首页

> 学术发表知识库

首页 学术发表知识库 问题

钢构件涂层厚度检测系统论文

发布时间:

钢构件涂层厚度检测系统论文

钢结构涂层厚度检测的方法如下:

1、在架结构、梁方面需要每隔1m取一个截面,测定各表面的涂层厚度,计算所有测点的平均值作为该根构件的涂层厚度。

2、钢结构柱、梁,在构件长度方向内每隔1m取一截面,测试构件各表面的涂层厚度来测试所有测点的平均值。

3、顶板和钢楼梯方面,在每平方范围内选取5个点进行涂层厚度的测量,进而进行检测。

钢结构涂层厚度的作用

1、防火。钢结构防火涂层所运用的材料着火点非常低,而且热导率也很低,所以在隔热防火上性能强大。从理论上来说,钢结构防火涂层是不可点燃的,它可以在钢件的表面形成一种屏障,不仅仅吸收热量而且将钢结构整体维系在一个相对较低的温度环境。

2、抗弯。钢结构防火涂层由基本的树脂材料组成,与传统的防火涂层相比较,它的柔韧性和延展性都比较强。在一些建筑上应用可以增加建筑物的整体荷载能力,选择厚度合适的钢结构防火涂层抗弯能力极强。

3、抗震。抗震性能好是钢结构防火涂层广泛应用的原因之一,往往钢材在作为建筑材料使用时会因为外界环境温度的升高而发生脆性增加、抗拉性能下降的问题,这样就很容易断裂。但是表面涂上一层防火涂层就可以有效抗震,增加了它的实用性。

钢结构防腐涂层的检测:1.检测数量:按构件数抽查10%,且同类构件不应少于3件;2.检测方法:用漆膜测厚仪检测,每个构件检测5处,每处的数值为3个相距50mm测点涂层干漆膜厚度的平均值。

钢结构防火涂料涂层厚度检测作业指导书1、范围1.1本标准规定了检验钢结构防火涂料涂层厚度的测定,测点选定、布置和测量结果评定的方法。1.2本标准适用建筑物及构筑物钢结构防火涂料涂层厚度的检验。

取三个点的平均值

钢结构涂层厚度检测论文

钢结构涂层厚度检测的方法如下:

1、在架结构、梁方面需要每隔1m取一个截面,测定各表面的涂层厚度,计算所有测点的平均值作为该根构件的涂层厚度。

2、钢结构柱、梁,在构件长度方向内每隔1m取一截面,测试构件各表面的涂层厚度来测试所有测点的平均值。

3、顶板和钢楼梯方面,在每平方范围内选取5个点进行涂层厚度的测量,进而进行检测。

钢结构涂层厚度的作用

1、防火。钢结构防火涂层所运用的材料着火点非常低,而且热导率也很低,所以在隔热防火上性能强大。从理论上来说,钢结构防火涂层是不可点燃的,它可以在钢件的表面形成一种屏障,不仅仅吸收热量而且将钢结构整体维系在一个相对较低的温度环境。

2、抗弯。钢结构防火涂层由基本的树脂材料组成,与传统的防火涂层相比较,它的柔韧性和延展性都比较强。在一些建筑上应用可以增加建筑物的整体荷载能力,选择厚度合适的钢结构防火涂层抗弯能力极强。

3、抗震。抗震性能好是钢结构防火涂层广泛应用的原因之一,往往钢材在作为建筑材料使用时会因为外界环境温度的升高而发生脆性增加、抗拉性能下降的问题,这样就很容易断裂。但是表面涂上一层防火涂层就可以有效抗震,增加了它的实用性。

钢结构防火涂层厚度检测方法如下:

1、楼板和防火墙的防火涂层厚度测定,可选两相邻纵,横轴线相交中的面积为一个单元;在其对角线上;按每米长度选一点进行测试。

2、全钢框架结构的梁和柱的防火涂层厚度测定,在构件长度内每隔3m 取一截面。

3、桁架结构,上弦和下弦按第二条的规定每隔3m 取一截面检测,其他腹杆每根取一截面检测。

测针与测试图

测针(厚度测量仪),由针杆和可滑动的圆盘组成,圆盘始终保持与针杆垂直,并在其上装有固定装置,圆盘直径不大于30mm,以保证完全接触被测试件的表面。

如果厚度测量仪不易插入被插材料中,也可使用其他适宜的方法测试。测试时,将测厚探针垂直插入防火涂层直至钢基材表面上,记录标尺读数。

钢结构漆膜厚度标准:

当设计对涂层厚度无要求时,涂层干漆膜总厚度:室外应为150μm,室内应为125μm,其允许偏差为-25μm。每遍涂层干漆膜厚度的允许偏差为-5μm。

要求:

建筑钢结构工程防腐材料的选用应符合设计要求。防腐蚀材料有底漆、面漆和稀料等。建筑钢结构工程防腐底漆有红丹油性防锈漆、钼铬红环氧酯防锈漆等。

建筑钢结构防腐面漆有各色醇酸磁漆和各色醇酸调合漆等。各种防腐材料应符合国家有关技术指标的规定,还应有产品出厂合格证。

钢筋混凝土保护层厚度检测论文

基础钢筋混凝土保护层厚度为70mm是因为没有垫层基础梁是梁,保护层应该按照相应环境类别梁的保护层取值一般是40±0.000以下部分不全是基础规范给基础的定义是 基础将结构所承受的各种作用传递到地基上的结构组成部分。

从《钢筋混凝土设计规范》规定来看基础钢筋保护层厚度应从垫层顶面算起,且不应小于40mm。混凝土强度等级不大于C25时,表中保护层厚度数值应增加5mm。若使用年限为100年的结构,保护层取1.4倍则为不应小于56mm。

但混凝土结构设计规范GB50010-2010第8.2.1条及注尚未提到无垫层,在条文说明中只说“根据工程经验基础底面要求做垫层,基底保护层厚度仍取40mm。”,却未肯定地提出本次修订取消了“无垫层”。

扩展资料

从混凝土碳化、脱钝和钢筋锈蚀的耐久性角度考虑,不再以纵向受力钢筋的外缘,而以最外层钢筋(包括箍筋、构造筋、分布筋等)的外缘计算混凝土保护层的厚度。因此本次峐订后的护层实际厚度比原规范实际厚度有所加大。

根据混凝土碳化反应的差异和构件的重要性,按平面构件(板、墙、壳)及杆状构件(梁、柱、杆)分两类确定保护层厚度;表中不再列入强度等级的影响,C30及以上统一取值,C25及以下均增加5mm。

参考资料来源:百度百科—钢筋保护层

参考资料来源:百度百科—钢筋混凝土设计规范

参考资料来源:建筑标准网— 电磁感应法检测钢筋保护层厚度和钢筋直径技术规程

来范文之家看看,有一个你可以参考的,你看看

钢水温度检测系统论文

你好!你的需要做起来很简单,这方便的技术也很成熟,全国各大钢厂都有应用:钢水只要不是沸腾状态(如沸腾可停止加热至不沸腾),就可以用红外测温方法实现非接触式测温。红外测温法可长时间非接触测得钢水温度,测温范围可达3000摄氏度。测温原理是:测温探头吸收物体所发出的红外线光波,经过测温仪内部的数据分析,依据红外线的光学原理,计算出物体的温度值。然后通过输出模拟信号或数字信号,用于PLC、数显表等显示设备的显示。如有疑问可发邮件至:交流。

