费,最终达到优化生产经营过程。

虽然成本管理信息化是企业发展的一个重要趋势,以大数据信息技术为基础的信息系统可以使得企业完成全面的成本管理,给企业的成本管理带来了巨大的推动力。

然而信息化在成本控制方面的实施效果并不是很理想。

(三)业绩评价信息化

业绩评价是对企业财务状况以及企业的经营成果的一种反馈信息,当企业的绩效处于良好状态,代表企业的发展状况良好,

也反映了企业现阶段人才储备充足,发展处于上升期,由此企业定制扩张战略计划。

而当企业的绩效不断减少,代表企业的发展状况在恶化,也反映了企业的人才处在流失状态,企业在不断衰退,此时企业应该制定收缩战略计划。

企业进行业绩评价信息化的建设,通过对信息系统中的各类相关数据进行综合分析,有效地将对员工的业绩评价与企业的财务信息、顾客反馈、学习培训等各方面联系在一起。

对于企业而言,具备一套完善且与企业自身相适应的业绩评级和激励体系是企业财务信息系统的一个重要标志,也是企业组织内部关系成熟的一种重要表现。

然而,如今对于具备专业的业绩评价信息化工具平衡分卡等在企业的发展过程中并未得到广泛的应用。

其中最大的原因应该是对业绩评价的先进办法对于数据信息的要求比较简单,通常可以由传统方式获得。

所以,现如今能够完全将业绩评价纳入企业信息系统,并能够利用业绩评价信息化来提高企业管理效率的企业数量并不多。

二、大数据时代下管理会计信息化存在的主要问题

(一)企业管理层对管理会计信息化不重视

我国企业管理层对企业管理会计信息化建设存在着不重视的问题。

首先,对管理会计信息化概念和建设意义没有正确的认识,有甚至由于对于企业自身的认识不够充分,会对管理会计信息化的趋势产生了质疑和抵触心理。

再者,只有在一些发展较好的企业中进行了管理会计信息化的建设工作及应用,但是,企业应用所产生的效果并不是很理想,进而促使管理会计信息化在企业的发展速度缓慢。

(二)管理会计信息化程度较低

大数据时代下,信息化手段已经在我国众多领域已经得到较为广泛的应用和发展,在此发展过程,我国的管理会计信息化的应用和发展也得到了非常多的关注。

但是,由于管理会计在我国受重视程度不够,企业在进行管理会计信息化建设的过程中对与软件的设计和应用也要求较高,所以与管理会计信息化建设相关的基础建设还相对较落后。

(三)管理会计信息化理论与企业经管机制不协调

虽然随着国家政策鼓励和扶持,很多行业的不断涌现出新的企业,企业数量不断增多,但是由于这些企业在规模以及效益等方面都存在着较大的差距,同时在管理决策方面也产生了显著地差别。

很多企业在发展的过程中并没有实现真正的权责统一,产生了管理层短视行为,没有充分考虑企业的长远利益等管理水平低下的问题。

三、管理会计信息化建设的措施

(一)适应企业管理会计信息化发展的外部环境

企业在进行管理会计信息化建设时,要结合企业所处的外部环境进行全方面的规划和建设。

在企业进行规划和建设时,国家的法律法规等相关政策占据着十分重要的位置,需要对市场经济发展的相关法律法规进行充分理解和考虑,为企业管理会计信息化建设提供好的法律环境。

管理会计信息化系统的正常运转要求企业处于相对较好的环境之中,以此充分发挥出其应有的作用。

(二)管造合适的管理会计信息化发展内部环境

企业管理会计信息化的良好发展要求企业能够提供良好的内部环境。

树立有效推进企业管理会计信息化建设的企业文化,企业文化作为企业股东、懂事、管理层以及每个员工的价值观念体现,

有利于各级员工都能够正确认识到管理会计信息化建设的重要性,接受管理会计信息化的价值取向。

再者,企业要储备足够的管理会计人才,为管理会计信息化的建设提供源源不断的血液。

同时,为企业管理会计信息化建设提供强大的资金保障。

最后,对企业内部控制体系不断完善,为企业创造长足的生命力,为管理会计信息化赖以生存的环境。

(三)开发统一的企业信息化管理平台

在大数据时代下,信息化不断发展,对于企业而言,会同时使用多种不同的信息系统进行组合使用,并且这种情况在未来也可能将持续下去,企业需要建立综合统一的企业信息化管理平台。

四、结束语

管理会计信息化已经成为企业发展的重要趋势。

同时也面对着一些问题。

因此,相应的措施和不断地完善和改进是必不可少的,以此才能够促进管理会计信息化的不断发展。

作者:李瑞君 单位:河南大学

参考文献:

[1]冯巧根.

管理会计的理论基础与研究范式[J].

会计之友,2014(32).

[2]张继德,刘向芸.

我国管理会计信息化发展存在的问题与对策[J].

会计之友,2014(21).

[3]韩向东.

管理会计信息化的应用现状和成功实践[J].

会计之友,2014(32).

大数据论文【2】大数据会计信息化风险及防范

摘要:

随着科学技术的不断进步和社会经济的不断发展,大数据时代的发展速度加快,同时也推动着会计信息化的发展进程,提高了企业会计信息化工作的效率和质量,资源平台的共享也大大降低了会计信息化的成本。

但大数据时代下会计信息化的发展也存在一定的风险。

本文将会对大数据时代下会计信息化中所存在的风险给予介绍,并制定相应的防范对策,从而使大数据时代在避免给会计

信息化造成不良影响的同时发挥其巨大优势来促进会计信息化的发展进程。

关键词:

大数据时代;会计信息化;风险;防范

前言

近年来经济全球化进程不断加快,经济与科技的迅猛发展,我国在经历了农业、工业和信息时代以后终于踏入了大数据时代。

大数据是指由大量类型繁多、结构复杂的数据信息所组成的`数据集合,运用云计算的数据处理模式对数据信息进行集成共享、

交叉重复使用而形成的智力能力资源和信息知识服务能力。

大数据时代下的会计信息化具有极速化、规模性、智能性、多元化、和即时高效等特点,这使得会计从业人员可以更方便快捷的使用数

据信息,并在降低经济成本的同时有效实现资源共享,信息化效率逐渐增强。

但同时大数据时代下的会计信息化也面临着风险,应及时有效地提出防范对策,以确保会计信息化的长久发展。

一、大数据时代对会计信息化发展的影响

(一)提供了会计信息化的资源共享平台

进入大数据时代以来,我国的科学技术愈加发达,会计信息化也在持续地走发展和创新之路,网络信息资源平台的建立使数据与信息资源可以共同分享,平台使用者之间可以相互借鉴学习。

而最为突出的成就便是会计电算化系统的出现,它改变了传统会计手工做账的方式,实现了记账、算账和报账的自动化模式,

提高了会计数据处理的正确性和规范性,为信息化管理打下基础,推进了会计技术的创新和进一步发展。

但是“信息孤岛”的出现证明了会计电算化并没有给会计信息化的发展带来实质性的变化。

随着大数据和人工智能技术的发展,未来的保险保障将不仅仅能提供经济补偿,还能实现损失干预,具体到人身险方面,以下是我精心整理的大数据和人工智能论文的相关资料,希望对你有帮助!

基于大数据和人工智能的被保险人行为干预

【摘要】随着大数据和人工智能技术的发展,未来的保险保障将不仅仅能提供经济补偿,还能实现损失干预,具体到人身险方面,则可以实现对被保险人行为的干预,降低给付发生的概率和额度,提高人民健康水平。基于此,文章介绍了利用大数据和人工智能技术对被保险人行为干预的优点及干预方式,并预期可能实现的干预结果,最后对保险公司进行被保险人行为干预提出了阶段建议。

【关键词】大数据 人工智能 行为干预

近年来随着大数据和人工智能技术的发展,越来越多的领域应用这些技术来提高自身的专业水平。保险作为基于大数法则进行风险管理的一种方式,对数据的处理和应用要求更高。目前大数据技术在保险业的应用主要是精准营销、保险产品开发和理赔服务等,但在保险中的防灾防损方面的应用还不够。如果能够深入挖掘大数据在被保险人行为方面的研究,再结合人工智能进行智能干预,则可以对被保险人实现有效的风险管理,提高被保险人的身体健康状况,从而极大程度的提升客户效用,提高社会整体福利水平。

一、被保险人行为干预简介

行为干预是通过对环境进行控制从而使个体产生特定行为的方式,目前主要在教育,医疗等方面发挥作用。但在被保险人管理方面,行为干预应用很少。现行的对被保险人的管理主要集中在投保审核的过程中,而在投保后提供的服务和干预很少,一般也就是提供健康体检等服务,而对被保险人投保后的日常生活行为方式,健康隐患则基本处于放任自流的状况。而被保险人行为干预则是通过对被保险人日常生活行为,饮食习惯等进行实时数据收集和分析,然后制定干预方式进行针对化管理的模式。

二、利用大数据和人工智能进行被保险人行为干预的优点

实现精准、良好的对被保险人的行为干预,需要利用大数据和人工智能技术。大数据相比传统数据具有海量、高速、多样等特点,它实现了对信息的全量分析而不是以前的抽样分析。在被保险人行为干预模式中,需要对每一个个体的日常生活作息,行为,饮食,身体健康指标的进行实时数据采集,然后进行分析,这用传统的数据统计方法是难以做到的。利用大数据技术进行分析能从海量信息中获取被保险人的风险状况,从而为精准干预提供基础。简单的干预难以实现特定的干预结果,而人工智能则让干预显得更加自然,让被保险人更加易于接受,从而很大程度上提高了干预效果。

三、如何利用大数据和人工智能进行被保险人行为干预

利用大数据和人工智能进行被保险人的行为干预主要有以下步骤:

首先利用人工智能设备进行被保险人数据收集,除了目前的手机APP,网络等软件和设备上的数据能够被收集外,未来人工智能家居能提供更多的被保险人信息。例如提供体重、坐姿等数据的椅子,提供饮食时间和品种的筷子,提供身体运动和健康数据的智能穿戴式设备等等。数据收集后,需要利用大数据技术对海量数据进行清洗,去噪等技术处理,然后对数据进行分析。第三步是根据数据分析结果,制定具体的行为干预方案。最后一步是根据制定的方法,利用人工智能进行干预,如智能椅子调整坐姿,智能厨具减少含油量,针对性的健康食谱推荐,锻炼提醒,智能家居辅助锻炼等等。与此同时,新一轮的数据收集又开始了,整个过程是连续进行,不断循环的。

四、利用大数据和人工智能进行被保险人行为干预的预期成果

对被保险人来说,这种干预方式能有效的进行健康管理。未来的健康保险将成为个人真正的健康管家,从日常生活行为,到身体机能都能提供很好的干预,并且让良好生活方式的养成更加容易,从而提高自身的健康状况,达到更好的生活状况。但另一方面,全面数据化,智能化的方式可能会带来很大的数据泄露风险,所以如果保护客户私密数据是另一个值得研究的问题。另外,对于投保前健康状况较差的客户,或者是对行为干预较为抵制,干预效果较差的客户,可能需要承担更多的保费。当然对于优质客户和乐于提升和改变的客户则可以享受到更加优惠的费率。也就是说在大数据和人工智能技术下,客户进行了进步一步细分。

对保险人来说,行为干预能够降低被保险人的风险,很多疾病能实现防范于未然,降低赔偿程度。另外,借助大数据和人工智能,保险人还能根据分析结果,被保险人对干预的反应等进行客户的进一步分类,从而实现区块化管理。但这对保险公司也提出了更高的技术要求,尤其在前期,可能会带来加大的成本。

五、保险公司推进被保险人行为干预的建议

对于保险公司来说,目前的一些人工智能技术还未能实现,或者成本高昂,难以普及。所以现阶段对保险公司来说首先是提高大数据能力。

具体来说,首先是利用大数据对公司已有客户信息进行数据挖掘,包括承保数据,理赔数据等,从而一定程度挖掘出客户的特征,并提供服务。如根据挖掘出的性别差异,地区差异,年龄差异等,提供不同的生活建议。

如果公司已经充分进行了自身客户已有数据的挖掘,则可以利用目前的手机APP,佩戴设备进行数据的进一步收集。例如,利用薄荷、饮食助手、微信运动、春雨掌上医生、血糖记录、小米手环等数据进行用户数据收集。同时可以针对被保险人开发专门的手机APP,集数据收集和服务于一身。

更进一步,保险公司可以尝试与其他高科技企业合作,开发一些智能穿戴式设备,智能家居等,逐步实现对被保险人的行为干预。

参考文献

[1]彼得・迪亚曼迪斯.将会被人工智能和大数据重塑的三个行业[J].中国青年,2015,23:41.

[2]王和,鞠松霖.基于大数据的保险商业模式[J].中国金融,2014,15:28-30.

[4]尹会岩.保险行业应用大数据的路径分析[J].上海保险,2014,12:10-16.