"幸福校园"有不少形式的论文范文,参考一下吧,希望对你可以有所帮助。第1章 绪 论1.1 温度控制系统的发展状况近几年来,在我国以信息化带动的工业化正在蓬勃发展,温度已成为工业对象控制中一种重要的参数,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。例如:在食品加工、冶金工业、化工生产、电力工程、造纸行业和机械制造等诸多领域中,广泛使用的各种锅炉、加热炉、热处理炉和反应炉等;燃料有煤气、天然气、油、电等。单片微型计算机的功能不断的增强,许多高性能的新型机种应运而生。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,成为自动化领域和其他测控领域中广泛应用的器件,在工业生产中成为必不可少的器件。在温度控制系统中,单片机更是起到了不可替代的核心作用。像用于化工生产的智能锅炉、用于融化金属的加热炉等都广泛应用。

这是我自己用DS18B20做的温度检测程序,复制给你看看,我这是通过串口可以在电脑上的串口助手上显示出实时的温度:#include#include#define uint unsigned int#define uchar unsigned charsbit ds=P1^0;bit flag;uchar count_t0;float f_temp;void delay(uint z){uint x,y;for(x=z;x>0;x--)for(y=122;y>0;y--);}void init() // 串口初始化{TMOD=0x21;SCON=0x50;TH0=0x4c;TL0=0x00;TH1=0xf3;TL1=0xf3;EA=1;ET0=1;TR0=1;TR1=1;}void timer0() interrupt 1{TH0=0x4c;TL0=0x00;if(++count_t0>=20){count_t0=0;flag=1;}}void dsreset(){uint i;ds=0;i=103;while(i>0)i--;ds=1;i=4;while(i>0)i--;}bit read_bit(){uint i;bit dat;ds=0;i++;ds=1;i++;i++;dat=ds;i=8;while(i>0)i--;return dat;}uchar read_byte(){uchar i,j,dat;dat=0;for(i=1;i<=8;i++){j=read_bit();dat=(j<<7)|(dat>>1);}return dat;}void write_byte(uchar dat){uint i;uchar j;bit testb;for(j=1;j<=8;j++){testb=dat&0x01;dat=dat>>1;if(testb){ds=0;i++;i++;ds=1;i=8;while(i>0)i--;}else{ds=0;i=8;while(i>0)i--;ds=1;i++;i++;}}}void begin_change(){dsreset();delay(1);write_byte(0xcc);write_byte(0x44);}float get_temp(){uchar a,b;uint temp;float f_temp;dsreset();delay(1);write_byte(0xcc);write_byte(0xbe);a=read_byte();b=read_byte();temp=b;temp<<=8;temp=temp|a;f_temp=temp*0.0625;temp=f_temp*10+0.5;f_temp=f_temp+0.05;return f_temp;}void main(){init();while(1){if(flag==1){flag=0;begin_change();TI=1;printf("The tempeature is %f\n",get_temp());while(!TI);TI=0;}}}