下一页分享更优秀的<<<大数据和人工智能论文

大一高等数学论文1000字

论文为了做到层次分明、脉络清晰,常常将正文部分分成几个大的段落。这些段落即所谓逻辑段,一个逻辑段可包含几个小逻辑段,一个小逻辑段可包含一个或几个自然段,使正文形成若干层次。论文的层次不宜过多,一般不超过五级,具体如下:

高等数学是大学工科里的一门基础学科。在我学的自动化专业中更显得格外重要。经历了快一个学期的高等数学学习对这门课程有一定认识的同时,在学习的过程中遇到了各式各样的难题与困惑,因此,特对在学习中的遇到困难与将来如何更好的努力,不断提高学习这门课的能力进行了总结,希望在以后的时间里可以有所进步。

高中学习数学我经历过两个数学老师。先说说第一个数学老师吧,这是一个年轻的小伙老师,他以前是教初中的后来通过考试,升就教了高中,我们是他教的第一届的高中学生。

对于这个我第一个高中数学老师我认为他和第二个老师最大的区别就是他上课从来不用ppt,他喜欢写板书,所以每节课后我们都记下满满几页的笔记。这样的教学方式单单就我来说我是不能适应的,因为我喜欢上课跟

着老师教学的思路去学习,但是他要我们上课记下他在黑板上学习的板书,这样就导致我们光顾着去做笔记,却没有跟着他上课的思路去思考问题,不能去理解他讲的是什么,课下对着笔记我们又不记得他上课是怎么讲的。所以高中前部分我的数学一直都不好。

后来因为一些原因我们换了一个数学老师,这是一个我估计快要退休的了老师,这个老师因为教书了很多年很有教书经验,也是他后来拯救了我的高中数学。他给我们上课的第一天就要求我们一定要课前预习和课后复习。

其实之前很多老师也这么要求过我们,但是我都没有很好的去要求自己。我的这个老师虽然年龄有点大,但是一点没有影响他上课的激情,他上课很有感染力,我每节课都跟着他的思路后面去分析问题,解决问题。

课上简单的记一下笔记,但是不能影响我跟着他的节奏去听课,也是后来在他的帮助下高中数学成绩有了突飞猛进。对于高中的数学就做这么多的概述,接下来谈谈大学学习高等数学的心得体会。

我对高数进行了系统性的学习,不仅在知识反方面得到了充实,在思想方面也得到了提高,就我个人而言,我认为高等数学有以下几个显著特点:识记的知识相对减少,理解的知识点相对增加;不仅要求会运用所学的知识解题,还要明白其来龙去脉;联系实际多,对专业学习帮助大;教师授课速度快,课下复习与预习必不可少。

扩展资料

论文要求:

1、题名规范

题名应简明、具体、确切,能概括论文的特定内容,有助于选定关键词,符合编制题录、索引和检索的有关原则。

2、作者署名的规范

作者署名置于题名下方,团体作者的执笔人,也可标注于篇首页地脚位置。有时,作者姓名亦可标注于正文末尾。

像这种论文的话,你可以到网上搜索一下相关的范文来参考一下,你可以输入一些关键字关键词来进行查找。

大学高数小论文

在学习和工作的日常里,大家对论文都再熟悉不过了吧,通过论文写作可以提高我们综合运用所学知识的能力。那么一般论文是怎么写的呢?以下是我整理的大学高数小论文,欢迎大家借鉴与参考,希望对大家有所帮助。

【摘要】本文结合自己对高等数学的教学实践,以及高等数学的教学特点,给出了培养学生主动学习高数的方法和途径。

【关键词】高数;自学能力;会学;乐学

同志曾说:“会学比学会更重要,学会思考比学会知识更重要”。人们常说的“授之以鱼,不如授之以渔。”也就是这个道理。教是为了不教,学是为了会学。因此如何培养学生自学能力,使之找到适合学生自己的独立学习方法尤为重要。笔者结合自己高等数学的教学实践,以及针对石大商学院学生的特点,谈谈教师如何在教学中培养学生自主学习的能力。

一、是明确目标,端正学习态度,认识学习高数的重要性。

刚上大学,有的学生觉得学习数学一下子变得困难起来,开始怀疑自己的能力,有的甚至认为自己没有数学细胞,觉得数学越学越难学,越学越糟糕。其实,同学们没有找到真正的原因。与初高中相比,大学数学内容丰富,推理论证性强,抽象,教学难度大,学习要求明显提高。对于非数学专业的学生来说,感觉高数对自己以后找工作也没用,就是一门基础学科,学与不学都一样,另外再加上原来是文科的学生来说,更感觉是天书,一遇到学习困难就缴械投降,失去了学习的兴趣,从此就不再愿意学习数学。那么这个时候,带课教师的正确引导就变的更为重要。带课教师在高等数学教学前,非常有必要针对这门新课程进行入学教育,结合学生的专业,做些简单的介绍,使学生初步了解这门课程的内容、重要性、学习目的、学习方法及课程大致的教学安排。了解这些是为避免学生开始时就不自觉地进入被动的学习,在学之前就知道为何要学、如何去学。这也为以后的自主学习开了个好头。

二、是努力让学生对高数爱学,乐学,会学。

教学水平的高低通过学生来检验,教学效果优良的课程,学生一定由爱学到会学。其实也就是逐渐培养学生的自学能力,变被动学习为主动学习的一个过程。那么这个过程该如何体现呢?

(1)认真开列自学提纲

主要由教师根据某一单元的教学内容,抓住教学的重难点,给学生列出自学提纲。列题纲的目的就是为了激发学生的兴趣和体现学生积极主动性学习。同时,为了提出高质量的自学提纲,教师就必须要吃透课本,很好的把握教材的重难点。如在讲《线性代数》的矩阵概念和运算这一节的内容时,可以给学生列出这样的提纲。

1、什么是矩阵?也就是矩阵的概念。

2、矩阵与行列式的区别在哪?从形式上有什么区别?