价格合理!信工毕业 就会单片机

钢筋保护层厚度毕业论文

在网上下一篇就可以了

杭州湾跨海大桥(以下简称大桥)全长36公里,其中跨越海域约32公里。大桥主体结构除南、北航道的钢箱梁外,其余均为混凝土结构,混凝土用量近250 万立方米。而杭州湾为世界三大强潮海湾之一,在自然条件方面,受风、流、潮、气的影响比较大,腐蚀环境比较恶劣[1]。特别是处于潮差区和浪溅区的大桥承台,由于氯离子侵蚀严重,且海水富含氧气,腐蚀相当严重,因此采取防腐措施显得尤为重要。涂层防护是一种保护钢筋混凝土结构较为方便和实用的方法,涂层的致密性远远大于混凝土结构,相当于大大增加了钢筋混凝土层的厚度,从而有效地阻止氯离子、氧气、二氧化碳和海水等腐蚀介质浸入。为了确保大桥的涂装质量,指挥部在选择涂料供应商和考察涂装效果时,在潮差区进行了现场涂装试验。有10 多家单位参加了试验,但现场涂装效果总体不够理想,仅少数试验性能达到要求,大多数试验片效果不好,有的试验片涂装不久后涂层就出现脱落现象。我单位的现场涂装效果比较理想,试验室检测性能优异,被选中为大桥涂Ⅰ、涂Ⅱ标段提供涂料,并且实际涂装效果很好。众所周知,提供性能优异的涂料和严格的施工工艺过程是确保涂装质量的两大关键因素。而大桥海中承台的表湿区涂装条件更为苛刻,可涂装时间短、表面含水率高、涂层不能在大气中彻底固化、施工环境恶劣等等因素影响着涂装效果。因此,系统地介绍大桥海中承台表面涂层质量控制对确保潮差区混凝土结构涂装质量具有十分重要的意义。1 腐蚀环境特点和涂层体系设计1.1 腐蚀环境特点杭州湾腐蚀环境属于海洋腐蚀环境,氯离子渗透危害严重,夏季氯离子含量为5602~5864mg/L,冬季氯离子含量约为8220mg/L,而且海水溶解氧浓度约为6.21~8.89mg/L,属于富氧环境[1]。海水中氯离子含量较大,当含氯离子的溶液侵入砼中时,通常生成Friedel 盐C3A·CaCl2·H10,Friedel 盐会产生破坏性膨胀。在氯盐的作用下,水泥砼中不稳定产物可生成水化氯铝酸钙,固相体积可增大2 倍多[2]。同时,当氯离子渗透到钢筋表面时,钢筋表面局部的保护膜被破坏,使其成为活化态。在氧和水充足的条件下,活化的钢筋表面形成小阳极,未活化的钢筋表面成为阴极,发生电化学腐蚀从而使阳极金属铁被溶解,形成腐蚀坑。腐蚀过程主要涉及下列化学反应式:Fe2++2Cl-+2H2O = Fe(OH)2+2HCl4Fe(OH)2+O2+2H2O = 4Fe(OH)3(铁锈)Fe(OH)3若继续失水就形成水化氧化物FeOH(即为红锈),一部分氧化不完全的就变成Fe3O4(即为黑锈),在钢筋表面形成锈层。由于铁锈层呈多孔状,即使锈层较厚,其阻挡进一步腐蚀的效果也不明显,因而腐蚀将不断向内部发展。因此,抗氯离子渗透性是衡量涂层性能的重要指标。杭州湾为世界三大强潮海湾之一。在自然条件方面,受台风、热带风暴影响较大;平均水流速2.39m/s,实测最大流速5 m/s 以上,粉砂含量高,最高含沙量为9.605 kg/m3,平均含沙量1.249 kg/m3,潮流紊乱,冲刷严重 [1]。因此,涂层的附着力和耐磨性也是衡量涂层性能的重要指标。1.2 涂层体系设计根据杭州湾跨海大桥的设计使用年限、环境状况以及《海港工程混凝土结构防腐蚀技术规范》(JTJ 275-2000)中的设计涂层系统要求,《杭州湾跨海大桥混凝土结构表面防腐涂装工程涂料采购(供应商)》招标文件上明确了表湿区混凝土表面涂层配套体系[3,4(] 见表1)。注:底层干膜平均厚度不大于50μm,底层和中间层干膜总平均厚度为310μm。1.3 涂层性能要求根据《海港工程混凝土结构防腐蚀技术规范》(JTJ275-2000)对涂层性能基本要求,《杭州湾跨海大桥混凝土结构表面防腐涂装工程涂料采购(供应商)》招标文件上明确了表湿区混凝土表面涂层性能要求(见表2)。注:1. 涂层性能试验按涂层系统设计的底层+中间层+面层复合涂层组成。2. 涂层的耐老化性系采用涂装过的尺寸为70mm×70mm × 20mm 的砂浆试件,按现行国家标准《色漆和清漆—人工气候老化和人工辐射暴露(滤过的氙弧辐射)》(GB/T 1865-1997)测定。3. 涂层的耐碱性、涂层抗氯离子渗透性、涂层与混凝土表面的粘结强度,按现行行业标准《海港工程混凝土结构防腐蚀技术规范》(JTJ275-2000)附录C 的混凝土涂层试验方法测定。2 涂料产品质量控制大桥承台处于潮差区,混凝土表面常处于潮湿状态,混凝土露出水面可涂装的时间短,因此,要求采用的涂料应具有湿固化、快固结和附着力强的性能。 同时,所选用的配套涂料之间应有良好的相容性。因此,选择性能满足要求的涂料是整个涂装工程的基础,是防腐涂装成败的关键因素,涂料选择应满足以下主要要求:(1)封闭底漆应具有对潮湿混凝土基面良好的润湿铺展性,保证封闭涂料的高渗透性,从而增强混凝土表面的强度,提高涂层附着力,使其具有足够的能力抵抗来自背面的水压,以防止涂膜起泡和脱落。(2)所选涂料要有一定的固化速度,以便在潮差期内获得一定的漆膜强度,抵抗潮水的冲刷,并且漆膜在水下固化性能基本上不受影响。(3)涂层面漆应有较高的耐候性,在有效保护期内,面漆的粉化减薄速度较小;面漆还应具有较高的耐磨性,以抵抗含砂海水的冲刷。(4)涂层体系应具有优异的屏蔽效果,可以有效地抵抗氯离子、氧气、二氧化碳等腐蚀介质的渗透。(5)涂层体系应具有优异的附着力、韧性和抗冲击性能,从而有效地抵抗背水压以避免起泡,并能有效地抵抗混凝土的伸缩性。根据上述要求,我公司选用881-S01湿固化环氧封闭漆、881-S02湿固化厚浆型环氧涂料、881-Y01丙烯酸聚氨酯面漆组成了表湿区的涂层配套体系,涂层体系性能数据见国家涂料质量监督检验中心出具的检验报告(见表3)[5]。从表3可以看出,抗氯离子渗透性的检验结果比技术指标小约200 多倍,说明涂层体系抗渗透性非常好,从而能有效地阻止氯离子、氧气、二氧化碳和海水等腐蚀介质对混凝土结构的腐蚀。粘结强度的检验结果比技术指标大2 倍多,耐磨性也远远小于技术指标,说明涂层体系能更好地抵抗含沙量高的海水冲刷。同时,从人工气候老化检验结果可以看出,涂层体系耐老化性能优异。因此,从上述数据可以看出我单位选择的涂层体系完全能满足大桥涂装的特殊要求。3 施工质量控制3.1 施工工艺流程。施工工艺流程图见图1。3.2 涂装工艺关键控制因素为达到优质的涂装工程,仅依靠优质的材料是远远不够的,涂装工艺过程控制起着更加重要的作用, 因此涂装工艺关键控制因素如下:(1)采用高压淡水(压力不小于20MPa)清洁待涂混凝土表面,彻底除去混凝土表面上的不牢灰浆、尖角、碎屑、海生物、苔藓、油污等污染物及其它松散附着物。对施工接缝处和表面的一些蜂窝进行涂装前的预处理。在施工现场发现这些部位不断有水渗出,这些明水的存在对涂层防护是非常不利的,也是造成涂层起泡、脱落的主要因素。(2)采用外加热源或压缩空气除去残留在混凝土表面上的水珠、水迹,必要时可用棉布、海绵等吸湿工具抹去,涂装前的混凝土表面应无流水、渗水现象,尽可能使混凝土呈表干状态。虽然封闭底漆具有湿固化功能,但是潮湿的基面影响涂料的渗透性,从而影响附着力。(3)每道涂装前均要注意对漏涂的孔洞进行补涂。现场许多完工的试验片存在孔洞,有的孔洞直达混凝土表面,施工现场发现不断有水缓慢渗出。这样的涂装短期会影响防腐效果,长期还会造成涂层附着力下降,甚至脱落,导致防腐失败。(4)涂装下一道涂料前,应对上一道涂层进行表面清洁,使用饮用水彻底除去涂层表面的盐分、泥尘、油污等污染物,可用清洁剂清除油污。如上一道涂层太光滑影响下一道涂层的粘结强度,应对上一道涂层进行打毛处理。(5)要按规定的比例混合涂料,用机械式搅拌器搅拌3min 分钟以上。涂料混合均匀后,必经过熟化才能使用,配好的涂料必须在规定的适用期内使用,超过了适用期的涂料不得继续使用。表湿区涂装完毕后,涂膜在空气中固化时间应不少于1.5h。4 涂装质量检验4.1 过程检验4.1.1 产品检验涂装前核实涂料品种和数量,所用涂料应有出厂证明文件,且在有效期内使用。4.1.2 施工过程检验施工过程中,按产品说明、推荐施工工艺、设计要求的涂装道数和涂膜厚度进行施工,随时用湿膜厚度规检查涂层湿膜厚度,以控制涂层的最终厚度及其均匀性。4.1.3 涂料用量检验控制涂料实际用量是保证涂膜厚度和涂装的重要因素,涂料实际用量的计算方法如下:假设:第一:选择上下游两个承台作为一个具有代表性的参考涂装面积,准确计算出涂装的实际面积为X m2;第二:准确称出未使用时涂装容器和涂装工具的重量为a kg;第三:准确计算出调配涂料的重量为b kg;第四:在每个桥墩随机测出具有代表性的30 个点的湿漆膜的厚度为c μm;第五:每道漆涂装完毕后,立刻称出涂装容器和涂装工具的重量为d kg;第六:涂料的比重为e。计算:第一步:计算每道漆的要求湿膜厚度c:c=(干膜厚度÷体积固含量)×(1+稀释剂用量百分比)第二步:计算涂料的实际涂装用量Y:Y=X ×(c ÷ 106)× e第三步:环境损耗油漆量Z:Z=(a+b)- d - Y第四步:计算出符合涂装要求的X面积实际需要的漆量W:W=(d-a)+Y+Z第五步:计算出涂料的损耗系数f:f=W ÷涂料理论用量说明:①环境损耗漆量Z与当时的实际涂装环境有密切的关系,将来实际涂装时的施工环境与实验时的施工环境有差别,因此必须参考实验时的环境损耗油漆量Z,对实际涂装时的环境损耗油漆量作出相应的调整。②如果实际涂装时涂装工具与实验时的涂装工具不同时,相应的油漆损耗也要作出相应的调整。根据上述计算公式计算出的损耗系数f,可以计算出涂料的实际用量,从而控制涂料的实际用量。4.2 涂层检验4.2.1 涂层厚度检验涂层厚度是保证涂层体系设计寿命的关键因素,涂层的厚度控制与检验通常有下列几种方法:(1)湿膜测试法。此法局限性在于:由于混凝土表面的不平整以及施工条件的不同(比如气温高、有风的天气溶剂挥发快,反之溶剂挥发慢,同一湿膜在不同条件下测得结果可能不相同),导致湿膜测试法不准确。但湿膜测试法可以检测涂膜是否均匀,这是湿膜测试法的可取之处。(2)挂片对比测试法。此法局限性在于:由于现场监督不严或涂装工艺不同,有可能出现挂片比实际的混凝土面多涂的现象,所以此法也有可能不准确。(3)涂料用量控制法。此法局限性在于:由于无法控制涂料的使用情况,不能保证涂料完全用于涂装,所以此法也有可能不准确。但只要对涂料使用情况进行有力的监督,是可以保证涂层厚度的。(4)测厚仪测试法。此法局限性在于:由于测厚仪对基材的平整度非常敏感,而混凝土表面本身很不平整,所以此法测量的结果也不准确。鉴于以上各种测试方法的局限性,综合考虑认为用湿膜测试法、测厚仪测试法和涂料用量控制法相结合的方法是比较准确的方法。因为只要加强涂料使用情况的监督,可以通过涂料用量控制法保证涂层的厚度,又通过湿膜测试法可以控制涂膜的均匀性,以保证涂层的质量。4.2.2 涂层体系粘结强度检验测定涂层系统的粘结强度。涂层经7d 自然养护后,用拉脱式涂层粘结强度测定仪测定涂层系统的粘结强度。以测点的粘结强度算术平均值为涂层系统的粘结强度代表值。涂层系统的粘结强度代表值应不小于1.5MPa,最小粘结强度测点值应不小于1.2MPa。涂层粘结强度测定后,应立即观察铝合金铆钉头型圆盘座的底面粘结物的情况,如果底面有75% 以上的面积粘附着涂层或混凝土,则试验数据有效。如果底面少于75% 的面积粘附着涂层或混凝土,而且粘结强度小于1.5MPa,则可在该测点的附近涂层面上重做粘结强度检测。如果涂层粘结强度不能达到1.5MPa 时,可在原检测点附近涂层面上,按加倍测点数量重做涂层粘结强度检测。如仍不合格,涂装施工应返工。4.2.3 涂层外观检验涂装后应进行涂层外观目视检查。涂层厚度和色泽应均匀、无气泡、无针孔、无裂缝等缺陷。5 结束语混凝土表面防护虽然是辅助性防护措施,但它的防护机理就是物理隔绝腐蚀介质,与增加钢筋的混凝土保护层厚度是同样道理。因此,只要选材合理,施工过程控制到位,就能够取得理想的防护效果。参考文献:[1] 《杭州湾跨海大桥混凝土涂层防腐蚀技术文件》.[2] 梁定.跨海和沿海桥梁钢筋砼腐蚀与防腐。公路与海运,2003,10:60-62.[3]《杭州湾跨海大桥混凝土结构表面防腐涂装工程涂料采购(供应商)》招标文件.[4] 海港工程混凝土结构防腐技术规范》(JTJ 275-2000).[5]《国家涂料质量监督检验中心检验报告》(TW06998-5W1、TW06998-5W3、TW06998-5L1).