3、矩阵都有哪些运算?具体的'每一种运算都是如何来进行的?在数k乘矩阵的运算与数k乘行列式的运算的区别在哪?在此基础上,学生就可以自学来解决这些疑问。

(2)提高学生的数学阅读能力

提高学生的数学阅读能力是培养学生自学能力的关键。自学能力的核心是数学阅读能力,数学阅读能力提高了,也会促进其他能力的发展。由于大多学生受传统教学的影响,习惯听老师讲,思维上养成惰性,被动的接受,从来不去自己主动的学习,老师讲多少就听听多少。这也是一部分学生对数学经常有“一讲就懂,一看就会,一做就错”的原因。只会用公式去套题,或用题去套公式,没有正确的解题思路,不会思考,更不善于思考,也就不能举一反三。因此,要让学生学会自学,必须学会阅读,这就需要教师加强对数学阅读的指导。把握数学阅读的“四种读法”。“四种读法”是指:

a、“泛读”:要求对本节课的大致内容有初步了解,了解基本内容;

b、“细读”:要求对所读内容有全面的一个了解,弄清定理、公式的性质,明确公式、例题的渐进梯度和知识关联的范围;

c、“精读”:在泛读的基础上,对与重点、难点有关的内容进行阅读,着重掌握数学内容的知识体系,既要知其然,又要知其所以然;

d、“熟读”:要求学生通过阅读,总结规律,融会贯通,基本内容烂熟于心。

(3)注重练习,及时的进行归纳总结

数学课不同于其它课,最大的窍门在于多练,孰能生巧。只有通过大量的做练习题,才能更好地巩固本节课的知识点,才能掌握更多的解题技巧,才能把失误降到最低点。平时练习太少,计算能力太差,考试的时候一做就错。另外,在做完题后及时的进行总结。就拿行列式的计算来说,只有多多练习,在做完题后,及时针对不同的行列式进行方法总结,你才能掌握求解行列式的技巧,比如定义法,目标行列式法,降阶法,升阶法,归纳法等等。掌握了方法后,在做题的时候,才能根据行列式的特点选择正确的计算方法。

(4)引导学生做好预习、复习,培养自学习惯

为了培养学生的自学能力,预习和复习也是非常重要的。通过预习,学生才能更清楚的知道自己对本节的哪个知识点看不懂,带着问题听课,听课的时候有所侧重,这也在某种程度上起到一种激发学生学习的兴趣,正因为不会,上课才要更好好的听老师讲,使学生“乐学”。学生一旦有了学习兴趣,特别是直接兴趣,学习活动对他来说就不是一种负担,而是一种享受、一种愉快的体验,学生会越学越想学、越学越爱学,有兴趣的学习事半功倍。相反,如果学生对学习不感兴趣,情况就大相径庭了,学生在逼迫的状态下被动学习,学习的效果必定是事倍功半。当然课后复习也特别的重要,学生往往不太重视对概念的理解,以致导致学生课堂上啥都听懂了,下去做题问题就出现了,其实这是学生对概念没吃透,稍微变下题型就不知道从哪下手。复习不是翻开书走马观花,要找到自己不会的地方,增强记忆。因此这一方面,老师一定引导学生围绕学习重点,理解相关的内容,在概念,理论以及方法上下功夫。

(5)创造良好的课堂氛围

大量的教学实践证明,要求学生循规蹈矩,洗耳恭听的课堂学习环境是不可能吸引学生好奇、自由想象和大胆质疑的,学生在这种环境中,学的被动,学的压抑,当然不可能调动起学习积极性。因此我们要营造良好的学习氛围,才能使学生愉快地、主动地参与到学习中来。要摒弃传统的“注入式”教学模式,给学生一定的时间和空间,启发诱导学生积极思考,主动参与,鼓励学生发表不同的见解,活跃氛围,让他们真正体会到他们是学习的主人。教师在讲课过程中要吸引学生眼球。教师讲课的内容要承前启后,突出重点,讲透难点;讲课的语言要规范,准确,力求生动;讲课的声音不仅要洪亮,而且要悦耳;语调要抑扬顿挫,有起伏,有高潮,还可以适当采取诙谐幽默的语言。教师在讲课时目光一定要关注学生的表情,看学生是否听课,注意力是否集中,是否听懂,切不可背向学生念讲稿。在教学的过程中,教师要调动学生的思维,可以恰当的在课堂中提问,或自问自答,或组织学生当堂讨论,或者给学生上台展示的机会,或者是如果课时容许的情况下辅导学生备课主讲某节内容,然后教师讲评,最后教师把学生讲的不到位的地方,再加以补充,效果很好。

在课堂练习中,让个别同学在黑板上做,做完教师并不要急于评价谁是谁非,而让其他学生自己来评讲,解错了,要分析原因,找出错误的症结,再重新做一遍。这样做,不但使得练中有思,而且锻炼和培养了学生的思维品质,正确的该怎么做;解对了,要想有没有更好的解法,鼓励学生采用多种方法解决问题;这样大家集思广议,不但把问题解决了,而且还可以拓宽大家的思路,使他们相互启发,共同进步。

(6)充分利用现代化高科技的教学手段

充分利用现代化教学手段,提高学生自学的能力。两方面,一方面是老师要根据该课程的特点,高数内容多且抽象,若能采取多媒体+适当板书的讲授,定能事半功倍。另外在课件的制作过程中可以使用动画,图案的效果,达到吸引学生的注意力。另一方面就是学生要利用网络优势,学会查找学习资料以及充分利用相关媒体资源。特别要注意网上学习资料的下载和学习,比如本学校的网络教学平台,任课教师一般会在教学平台上传该课程的教学大纲,教学日历,以及相关的学习课件,练习题。

这是笔者借鉴同行以及自己在教学过程中的一些体会,目的在于培养大学生学习数学的一种自学能力,或者说一种兴趣,要培养学生爱学,乐学数学;不要一提起数学,大家都很头疼的。总之,只有转变教学观念,只有以学生为中心,充分发挥学生的主体作用,通过教师适当的点拨引导,才能全方位地提高学生的综合素质,达到培养和提高自学能力的目的。

参考文献:

[1]徐振华.关注学生差异,提升有效教学[J].教育研究与实验,2010(12).

[2]马德炎.谈创新与大学数学教育[J].大学数学,2003(1).