现浇混凝土梁裂缝的成因和防治摘要:凝土裂缝已成为混凝土工程质量通病,如何防治混凝土裂缝是工程技术人员迫切希望解决的技术难题。文章对钢筋混凝土梁板早期裂缝成因和预防措施作了详细的分析。 关键词:钢筋混凝土梁;裂缝;热胀冷缩 1.前言 钢筋混凝土梁在外荷载的直接应力和次应力的作用下,引起结构变形而裂缝。构件在使用过程中受年温差的长期作用,当温差的胀缩应力大于构件极限抗拉强度时就会裂缝。构件裂缝的因素是多方面的,包括结构设计、地基沉降差异、施工质量、材料质量、环境影响等,无论何种原因产生的裂缝,都会给建筑物肢体结构带来影响。 2.裂缝成因分析 从施工角度来说,可能会影响楼板开裂的主要因素有:混凝土的组成材料、混凝土配合比控制、混凝土的养护、钢筋安装、早期堆载及拆模等。 2.1骨料对楼板混凝土收缩开裂的影响 混凝土收缩是造成楼板开裂的一个重要原因,而影响混凝土收缩的因素很多,主要是骨料品种及含量。粗骨料本身尺寸、形状及级配并不影响混凝土收缩量;而粗骨料的弹性模量却对混凝土收缩量影响很大:弹性模量越大,对混凝土收缩所起的抑制作用越大。 2.2混凝土配合比对楼板混凝土收缩开裂的影响 在原材料相同的条件下,混凝土配合比如单位用水量、单位水泥用量、水灰比、砂率等,对干缩有很大的影响。它们对干缩影响依次为:单位用水量>单位水泥用量>水灰比>砂率。其中随着用水量的增大,同一条件下的混凝土收缩量直线上升;而在用水量相同的条件下,混凝土干缩随水泥用量的增加而加大,但加大的幅度较小;在骨灰比相同条件下,混凝土干缩随水灰比的增大而明显增大;在强度等级相同条件下,混凝土干缩随砂率的增大而加大,但加大幅度较小。 2.3楼板混凝土养护情况对其收缩开裂的影响 延长初期潮湿养护仅能推迟干缩的时间,并不能减小混凝土短期的干缩,但对于干缩终值有一定影响。若前期(掺粉煤灰的为14d)及时养护,可以有效地提高混凝土的抗拉强度及减小混凝土外表面的碳化深度,从而减小因混凝土碳化而产生的收缩,保证混凝土的使用寿命,因此,从防止碳化角度出发,及时、足够时间的楼板养护是必要的。 2.4钢筋绑扎安装质量对楼板开裂的影响 对于楼板混凝土开裂,钢筋起限制和约束的作用。钢筋对混凝土的限制约束,主要通过它们之间胶结力和摩擦力的作用。 1)间距均匀的钢筋所提供的约束作用是最佳的,且能有效防止裂缝宽度在个别处增大。但从日常的施工检查情况看,由于钢筋绑扎得不牢固,造成混凝土振捣后,钢筋分布的偏位现象比较普遍,从而削弱了钢筋的约束作用。 2)对于变形钢筋,其相对保护层厚度越大,其平均粘结强度也就越大而在实际工程施工中,由于钢筋保护层垫块是呈梅花型布置的,因此混凝土浇筑后,底筋的许多部位保护层难以达到15mm的设计要求,从而削弱了钢筋对混凝土开裂的约束作用。 2.5早期堆载对楼板混凝土开裂的影响 众所周知,大部分房地产开发商都非常强调施工工期,对于很形象、直观的主体结构更是如此。由于施工工期安排紧,工序技术间歇时间被取消,这样必然会造成早期堆载(如钢筋、模板材料的堆放)的不良影响。 1)楼板混凝土刚终凝不久(一般为24h),施工中又堆放上一层柱钢筋、模板材料,施工堆载又为不均匀(即集中力)和瞬时动荷载,其必然对混凝土的固结构成内在影响(即造成“内伤”),也加大了混凝土内部早期微裂缝。 2)由于在早期,混凝土强度低(一般在1.2MPa左右),不能承担堆料荷载。虽然从理论上讲,此时楼板的堆载全由其模板支撑体系受力,但在实际中,由于楼板模板龙骨的布置是在考虑允许模板面板存在1/250变形的情况下设计的(且对堆载集中力不予以考虑),因此在较大集中堆载作用下,势必造成楼板混凝土底部开裂或“内伤”。 2.6楼板拆模对楼板混凝土的影响 如跨度≤2m、混凝土设计强度等级为c20的楼板,按规定当混凝土强度达到c20的一半时,即可拆模。而此时间一般为楼板混凝土浇筑后5~7d,此时楼板正承受由模板支撑体系传来的上一层楼板的施工荷载(甚至结构荷载),且该荷载几乎为集中荷载。因此,当楼板厚度较小或荷载较大时,2m范围的楼板混凝土带裂缝工作成为必然。而在实际工程施工中,又很少对拆模时楼板结构受力进行抗裂验算,仅是孤立地按满足上述条件与否决定是否拆模,这样就助长了后期的楼板开裂程度。 3.混凝土裂缝发生的控制措施 混凝土裂缝发生与组成混凝土的水泥、净砂、石子、掺加剂等原材料有关,也与浇筑后混凝土的保温保湿的养护措施有关。 3.1原材料的质量控制 (1)水泥:在混凝土路面及大体积混凝土施中,水化热引起的温升较高,降温幅度大,容易引起温度裂缝。为此,在施工中应选用水化热较低的水泥,尽量降低单位水泥使用量。 (2)粗骨料:在钢筋混凝土施工中,粗骨料的最大尺寸与结构物的配筋、混凝土的浇灌工艺有关,增大骨料粒径可减少用水量,混凝土的收缩和泌水随之减少,但骨料粒径增大容易引起混凝土的离析,因此,必须调整好级配设计。并在施工中加强振捣。 (3)细骨料:采用中粗砂比采用细砂每立方米混凝土减少用水量20kg左右,水泥相应减少28kg左右,从而降低混凝土的干缩。 (4)砂石料的含泥量控制:砂石含泥量超标,不仅增加混凝土的干缩,同时降低了混凝土的抗拉强度,对混凝土的抗裂十分不利,因此,在路面混凝土及大体积混凝土施工中。石子含泥量应 (5)掺加块石:在大体积混凝土基础施工中,掺加无裂缝的、冲洗干净、规格为l50~250mm的坚固大石块,不仅可减少混凝土的总用量,又可减少单位水泥用量,从而降低水化热。同时。石块本身也吸收热量,使水化热进一步降低,对控制裂缝有利。如在滨河路防洪堤施工中,基础混凝土掺人15%的块石。使得基础混凝土裂缝出现极少。 3.2混凝土配合比的选定 混凝土原料的配合比应根据工程的要求,如防水、防渗、防气、防射线等进行认真分析,选择最优方案。混凝土的水灰比应在满足强度要求及泵送工艺要求条件下尽可能降低。 (1)掺合料:混凝土中掺人粉煤灰不仅能替代部分水泥。而且粉煤灰颗粒成球状,可起润滑作用,能改善混凝土的工作性和可泵性,且可明显降低混凝土水化热。 (2)外加剂:为了满足送到现场的混凝土具有l1~l3cm坍落度,若只增加水泥使用量,则会加剧混凝土干燥收缩,明显增大混凝土水化热,易引起开裂。因此,除了调整级配外,可掺入适量的减水剂。 3.3利用混凝土的后期强度 对于大体积混凝土可以利用后期强度,如60d、90d、120d强度,即允许工程在60d、90d或120d达到设计强度。这样可以减少水泥用量,减少水化热和收缩,从而减少裂缝。 3.4混凝土的浇灌振捣技术 混凝土的浇灌振捣技术对混凝土密实度很重要,最宜振捣时间为10~30s.泵送流态混凝土同样需要振捣,大体积混凝土在浇灌振捣中会产生大量的泌水,应及时排除,有利于提高混凝土质量和混凝土抗裂性。 4.裂缝的处理 根据裂缝的成因情况,可将裂缝分为两种类型:一类是由于材料、气候等造成的一般塑性收缩裂缝、干缩裂缝等。这类裂缝一般对承载力影响小,可作一般处理或不处理;另一类裂缝明显影响了梁的承载能力,随着裂缝的扩展和延伸,钢筋达到屈服强度,受压区混凝土应变量增大,梁刚度大大降低,构件趋向破坏。此类缝必须及早采取加固补强,以满足结构安全需要。对于裂缝的处理,首先要重视对裂缝的调查分析,确定裂缝的种类、程度、危害及加固的依据。调查可从裂缝的宽度、长度、是否贯通、是否达到弹性极限应力的位置、有无潮气或漏水、工程地点环境以及施工图纸设计情况等多处入手,分析裂缝产生的本质原因,以采取相应的措施。 (1)表面修补法。该法适用于缝较窄,用以恢复构件表面美观和提高耐久性时所采用,常用的是沿混凝土裂缝表面铺设薄膜材料,一般可用环氧类树脂或树脂浸渍玻璃布。施工时先将混凝土表面用钢丝刷打毛,清水洗净干燥,将混凝土表面气孔由油灰状树脂填平,然后在其上铺设薄膜,如果单纯以防水为目的,也可采用涂刷沥青的方法。 (2)充填法。当裂缝较宽时,可沿裂缝混凝土表面凿成V形或U形槽,使用树脂砂浆材料进行填充,也可使用水泥砂浆或沥青等材料。施工时,先将槽内碎片清除,必要时涂底层结合料,填充后待填充料充分硬化,再用砂轮或抛光机将表面磨光。 (3)注入法。当裂缝宽度较小且较深时,可采用将修补材料注入混凝土内部的修补方法,首先裂缝处安设注入用管,其它部位用表面处理法封住,使用低粘度环氧树脂注入材料,用电动泵或手动泵注入修补,此法在裂缝宽大于0.2mm时,效果较好。 5.结语 钢筋混凝土梁裂缝应针对成因、贯彻预防为主的原则、加强设计施工及使用等方面的管理,确保结构安全和避免不必要的损失。一旦产生裂缝,应全面调查分析,查明原因,取得加固依据,在选择处理方法上,应比较论证、综合考虑,以求施工方便、经济高效。

土建结构工程的安全性与耐久性一、土建结构工程的安全性 结构安全性是结构防止破坏倒塌的能力,是结构工程最重要的质量指标。结构工程的安全性主要决定于结构的设计与施工水准,也与结构的正确使用(维护、检测)有关,而这些又与土建工程法规和技术标准(规范、规程、条例等)的合理设置及运用相关联。 1.我国结构设计规范的安全设置水准 对结构工程的设计来说,结构的安全性主要体现在结构构件承载能力的安全性、结构的整体牢固性与结构的耐久性等几个方面。我国建筑物和桥梁等土建结构的设计规范在这些方面的安全设置水准,总体上要比国外同类规范低得多。 1.1构件承载能力的安全设置水准 与结构构件安全水准关系最大的二个因素是:1)规范规定结构需要承受多大的荷载(荷载标准值),比如同样是办公楼,我国规范自1959年以来均规定楼板承受的活荷载是每平方米150公斤(现已确定在新的规范里将改回到200公斤),而美、英则为240和250公斤;2) 规范规定的荷载分项系数与材料强度分项系数的大小,前者是计算确定荷载对结构构件的作用时,将荷载标准值加以放大的一个系数,后者是计算确定结构构件固有的承载能力时,将构件材料的强度标准值加以缩小的一个系数。这些用量值表示的系数体现了结构构件在给定标准荷载作用下的安全度,在安全系数设计方法(如我国的公路桥涵结构设计规范)中称为安全系数,体现了安全储备的需要;而在可靠度设计方法(如我国的建筑结构设计规范)中称为分项系数,体现了一定的名义失效概率或可靠指标。安全系数或分项系数越大,表明安全度越高。我国建筑结构设计规范规定活荷载与恒载(如结构自重)的分项系数分别为1.4和1.2,而美国则分别为1.7和1.4,英国1.6和 1.4 ;这样根据我国规范设计办公楼时,所依据的楼层设计荷载(荷载标准值与荷载分项系数的乘积)值大约只有英美的52%(考虑人员和设施等活载)和85%(对结构自重等恒载。一些发展中国家的结构设计多根据发达国家的规范,就如我国解放前和建国初期的结构设计方法参照美国规范一样。至于中国的香港和台湾,至今仍分别以英国和参考美国规范为依据。这里需要说明的是,在其他建筑物的活荷载标准值上,与国外的差别并没有象办公楼、公寓、宿舍中这样大。不同材料、不同类型的结构在安全设置水准上与国际间的差距并不相同,比如钢结构的差距可能相对小些。 公路桥梁结构的情况也与房屋建筑结构类似,除车载标准外,荷载分项安全系数(我国规范对车载取1.4,比国际著名的美国AASHTO规范的1.75约低25%)与材料强度分项安全系数均规定较低。 尽管我国设计规范所设定的安全贮备较低,但是某些工程的材料用量反而有高于国外同类工程的,这里的问题主要在于设计墨守陈规,在结构方案、材料选用、分析计算、结构构造上缺乏创新。 1.2 结构的整体牢固性 除了结构构件要有足够承载能力外,结构物还要有整体牢固性。结构的整体牢固性是结构出现某处的局部破坏不至于导致大范围连续破坏倒塌的能力,或者说是结构不应出现与其原因不相称的破坏后果。结构的整体牢固性主要依靠结构能有良好的延性和必要的冗余度,用来对付地震、爆炸等灾害荷载或因人为差错导致的灾难后果,可以减轻灾害损失。唐山地震造成的巨大伤亡与当地房屋结构缺乏整体牢固性有很大关系。2001年石家庄发生故意破坏的恶性爆炸事件,一栋住宅楼因土炸药爆炸造成的墙体局部破坏,竟导致整栋楼的连续倒塌,也是房屋设计牢固性不足的表现。 1.3 结构的耐久安全性 我国土建结构的设计与施工规范,重点放在各种荷载作用下的结构强度要求,而对环境因素作用(如干湿、冻融等大气侵蚀以及工程周围水、土中有害化学介质侵蚀)下的耐久性要求则相对考虑较少。混凝土结构因钢筋锈蚀或混凝土腐蚀导致的结构安全事故,其严重程度已远过于因结构构件承载力安全水准设置偏低所带来的危害,所以这个问题必须引起格外重视。我国规范规定的与耐久性有关的一些要求,如保护钢筋免遭锈蚀的混凝土保护层最小厚度和混凝土的最低强度等级,都显著低于国外规范。损害结构承载力的安全性只是耐久性不足的后果之一;提高结构构件承载能力的安全设置水准,在一些情况下也有利于结构的耐久性与结构使用寿命。 2.调整结构安全设置水准的不同见解 我国结构设计规范的安全设置水准较低,与我国建国后长期处于短缺经济和计划体制的历史条件有关。但是,能够对土建结构取用较低的安全水准并基本满足了当时的生产与生活需求,而且业已历经了较长时间的考验,这是国内土建科技人员经过巨大努力所取得的重大成就;但是,由于安全储备较低,抵御意外作用的能力相对不足。如果适当提高安全设置水准将有利于减少事故的发生频率和提高工程抗御灾害的能力。国内发生的大量工程安全事故,主要是由于管理上的腐败和不善以及严重的人为错误所致。现在提出要重新审视结构的安全设置水准,主要是基于客观形势的变化,是由于我们现在从事的基础设施建设要为今后的现代化奠定基础,要满足今后几十年、上百年内人们生产生活水平发展的需要,有些土建结构如商品房屋则更要满足市场经济条件下具备商品属性的需要。国内近几年来已对建筑结构安全度的设置水准组织过几次讨论,在如何调整的问题上存在较大的意见分歧,这次科技论坛上同样反映了这些不同的见解: 1)认为我国现行规范的安全设置水准是足够的,并已为长期实践所证明,而国外就没有这种经验。我国取得的这一成功经验决不能轻易丢掉,在安全度上不能跟着英美的高标准走;安全度高了是浪费,除个别需调整外,总体上不必变动。 2)认为我国规范的安全度设置水准尽管不高,但在全面遵守标准规范有关规定,即在正常设计、正常施工和正常使用的“三正常”条件下,据此建成的上百亿平米的建筑物绝大多数至今仍在安全使用,表明这些规范规定的水准仍然适用;但是理想的“三正常”很难做到,同时为了缩小与先进国际标准的差距以及鉴于可持续发展和提高耐久性的需要,在物质供应条件业已改善的市场经济条件下,结构的安全设置水准应适当提高。这种提高只能适度,因为我国目前尚属发展中国家。 3)认为我国规范的安全设置水准应该大体与国际水准接近,需要大幅度提高。这是由于随着我国经济发展和生活水平不断提高,土建工程特别是重大基础设施工程出现事故所造成的风险损失后果将愈益严重,而为了提高工程安全程度所需要的经费投入在整个工程(特别是建筑工程)造价中所占的比重现在已愈来愈低,材料供应也十分充裕。过去的低安全水准只是适应了以往短缺型计划经济年代的需要,但决不是没有风险,如果规范的安全水准较高,曾经发生过的有些安全事故本来是可以避免的,而规范的这一缺陷在一定程度上为“三正常”的提法所掩盖。在建的工程要为将来的现代化社会服务,安全性上一定要有高标准。低的安全质量标准在参与将来的国际竞争中也难以被承认,即使结构设计的安全设置水准能够提高到与发达国家一样,由于我们的施工质量总体较差,结构的安全性依然会有差距。 3、结构设计规范的概率可靠度设计方法 对我国规范的可靠度设计方法持肯定意见的专家认为这是重大的科技进步,可靠度方法对安全度的概率定义要比定值的安全系数更清晰、更科学、更合理,当然概率可靠度设计方法本身尚有不少缺陷,有待进一步修改完善。持相反意见的人则认为,结构设计规范所面向的是类型多样的复杂群体,在安全度上需要考虑的不确定性与不确知性非常复杂,并不是“从统计数学观点出发的概率定义”所能科学描述或处理;规范可靠度方法在我国十多年的实践表明,它并没有给结构设计的安全性带来明显实效,反而造成了安全概念上的某些混乱;对工程技术人员来说,结构的安全度用可靠指标和虚假的失效概率表达后变得更加不可揣摩和模糊不清,不如安全系数那样从安全储备出发的度量方法更为直观和便于处理具体工程的安全问题;现行设计规范中的可靠度方法很不成熟,存在不少根本缺陷;他们认为半概率的多安全系数方法更适用于规范,也不排斥可靠度分析的结果可以作为一种参考,在综合判断安全系数的合理取值时予以考虑。 