“数学是美的。”经常有数学家这么讲,那么,数学到底美不美呢?大一第二学期我们接触了高数这门课,本来觉得应该比高中的数学稍微难一点吧,可是一上课才发现并不是难一点,而是难很多很多,比高中的数学更加抽象,更加难理解。但是慢慢的你会发现其实高数是一门学问,而且这门学问也有他的美。仔细想了想,发现数学的美体现在方方面面,就比如自然之美,简洁之美,对称之美,逻辑之美等等,中国悠久历史所积淀出来的文学底蕴,为中国的数学染上了一层夺目的别样的颜色,这就是数学之美,总之,数学并不像有些人认为的那般鼓噪乏味,他不是定理公式的积累,而是一种美的学科。在中国书香四溢的文学背景下,数学也闪烁着不一样的光辉。也经常听到有同学发出这样的疑问:“我们为什么要学数学?”不知道这些人当中有没有认真思考过这个问题,我倒是稀里糊涂读到大学才明白一点的。数学,我们学的应该是一种严谨的思维,一种观念。出了学校门,如果我们还能经常使用数学的眼光来观察周围事物,那么,这个数学才没有白学。我一直觉得,如果你把函数真学懂了,对已知和未知的依存关系就会特别敏感,社会上的许多看似纷繁复杂的事件,在你眼里就能看到关键因素,形成函数式。你会有另一种看待万事万物人视野。我们学数学,目的是学解题技巧?是挤进名校的砝码?还是将来能谋份不错的职业?数学的发源地在希腊,注定数学的性格就是超越的,我们把它作为换取利益的工具时,一开始这条路就走岔来的。所以,要培养好我们学数学,最初就要培养我们有良好的数学素养,求真,求美,求善。当然,数学一直是人类文明发展的主要文化力量,同时人类文化的发展又极大地影响了数学的进步;而且,数学还是一种艺术,因此,数学不但具有科学价值,还具有文化和艺术的价值。那么,这就需要我们一步步的认知到数学的各种价值,可以从生活中的数学学得数学思想方法与文化以及数学与人文精神、文化素质间的联系。总之学好高数,此生不后悔。

数学与生活论文1000字大一

让学生学习生活中的数学——我校开展数学实践活动的做法及体会自主、合作、探究是新课程学习方式的三个基本维度,适时有效地开展数学实践活动,让学生在实践中自主、自悟、自得,从而将书本知识内化为自己的知识、技能,有利于培养学生学习数学的兴趣,促进学生个性、特长和谐发展,从而全面提高学生的综合素质。下面谈谈我校开展数学实践活动的做法及体会。(一)一 选取内容要符合学生年龄特点,可操作性强。数学实践活动是一项实践性较强的活动,是教师结合学生生活经验和知识背景。引导学生自主探索和合作交流的学习活动。这个活动必须建立在学生原有知识的基础上,是其年龄段感兴趣,做得了的。只有这样,学生才能在活动中更好地积累经验,感悟、理解数学知识的内涵。发展解决问题的策略,体会学习与现实生活的联系,调动学习情感,为今后更有效地学习打好基础。本学期我们在一年级学生中开展了“问题银行”活动,提供探究性学习场所,让学生敢问、会问、善问,并以各自不同的方式理解和解答问题。学生通过同学间的合作、问爸爸妈妈、爷爷奶奶、找课外书等途径,让学生从以往什么都是“老师说”的怪圈中跳出来,从小养成积极思考,敢于探索的良好品质。活动中,同学共提出不同问题100多条,一年四班黄悦同学一人提出八个问题,表现出了良好的问题意识和求异思维能力。二年级开展了“我家的数字”活动,同学们通过度一度,量一量,对书本上介绍的长度单位的认识由抽象到直观。并通过电脑合成、手抄报等形式展示了各自的才能三年级“寻找家中的周长”;四年级“生日派对方案”;五年级“我的设计”;六年级“走出课堂、走进银行”等,这些活动,符合学生的年龄特点,是课堂学习的延伸和拓展。反过来又给课堂教学带来了主动、生动、互动的效果,使课堂教学从“掌握型”走向“创新型”,为同学的自主学习探究学习开辟了广阔天地。二活动过程中,及时交流,互相启发,逐步完善。数学实践活动是一项综合性很强的活动过程。再小的活动都不可能一下子完成。要经历确定活动目标、内容——拟定活动计划——组织具体实施——交流反馈评价等程序。在活动过程中,既要放手让学生去体验,去创造,又要及时反馈、及时指导,还要有一定的时间保证。例如,在学完《圆的认识》后,为使学生能灵活、正确使用圆规画圆,进一步了解圆心、直径、半径等名词,鼓励学生画一幅以圆为主流的平面图。学生作业交上来后,有简笔画、水彩画、想象画、漫画等,种类繁多,色彩鲜艳。但构思比较简单,主题欠鲜明,只是大大小小圆的组合,寓意欠深刻。遇到这种情况,老师并不急于品头论足,而是适时组织同学在小组、全班范围交流创作的意念、创作过程及创作体会。从而感受别人思维的不同。互向启发,逐步完善自己的作品。最后,一批主题鲜明,构思新颖,时代感强的作品脱颖而出。这样,活动让学生经历了失败、尝试了方法、体验了过程,这就是收获!更重要的是,一次又一次的实践活动给学生带来了学习方式的变革以及知识、能力方面的提高与发展。三关注过程与方法、情感与态度而不仅仅是结果。综合实践活动是教师指导下的学生自己进行的合作学习活动。实践活动的开展,是让学生通过自己的亲身经历来了解、关注,并试着去分析解决自己所关注的问题。这些问题在我们看来可能是幼稚的,没有意义的,而有些问题是他们根本无法解决的。但我们更明白,综合实践活动的根本目的不是只为了让学生真正解决某个实际问题,更不是要一个完美的解决办法。而是注重在关注并试图解决这个问题的过程中,学生是怎样发现问题的,是怎样思考并试图解决问题的,在关注这个问题的过程中有所体验,有所感悟,学生的身心、情感、思维、态度都有了哪些变化。通过实践活动来认识自己,关爱生活、发展自己,这才是开展实践活动的目标所在。《数学课程标准》中指出:“教师应该充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,以体会数学在现时生活中的应用价值。”在学习《统计表、统计图的整理和复习》时,我们组织学生,以小组为单位,通过网络、调查访问、翻阅书报、杂志、课外书获得信息,巧妙地制成统计图或统计表。在这一活动中,数学知识不再是脱离生活的各种练习,而是充分体现实践活动的再创造。情感体验伴随着活动的始终。因此,他们敏锐的新闻触觉,扎实的数学基础知识、良好的审美观念等,展现了现代孩子超人的想象力和创造力,体现了学生的创新意识和创新品质。另外,在每次活动中,我们都十分关注学生的个体差异。注意保护每一个孩子的自尊心和自信心,让学生在活动中互相交流,在评价中点燃思维的火花,拓展知识的视野,了解斑斓的世界,共享成功的喜悦。(二)一 师生互动,有助于教师观念更新在综合实践活动中,居高临下的师道尊严受到冲击。综合实践活动毕竟是一个崭新的课题,它面向的不仅仅是学生,而是更广阔的生活世界,在纷杂的世界里,学生是学生,教师也是学生。而在某些方面,学生比老师更富有想象,创新能力更强。这就意味着老师要向学生学习,让师生关系真正走向平等。使老师对自己的教学认真反思,调整自己,以适应新的形势。六年级同学的《环市中路行车情况统计表》、《我国搜寻飞行员王伟派出舰船、飞机数量统计图》等,表现了现代孩子对社会的关注。他们已不再只是向老师学习加、减、乘、除运算的小不点,而是关注社会大家庭的一分子。在综合实践活动中,老师作用的最大发挥,是为学生在自由空间的自由展现创设良好的氛围,提供广阔的空间。给学生信心,相信学生自己有能力,能做好。老师自己要虚心,不先入为主,不存偏见,设身处地,为学生着想,为学生的终身发展着想。尊重学生个性,尊重人与人的差异,使每个学生在自己原有的基础上,有所提高,有所发展,而不能强求一律,厚此薄彼,建立真正平等的师生关系。二 学身边的数学,学生有浓厚的兴趣数学实践活动是数学活动的教学,是师生之间,生生之间互动与共同发展的过程。在这个过程中,要重视学生参与的情感体验,让学生在活动中感受数学,体验数学的作用,培养学生自觉地把数学应用于实际的意识和态度,使数学真正成为学生手中的工具,体会到数学巨大的应用价值。二年级学过长度单位厘米、分米、米后,通过量一量家人的身高,家用电器的长、宽等,培养了学生的数感,提高了学生应用知识的能力。三年级“寻找家中的周长”,五年级的“我的设计”等把现实生活中的实际问题转化为数学问题,使学生的实践应用能力得到提高。这样学生不仅可以把书本上的知识与实际联系,体会到数学的社会价值,还可以学到书本上学不到的知识,在实践中使知识得到升 华。学生觉得,他们今天的学习与生活密切相关,真正实现了愿学、乐学、会学。三 综合利用知识,有助于学生综合能力的提高《数学课程标准》指出:“有效的数学活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”学生通过数学实践活动了解数学与生活的广泛联系,学会综合运用所学的知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法。综合起来。能培养学生这几方面的能力:一是收集信息、整理信息的能力;二是与他人合作交流的能力;三是利用所学知识解决实际问题的能力等。更重要的是,在数学实践活动中,学生经历观察、操作、实验、调查、推理等活动,在合作与交流的过程中,获得了良好的情感体验,感受数学知识间的相互联系,体会数学的作用。促进学生全面、持续和谐地发展。这是21世纪拔尖人才所必须的素质,也是《数学课程标准》所倡导的新的学习方式。学科实践活动作为一种新的学习内容及方式,对于我们来说是一个崭新的课题。在实践和探索中我们认识到,学生的学习不仅是知识的积累,更应在知识应用中强调灵活应用的意识;不仅要让学生主动地获取知识,还要让学生去发现和研究问题;不仅要让学生运用知识解决实际问题,更要在寻求问题解决的过程中激发学生的创新潜能,感悟学习思想和方法。

数学,多么精确、客观的一门基础科学!可是,她虽然是最客观的,同时她也是最贫穷的。{在提供对事物和人生的内在意义的解释上是最贫穷的。我真正喜欢上数学是在高中的时候。虽然在初中我的数学成绩也是名列前茅,但还谈不上喜爱。上高中,我渐渐的喜欢上数学。可是由于我平时不爱做题,所以考起试来速度太慢,结果总是拿不到高分。不过我的准确性很高:我的同桌看到我的试卷上的选择题老是满分都有点嫉妒了。我不爱做题的原因在于:我不想被那些很具体的问题纠缠——别忘了:哲学家是普遍性的朋友。还记得学到向量那一章时,多个向量的加减法具有一个特点:无序性。我这个人喜欢穷根究底,所以我非要找到每一事物的根据不可。我苦思冥想,最后我找到了一种很直观的方式证明了向量的这个特征。这个方法的核心就在于:把每一个向量分解为两个垂直向量。由于在电脑上我不会画图,所以在这里我就只能对那些喜欢数学的朋友说声抱歉了。又比如余弦定理,我也自创了一种很直观的证明方法。我的证明光凭眼睛就可以看懂。再比如二项式定理,我可以通过一个简单的跳步游戏来解释。用我的方法,一个初中生都可以不费力的理解这个定理。当然,得先掌握排列和组合的基本概念。还有微积分基本公式,我曾经因为找到一种很形象的证明方式而激动不已。数学中的极限思想非常吸引我。解析几何也很诱人:用坐标来表示点、用方程来表示曲线、通过方程来间接地研究曲线的几何特性。可是,用代数方法来分析几何问题遭到了卢梭的嘲笑。古代的哲学家中有人甚至认为世界图象一定是数学性的。上大学以后我对数学已经没有从前那份痴了。随着时光的流逝,我渐渐的明白:数学研究的只是客观世界的空洞的形式:时间和空间。我的生命重心转移到了哲学上。我的生命历程告诉我:哲学比数学重要得多!于是我的生活发生了变化:我把我的智力分为两重:一重发挥在关系自身的事务上;另一重则发挥在对事物的客观把握上面。而后者渐渐成为我的生活的中心。 把我带进哲学殿堂的人是德国哲学家叔本华。我上高一时发现了他。他是我最崇拜的哲学家。对于他,许多人用一两个术语比如“唯意志主义”、“唯心主义”、“悲观主义”等等来概括。而这些概念在人们的意识中都是一些消极的概念。我曾经度过一段美好的日子:那就是夜幕降临时独自一人在火炉边捧读《作为意志和表象的世界》。那时的月光是最美丽的。顺便说一下,依我看,叔本华对毕达哥拉斯定理的图解比不上我国初中数学教科书上的图解。如今的我,对数学的热情已冷却。我甚至疏远了她。这里面的原因我想或许是:一个哲学家是不需要太多的数学知识的!回顾我过去之所以自创出那些证明方法,我想是因为我和别人有一点不同:别人追求的是逻辑性,而我追求的是形象性!有人或许以为在数学中逻辑思维才是最重要的。但我不这样看,合乎逻辑的数学推理只能提供可靠性,至于“为什么是这样?”却没有交代。所以,有许多人不喜欢数学。数学对于他们就像变魔术! 在我的内心深处有一种信念:要把握存在和事物的本质,并不需要逻辑,并不需要过多的科学知识。我深信:哲学不是科学,她是一门艺术!它是生活的儿子,不是实验室的产品!