二、土建结构工程的耐久性 土建结构工程的耐久性与工程的使用寿命相联系,是使用期内结构保持正常功能的能力,这一正常功能包括结构的安全性和结构的适用性,而且更多地体现在适用性上。 1、土建结构工程的耐久性现状 大多数土建结构由混凝土建造。混凝土结构的耐久性是当前困扰土建基础设施工程的世界性问题,并非我国所特有,但是至今尚未引起我国政府主管部门和广大设计与施工部门的足够重视。 长期以来,人们一直以为混凝土应是非常耐久的材料。直到70年代末期,发达国家才逐渐发现原先建成的基础设施工程在一些环境下出现过早损坏。美国许多城市的混凝土基础设施工程和港口工程建成后不到二、三十年甚至在更短的时期内就出现劣化;据1998年美国土木工程学会的一份材料估计,他们需要有1.3万亿美元来处理美国国内基础设施工程存在的问题,仅修理与更换公路桥梁的混凝土桥面板一项就需800亿美无,而现在联邦政府每年为此的拨款只有50~60亿美元。另有资料指出,美国因除冰盐引起钢筋锈蚀需限载通行的公路桥梁已占这一环境下桥梁的1/4。发达国家为混凝土结构耐久性投入了大量科研经费并积极采取应对措施,如加拿大安大略省的公路桥梁为对付除冰盐侵蚀及冻融损害,钢筋的混凝土保护层最小厚度从50年代的2.5cm逐渐增加到4cm、6cm直到80年代后的7cm,而混凝土强度的最低等级也从50年代的C25增到后来的C40,桥面板混凝土从不要求外加引气剂、不设防水层到必须引气以及需要设置高级防水胶膜并引入环氧涂膜钢筋。而我国遭受盐冻侵蚀地区的公路桥梁在耐久性设计方面至今仍无明确要求,对混凝土保护层和强度的要求仅为2.5cm与C25,与上面提到的加拿大50年代水准一致。我国建设部于80年代的一项调查表明,国内大多数工业建筑物在使用25~30年后即需大修,处于严酷环境下的建筑物使用寿命仅15~20年。民用建筑和公共建筑的使用环境相对较好,一般可维持50年以上,但室外的阳台、雨罩等露天构件的使用寿命通常仅有30~40年。桥梁、港工等基础设施工程的耐久性问题更为严重,由于钢筋的混凝土保护层过薄且密实性差,许多工程建成后几年就出现钢筋锈蚀、混凝土开裂。海港码头一般使用十年左右就因混凝土顺筋开裂和剥落,需要大修。京津地区的城市立交桥由于冬天洒除冰盐及冰冻作用,使用十几年后就出现问题,有的不得不限载、大修或拆除。盐冻也对混凝土路面造成伤害,东北地区一条高等级公路只经过一个冬天就大面积剥蚀。我国铁路隧道用低强度的C15混凝土作衬砌材料,密实度和抗渗性差,不耐地下水与机车废气侵蚀,开裂与渗漏严重;对几个路局所辖的隧道进行抽样调查表明,漏水的占50.4%,其中1/3渗漏严重,并导致钢轨等配件锈蚀以及电力牵引地段漏电,影响正常运行,而1999年颁布的铁路隧道设计规范仍未能对隧道的耐久性问题采取适当的对策,如适当提高混凝土的最低强度等级和在混凝土中掺入化学纤维等。 耐久性问题的严重性和迫切性在于我们许多正在建设的工程仍未吸取国际和国内的大量惨痛教训,还沿着老路重蹈覆辙。一些北方城市新建成的立交桥和高速公路桥,仍没有在材料性能和结构构造等方面采取必要的防治冻融和盐害的综合措施。甚至大型工程如2000年投入运行的珠海莲花跨海大桥,其主体结构在浪溅区仍采用不耐海水干湿交替侵蚀的C30混凝土与3~4cm厚的保护层厚度。 有专家估计,我国“大干”基础设施工程建设的高潮还可延续20年,由于忽视耐久性,迎接我们的还会有“大修”20年的高潮,这个高潮可能不用很久就将到来,其耗费将倍增于当初这些工程施工建设时的投资。 使混凝土结构的耐久性问题进一步加剧的原因有: 1) 由于混凝土的质量检验习惯上以单一的强度指标作为衡量标准,导致水泥工业对水泥强度的不适当追求,使水泥细度增加,早强的矿物成份比例提高,这些都不利于混凝土的耐久性。我国对水泥质量的检验在强度上只要求不低于规定的最低许可值,而国外则同时还要求不高于规定的最高值,如果强度超过了也被认为不合格,这种要求还有利于水泥产品质量的均匀性。 2) 工程施工单位不适当地加快施工进度,尤其是政府行政领导对工程进度的不适当干预。混凝土的耐久性质量尤其需要有足够的施工养护期加以保证,早产有损生命健康的概念同样适用于混凝土。国内媒体上大加宣传的所谓几个月就修成一条大路、建成一座大桥、或盖成一幢高楼的工程以及抢工献礼工程,很可能就是今后注定要花掉更多资金进行大修的短命工程。提前完成合同规定施工期的在国外要被罚款,因为意味着工程质量有遭到损害的可能。 3) 环境的不断恶化,如废气、酸雨,我国的酸雨面积已超过国土的30% 。 当前迫切需要进行的工作是尽快编制桥梁、隧道、港工等基础设施工程耐久性设计的技术条例,修订补充现行规范中对结构耐久性的要求。首先需要明确的是各种基础设施工程的设计工作寿命,在重要工程的设计文件中必须有使用寿命的要求和论证。当前在建的众多工程在耐久性上之所以仍然沿着重蹈覆辙的道路走,很重要的一个原因是工程设计施工技术人员在耐久性上没有可资遵循的新依据。更为严重的是现行规范中的有些条文,本身就对耐久性有害。为了提高混凝土耐久性,在混凝土中合理使用粉煤灰、矿渣等矿物掺合料是重要的技术手段,国外有的规范甚至规定在桥梁等混凝土结构中必须加入粉煤灰等掺合料,而我国的铁路混凝土桥隧施工规范仍在明文禁止使用。此外,工程技术界还存在长期形成的一些过时的看法,对改善混凝土的耐久性能造成阻力。例如,顾虑会影响混凝土强度而不愿使用引气剂,而引气本应作为改善混凝土耐久性和工作性的常规手段;又如,希望加大水泥用量来保证混凝土强度,而尽可能低的水泥用量本应是提高混凝土抗裂和耐久性能的重要途径。 在修订规范的耐久性要求上,交通部于2001年颁布的港工混凝土结构防腐蚀技术规范已为其它土建工程行业起到较好的示范作用。我们一方面要参照国内外已有的资料和经验,尽快编写出相应的设计施工技术文件以应急需,另一方面则要安排系统的研究项目,加大耐久性研究工作的支持力度;混凝土结构的耐久性是当前国际上结构工程学科最为重要的前沿研究领域之一,而我国在这一方面相当落后。混凝土的耐久性研究离不开原材料和环境等特定条件,需要考虑本国的特点,是不能完全依赖国外研究成果的。 重视混凝土结构的耐久性也是可持续发展的需要。生产混凝土所需的水泥、砂、石等原材料均需大量消耗国土资源并破坏植被与河床,水泥生产排放的二氧化碳已占人类活动排放总量的1/5~1/6,而我国排放的二氧化碳量已居世界第二。我国现在每年生产5亿多吨水泥,与之相伴的是年耗20多亿方的砂石,长此以往实难以为继。延长结构使用寿命意味着节约材料,而耐久的混凝土一般又应是水泥用量较低和矿物掺合料(工业废料)用量较高的混凝土,所以耐久的混凝土正适应环境保护的需要。国际上对桥梁、隧道等土木工程的设计工作寿命多为100年,有的如英国为120年。考虑到耐久性不足所造成的巨大经济损失和资源浪费,国际上近年来有要求将这些工程的最低工作寿命进一步延长的趋势,如提出城市环境中的桥梁至少应有150年。 2.土建结构工程使用阶段的正常检测与维护 结构耐久性和使用寿命的概念,与使用阶段的检测、维护和修理不能分割,对处于露天和恶劣环境下的基础设施工程来说尤其如此。为了保证结构安全性和耐久性,一些工程在建成后的使用过程中,应该进行定期检测和维护。我国有结构工程的设计规范与施工规范,但没有如何使用的规范。有些工程倒塌事故,例如最近四川宜宾的南门大桥发生桥面坍落事故,就是因为桥面结构与主拱之间的吊杆在连接处发生锈蚀,如果有定期的检测要求,这样的事故很有可能避免。有些国家对于结构的损坏可能导致公众安全的建筑物与桥、隧等公共工程,强制规定必须定期检测;即使是建筑物的玻璃幕墙和外墙面砖等建筑部件,因其坠落后容易伤及公众,也有强制定期检测的要求。我国由于施工管理水平和事故操作人员的素质相对较差,质量控制与质量保证制度不够健全,规范对结构安全与耐久性的设置水准又相对较低,已建的工程中往往存在较多隐患,所以更有必要从法制上确定土建工程的正常使用和定期检测的要求。