数学小论文 生活中的数学:关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

你才给5分。谁给你写啊

初一数学论文1000字

关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。生活中的数学有一个谜语:有一样东西,看不见、摸不着,但它却无处不在,请问它是什么?谜底是:空气。而数学,也像空气一样,看不见,摸不着,但它却时时刻刻存在于我们身边。奇妙的“黄金数”取一条线段,在线段上找到一个点,使这个点将线段分成一长一短两部分,而长段与短段的比恰好等于整段与长段的比,这个点就是这条线段的黄金分割点。这个比值为:1:0.618…而0.618…这个数就被叫作“黄金数”。有趣的事,这个数在生活中随处可见:人的肚脐是人体总长的黄金分割点;有些植物茎上相邻的两片叶子的夹角恰好是把圆周分成1:0.618…的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。建筑师们对数0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或是近代的埃菲尔铁塔,都少不了0.618…这个数。人们还发现,一些名画,雕塑,摄影的主体大都在画面的0.618…处。音乐家们则认为将琴马放在琴弦的0.618…处会使琴声更柔和甜美。数0.618…还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—2000克之间。为了求得最恰当的加入量,通常是取区间的中点进行试验,然后将实验结果分别与1000克与2000克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做实验,直到得到最理想的效果为止。但这种方法效率不高,如果将试验点取在区间的0.618处,效率将大大提高,这种方法被称作“0.618法”,实践证明,对于一个因素的问题,用“0.618法”做16次试验,就可以达到前一种方法做2500次试验的效果!“黄金数”在生活中竟有如此多的实例和运用。或许,在它的身上,还有更多的奥秘,等待我们去探寻,使它能更好地为我们服务,为我们解决更多问题。

初一年级数学小论文“对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用到数学。”数学与我们的生活息息相关,数学的身影无处不在。 初一年级的几何是较复杂的一种题目,随常常搞得脑袋一团浆糊,但当解开一题的喜悦感也是无法形容的。全等三角形的解题方法算是简单的,但同解其他几何图形一样,也需要认真的读题目,用所给的条件延伸出另一个或几个关键的条件用来解题。 全等三角形的解题方法很简单,用于普通三角形的有4种,分别是靠两个三角形的边角边、角边角、角角边或边边边的相等而全等。当然,三角形中也有特例,比如直角三角形,他拥有一种他自己的解题方法——“HL”。“H”是指直角三角形的斜边,“L”是指直角三角形的一条直角边。如此,一条直角边和斜边对应相等的两个直角三角形全等。直角三角形也不是只可以用那一种方法,用于不同三角形的方法也可以用于直角三角形的。 那让我们先来热个身吧,先来看下边一道题:(此图为自作) 如图,已知AC丄BC,AD丄BD,AD=BC,CE丄AB,DF丄AB,垂足分别是E、F。证明:CE=DF. 题目中已经告诉我们两个垂直条件,AC丄BC,BD丄AD,所以△ACB与△BDA为直角三角形。再仔细看看图就能发现这两个Rt△有一条公共边AB,再加上已知条件AD=BC,就可以证全等了:在Rt△ACB与Rt△BDA中 AD=BC AB=BA 所以Rt△ACB≌Rt△BDA(HL) 因为题目所让我们求的是CE=DF,为了求证这个就必须求△ACE全等于△DFB,首先题目告诉我们了,CE丄AB,DF丄AB,,所以这又是两个直角三角。上面我们已经证明了一个全等,就可以利用上面全等的条件了,因为Rt△ACB≌Rt△BDA,所以AC=BD.又因为AB=BA,且EF为公共边,所以AE=FB,这样就又可以用HL来求这两个图形的全等了: 在Rt△ACE与在Rt△BDF中 CA=DB AE=FB 所以Rt△ACE≌Rt△BDF(HL) 所以CE=DF(全等三角形的对应边相等) 就这样,一道全等的几何体就完成了。其实只要认认真真的读题,将几何的基本概念掌握清楚,还是可以很容易就做出来的,可以在做题目的时候,在图上标标画画,这样更有助于理解。遇到很长的题目也不要害怕一字一字的慢慢读,不要着急,静下心来,利用自己所学过的知识,懂得变通,灵活一些,你会发现数学还是很有趣的!