对于土建结构工程的安全质量,虽然政府已作出了设计与施工的责任单位和个人需对其“终身负责”的规定,但是这种要求执行起来缺乏可操作性。要将结构安全质量事故减少到最低程度,还应以预防为主,通过例行检测及时发现问题。 从国家对公共工程建设的投资和对工程设计的要求来看,需要有工程整个使用期限即全寿命费用支出的论证。只注意工程项目建设的一次投资支出,很少考虑工程建成后需要正常维护与修理的长期费用,不但可能损害工程使用寿命和正常使用功能,而且经济上算总账会很不合算。在发达国家,由于新建工程少,用于维修的费用往往更为主要,英国1978年的土建维修费上升到1965年的3.7倍,1980年的维修费占当年土建费用总支出的2/3。我国虽是发展中国家,现在正大兴土木,可是过去建成的大量工程已经或过早老化。国内40%公路桥梁的桥龄已大于25年,加上进入90年代以后交通量猛增,超载严重,以往的设计标准又低,路、桥的维修问题十分突出。由于养护维修费用得不到保证,造成工程安全隐患并在以后需要支出更多的大修费用。在土建工程的投资上,希望有关部门能加大已建工程维修的费用。 为加速路桥等公共工程建设,国家现在鼓励投资公司出资并给以一定期限如30年的经营收入作为补偿。如果对重要土建工程有必须进行定期检测与评估的法规,就能保证这些工程在一定期限后归还国家管理和经营时的良好功能,对于设计工作寿命为100年的桥梁,至少还可正常使用70年,而不至于30年到期后国家接收的已是一个破旧的工程。 三、技术规范的作用与管理 这次科技论坛对于土建结构工程技术规范的定位、作用与管理也进行了讨论并提出了一些看法。 长期以来,受计划经济体制的影响,我们往往视技术规范为法,将规范的具体规定和要求等同于法律条文来对待。技术规范或规程,与各种技术条例、技术要求、工法、指南等技术文件一样都是技术标准,本身不具有法律作用,只当工程各方(业主、设计、施工企业)认同作为设计与施工的依据并在契约的基础上,才能作为法律仲裁的依据。将技术问题法制化并强制执行,不利于技术进步和创造性的发挥,反而容易成为推卸责任的借口。当然,政府部门从国家和公众的整体利益出发,需要在安全、环保等重大原则上对土建工程的设计施工提出必须满足的最低要求并制定相应的法规,但法规一般并不需要提供如何达到这些要求的具体技术途径和方法,后者是技术标准的任务。政府也可以原则认可或批准某些重要的技术规范或其中某些内容使用。 企图不断加强技术规范的强制性来解决屡禁不止的工程事故,不是解决问题的有效途径。现在,有关主管部门将建筑结构设计规范中的部分条文抽出来,明确列为强制性条文,同时规定各个设计单位完成的设计,须通过有关部门或其授权委任的其他企事业设计单位的审查,而审查的主要内容就在于对照规范强制性条文的要求,其任务已类似于执法;这种做法是否明智似可商榷。我国土建工程事故频繁的原因,主要在于管理不善,特别是管理环节上的腐败;其次是施工操作人员素质低,又难以短期解决;过分强调规范的地位与作用,未能建立与规范配套的完整标准体系,比如缺乏指南、工法等更为详尽具体的技术文件,可以用来指导和规范设计与施工的各个具体环节,也有一定的关系。从设计角度看,出现事故主要不是由于没有按照规范强制性条文的规定,而是方案性的错误或忽略主要的设计条件;也有一些工程则因过去的设计标准过低,耐久性不足,在使用过程中又缺乏应有的例行检测而导致失效。其实,要做到设计规范强制条文的要求最为容易,为此请专业人士审查似无必要。重要的工程设计应规定请专业单位全面审核,其要点也应在结构方案、构造方法与计算分析的原则上。从结构设计的国家规范中抽出的强制性条文不免支离破碎,个别条文的规定也不一定适合某些地区和某些工程的具体特点,反而造成麻烦。 我国幅员广阔,各地经济发展很不平衡,技术力量悬殊,环境条件各异,客观上要求规范能给设计人员更多灵活性,少一些强制性,这样才能更好地在规范的指导下,根据工程的特点和具体条件去解决问题。总之,在规范标准上,要摆脱计划经济年代遗留下来的过分强求统一、较少考虑个性和缺乏实事求是灵活性的倾向。要提倡和鼓励各省市编制地方性规范,在工程的安全性和耐久性标准上,可有不同的设置水准。比如上海、北京、广州这些大城市应该高些,在抗震防灾要求上,更应区别对待。 全国性的规范订得愈详细,其适用性可能变得愈差,造成的混乱也可能愈多;特别象岩土工程那样的规范更是如此。 发达国家有关土建结构工程的规范及与之配套的各类技术标准多由行业协会或专业学会编制及管理,规范的翻新周期短,不象我们要长达10年以上。我国的学会与协会重复设置,分工不明,并且至今还依附于某一政府部门,基本上只起到政府职能部门非官方代言人的作用,距离独立和富有活力的健全机构还差的很远,如何发挥这些机构在技术标准编写和管理中的作用也是值得探讨的一个问题。建议随着改革的深入,整顿合并有关的学会、协会,加强其职能,并逐渐成为技术标准编制管理的主体。 四、准备提交政府有关部门考虑的建议 为了改善我国土建结构工程的安全性与耐久性,这次论坛中提出了以下建议供政府有关部门考虑,: 1、桥梁、隧道、道路、港口等基础设施工程的混凝土结构耐久性,已是当前亟待采取措施应对的重大问题。否则,一些工程的正常使用功能和安全性将得不到有效保证,我国的现代化建设和国民经济会蒙受巨大损失,并将给生产和公众生活带来长期困扰。 建议国家建设部、交通部、铁道部主管土建工程设计标准的部门,能对工程的耐久性要求作重点审查,明确土建工程的设计应有最低使用寿命的要求,重要工程的设计文件中应有正常使用寿命和耐久性设计的独立章节与论证; 建议国家自然科学基金委员会能在今后一段时期内对混凝土工程耐久性的基础理论研究给予重点支持; 建议国家安全生产监督管理局为在近期内编订有关法规标准给以立项资助; 建议中国工程院土木水利建筑学部在其咨询研究项目中,联络国内有关专家,促进土建结构耐久性设计指导性技术条例的编制。 2、土建工程使用过程中的安全性,应有定期的检测和正常的维护修理加以保证。对于重要土建工程,我国尚无必须进行安全检测的法规。在基础设施工程的投资上有重新建、轻维修的倾向,不利于工程寿命和投资效益。 建议对桥、隧等重要公共基础设施和公共建筑物,在其使用期内实施强制性的定期安全检测。为此,需要制定法规,编制相应的技术标准;对于土建结构工程的检测与评估,需要建立从业人员的注册制度和从业机构的资质认证与监管体制。凡属已建工程的安全诊断也可一并归入这一行业。 建议政府有关部门在桥、隧、道路等土建基础设施工程投资上,根据需要,加大工程维修费的比例。 3、完善技术标准体系与管理体制,发挥学会、协会在技术标准编制、修订和管理中的作用;逐步淡化技术规范条文的强制性质;鼓励编制地方性规范(标准)和企业标准,适应不同地区在环境地质和经济、技术水平上的差异,并鼓励科技创新和技术进步。 4、合理设置土建结构设计的安全水准,必须考虑工程失效的风险后果、社会的财富与资源供给、乃至公众的意向等多种因素。随着我国经济形势的巨大变化,有必要重新审视现行土建结构工程设计规范的安全设置水准,建议主管部门组织论证。桥梁等交通土建结构的风险后果较大,且由于车流、车载、车速的快速发展,在设计荷载标准值和承载力安全度的设置水准上似乎应比一般的建筑结构有更高的安全贮备。在建筑结构的安全设置水准上,建议进一步收集不同意见,包括商品房消费者的意向。我国不同地区的经济发展水平悬殊,在建筑物安全性和耐久性的要求上是否需要区别对待也值得探讨。 5我国建筑结构设计规范采用可靠度设计方法的经验及问题值得总结。可靠度方法用于不同类型结构的先决条件和难度不一,不必强求一律。建议有关部门在推广可靠度方法于各类设计规范时,广泛征集各种看法,实事求是,稳慎对待,不宜急于求成。

相关百科

热门百科

首页
发表服务