数学家庭中的一对孪生兄弟――浅谈轴对称图形的应用数学的世界真可谓是浩瀚无比。由点到线,由线到面,由面到体。无不蕴藏着丰富的知识。我记得曾经有一句著名的格言:数学比科学大得多,因为它是科学的语言。可想而知,数学的伟大与魅力了吧!然而,在数学的大家庭中。有一对兄弟深深的吸引了我,他们的形状,他们的关系,他们的普遍性,让人觉得他们一直在我们的身边,离我们很近很近。他们就是轴对称图形。轴对称图形是一个一定要沿着某直线折叠后,直线两旁的部分互相重合的图形,之所以说到他们的关系是因为他们两个总是被一条直线所连着,好似一对分不开的兄弟,关系十分的密切。把他们拉在一起的这条直线就是他们的对称轴。当然这条对称轴就像一个公正的法官。左右两边的长度、面积、大小等,都一点儿也不差,唯一不同的就是他们所朝的方向。在数学的课本上,我们看见过他们的身影,我们也接触和了解过他们。但是他们给我印象更多的,却是他们在日常生活中所扮演、组成的图形或者可以说是事物。一、生活当中的轴对称图形1、自然界中的轴对称图形当我漫步在街头时,我时常看见飞来飞去的蝴蝶。当一只蝴蝶停留在花朵上,张合着翅膀时,我发现如果将蝴蝶两只触角的中点与尾部相连接,连接好的线段所在的那一条直线就是其对称轴。而右边的翅膀就像是左边的翅膀沿着对称轴翻过去的图形。跟蝴蝶一样是轴对称图形的动物还有很多。比如蜻蜓、飞蛾等。如果到了秋天,远看稻田,金黄的一片,不禁使人感觉到又是一个丰收的季节。就在这个令人喜悦的季节里,我行走在田边的小路上,随手捡起了一片金黄的树叶,仔细的观察了一下,发现其实树叶也有对称轴。如果我们将树叶中间的那根经,当成是其左右两边的对称轴,那将树叶右边部分沿着这条对称轴对折过去,正好与左边的一半树叶重合。2、商标中的轴对称图形有一次,我跟我的家人去中国银行取钱,我无意间发现中国银行的标志也是一个轴对称图形。这个图形的对称轴有两条。第一条是图标中两竖相连接所形成的,而另一条就是方框上下两条横线连接的线段的中点,所在的那一条直线就是其第二条对称轴。和中国银行一样的还有中国联通、中国农业银行以及奔驰汽车等轴对称图形。但是如果大家觉得前面几个例子,平时都没有注意到的话,那么下面说到的这个例子大家肯定熟悉的不得了。这个例子就是商标,我先来举一个吧。平时我最大的兴趣就是吃零食。所以我对“旺旺”这个商标熟悉的不得了。我发现在旺旺这个商标当中,将其头发上的一个中点到两脚脚后跟之间的线段的中点,想连接的线段所在的那一条直线就是其对称轴。也正是这条对称轴将旺旺这个图标分成了相等的两份。像旺旺这样具有对称轴的商标还有很多。比如:五粮液的商标、麦当劳的商标、CONVERSE(匡威)的商标等等。而且这些图形都是我们日常生活中常见的,这也不告诉了我们,只要我们认真、仔细的观察生活,数学的无处不在吗。二、建筑当中的轴对称图形说了生活中较为普通也较常见的轴对称图形后,也应该说说在建筑方面关于轴对称的宏伟建筑了。像我们中国的天安门城楼。如果用线段连接天安门城楼的左右两边,这条线段的中点所在的直线就是对称轴了,这条对称轴不就把天安门城楼分成了相同的两份了吗?法国的埃菲尔铁塔,是法国标志性建筑之一。它的对称轴就是把铁塔底部的两边相连接。连接后的线段的中点与塔尖的点相连接的线段所在那一条直线了。还有一些建筑也利用了轴对称的方法,他们在建筑的前方建了一个很大的水池,使建筑倒映在水中,从而形成了轴对称的效果,也增大了空间,使原本的建筑更美观,更加壮观。像泰姬陵,它不就是建筑与轴对称图形相结合的最好例子吗。在地球的另一边,有一座建筑物深深地影响着整个世界的历史,这座建筑物就是白宫。这是一座位于美国华盛顿的著名行政大楼。白宫著名的背后,轴对称起了极其重要的作用。白宫它的对称轴就是顶部的点与底部左右两边线段的中点,相连接的线段所在的那一条直线。对了,还有我们每个人家里都会有门,一些建筑师为了使门显得更加大气,更加庄重。就把门进行设计,使门的左右两边相同,古代衙门的大门和一些官府府邸的大门也设计成了轴对称的形式。使大门显得更加有气势,愈发显的威严。从中我们也不难发现,只要懂得轴对称图形,善于利用轴对称图形,就能使轴对称图形溶入到方方面面。三、文学当中的轴对称图形1、文字中的轴对称图形每个人都知道,我们中华民族有着5000年的悠久文化。这么多年的文化所沉淀下来的瑰宝可谓是数不胜数。剪纸是我们民族十分古老的民间艺术之一。就是在这艺术品当中也不乏有轴对称的应用。让我来举个例子吧。我还记得以前我奶奶教我剪繁体的“喜”字时,首先是将红纸对折一下,之后用剪刀在纸上挥舞了一会。打开刚刚对折的纸时,出现了一个“喜”字,当时我看了之后,心里那个高兴啊,惊奇啊,但是就是不知道为什么会这样。现在长大了,我也知道了其实在剪“喜”字的过程当中,也运用了轴对称。还有许多剪纸作品,也正是因为有了轴对称的存在,使其更加精致、美观。当然我们现在所写的简体字中,也有轴对称。如“丰”“目”“尖”等。文字的对称轴较为好找,横一横,竖一竖,基本上就能够找到。其实有时候,对称轴也具有复制的功能,它能够把一个字,分成与其相同的两个字,像“二”如果把它的对称轴当作是第一横的中点和第二横的中点,所连接成的线段所在的直线的话。那么左右两边的图案,不是可以近似的看成两个二吗?此时轴对称就具有复制的功能,但是在我的眼里它还具有另一个功能。就拿这个“一”来说吧。与前面相同,也是画竖下来的对称轴。画好之后,要把这条对称轴当成这个字原有的,那么你就会发现。“一”与这条对称轴就组成了一个“十”字。这就是在我眼里轴对称图形的第二个功能。能够使一个字变成另外一个字。2、文学中的轴对称图形刚刚说的都是文字当中轴对称的应用。那由字所组成的句子呢?其实仔细推敲一下,也有。我记得我以前与同学们都在玩一个游戏,就是一个人说出一句话,另一个人马上就得把这个句子反着读出来。在整个游戏过程当中,有一句话给我留下了深刻的印象“上海自来水来自海上”当我们把这个句子反着读一便时,就会发现它与正着读的语序一模一样。再仔细看一看,这又是一个关于轴对称的应用。这么来说吧,如果我们把“上海自来水来自海上”中的水字不看,那么两个“来”字的中点所在的那一条直线,就可以把这句话分成相等的两等份,这不就证明了句子当中也有轴对称的应用吗?这一系列的例子,也让我们看出了轴对称在文学方面所做出的成就,它能使一些作品更加完美,有画龙点睛的作用。也能使文字变化起来,使句子顺口起来。给文字与句子带来更多的趣味,也给文学添上了十分美丽的一笔。四、奥运当中的轴对称图形2008年北京奥运会即将来临。在这个令全中国人都兴奋起来,令全世界人都以不同形式参与进来的盛会中。我们也不难发现轴对称图形——奥运五环旗。我们可以把奥运五环旗(如图一),黄、绿两环相接触的地方点A与黑环上的点B相连接,此时对称轴就是线段A、B所在的那一条直线。在奥运会上有奥运五环旗当然也会有奥运吉祥物,2008年北京奥运会的吉祥物是奥运福娃。仔细看看我们的奥运福娃不禁让人喜欢的不得了。尤其是福娃晶晶更是惹人喜爱。他的憨厚,他的朴实,无不给人亲近的感觉。图二就是福娃晶晶在举重的画面。如果大家看一下图二这张图片,就会发现如果把这张图片中的点A与下端的点B相连接。那么这条线段所在的那一条直线就是福娃晶晶的对称轴。想不到吧,原来奥运福娃也是轴对称图形。还有在奥运会上,当各国的国旗徐徐上升时,又引发了我对轴对称图形的联想。像英国的国旗,它的对称轴就是国旗上下两边线段的中点,所连成的线段所在的那一条直线。像这样的国旗还有很多。如加拿大国旗、意大利国旗等等。轴对称图形的千变万化,使我眼花缭乱,头晕目眩。在它每一次变化中,都可以发现许多的惊喜。轴对称变化它也无处不在,它存在于各个角落,这也给我们研究它带来了很多的便利。在研究轴对称图形的过程中,我懂得了只有我们用心观察,才能发现数学。只有我们认识数学,在生活中善于利用数学,我们才能将数学溶入到方方面面。而且只有我们将数学溶入到方方面面,我们才能更加好的去研究数学。其实数学的世界真的好大好大。此时我真想将自己变成大山伫立在数学当中。变成流水穿梭与数学之中,化为白云漂浮在数学之中,成为鸟儿翱翔与数学之中。真诚的希望大家用发现美的眼睛,去发现数学!感受数学!

相关百科

热门百科

首页
发表服务