首页

> 学术发表知识库

首页 学术发表知识库 问题

写有关光学应用方面的研究论文

发布时间:

写有关光学应用方面的研究论文

引言 光全息学是在现代激光的发现之后才迅速发展起来的,本文将就光全息学的一些主要的研究课题进行探讨,并针对一些应用课题进行研究。现代光全息学的起源,发展和人物,新型应用,本文将告诉你. 利用干涉原理,将物体发出的特定光波以干涉条纹的形式记录下来,使物光波前的全部信息都储存在记录介质中,这样记录下来的干涉条纹图样称为“全息图”,而当用光波照射全息图时,由于衍射原理能重现出原始物光波,从而形成与原物体逼真的三维象,这个波前记录和重现过程称为“全息术”或“全息照相” 光束全息照相由盖伯于1948年提出的,而当时没有足够强的相干辐射源全息研究处于萌芽时期。当时的全息照相采用汞灯为光源,且是同轴全息图,它的+/-1级衍射波是分不开的,即存在所谓的“孪生像”问题,不能获得很好的全息像。这是第一代全息图。1960年激光的出现,1962年美国科学家利思和乌帕特尼克斯将通信理论中的射频概念推广到空域中,提出离轴全息术,他用离轴的参考光照射全息图,使全息图产生三个在空间互相分离的衍射分量,其中一个复制出原始物光,第一代全息图的两大难题因此得以解决,产生了激光记录,激光再现的第二代全息图。当代光全息学发展主要课题有:1. 球面透镜光学系统2. 光源和光学技术3. 平面全息图分析4. 体积全息图衍射5. 脉冲激光全息学6. 非线性记录,散斑和底片颗粒噪声7. 信息储存8. 彩色全息学9. 合成全息图10. 计算机产生全息图11. 复制,电视传输和非相干光全息图而伴随光全息学的发展也产生一些光全息技术应用,比如高分辨率成像,漫射介质成像,空间滤波,特征识别,信息储存与编码,精密干涉测量,振动分析,等高线测量,三维图象显示等方面的用途。本论文将就当代光全息学的研究与应用两大课题进行学术研究一. 当代光全息学研究 球面透镜不仅能形成光振幅分布的影象,而且易形成该分布的傅立叶变换图形。因此,用一个简单透镜可使物光在全息平面上成为某原始图形的傅立叶变换。存储在全息图中的变换所具有的特性,在光学图形识别中有重要的应用。透镜,作为形成影象的器件,可以在全息术中用来构成像面全息图。一个透镜可以形成:a.傅立叶变换和b.输入复振幅分布的影象 由于利用激光光源来制作全息图片,使得全息学开始成为一门实用的学科。对形成全息图所用光源提出的要求取决于由于物体和必要的光学部件的安排所决定的参数。从单一光源取得物波和参考波有如下图所示两种普通方法:A. 分波前法B. 分振幅法 在光源与全息图之间(通过物表面或参考镜的反射)传播的光线的最大光程差必须小于相干长度。激光的相干性与激光器的振荡模式有关,就全息术而论,它要求在任一个横模振荡的激光器的空间相干的辐射,由于高介模的振荡较不稳定,并有以两个或者多个模式同时振荡的倾向,因此最好的振荡模式是最底阶的模式。激光束的输出功率必须分成物体照明波和参考波。若物体要求从不止一个角度(以消除阴影),就需要将激光束分成好几束,一般采用分振幅法,因分振幅法能产生较均匀的照明,而且对光束的展宽要求小,既可以在分配前也可以在分配后展宽。平面全息图分析用非散射光记录的共线全息图上的条纹间隔与感光乳剂的厚度相比为较宽的。照明这张全息图的波前中的一条光线在通过全息图前只和一条记录条纹相互作用。因此全息图的响应近似于一个有聚焦特性的平面衍射光栅。加伯在分析这些特性时是把这样的全息图严格地当作二维的。用对二维模型分析的结果也很符合实验观察。在应用利思与乌帕尼克首先采用的离轴技术所得到的全息图上,其条纹频率则超过共线全息图,超过了量正比于物光束与参考光束之间的夹角。条纹间隔的典型值可以考虑由两平面波的干涉得到。正弦强度分布的周期d可以由下式决定:2dsinθ=λ, θ为波法线与干涉条纹间的夹角,波长λ,条纹间隔d式中当θ=15°,λ=0.5微米(绿光)时,则d=1微米。记录离轴全息图的感光乳剂的厚度通常为15微米,实际上,在这样的乳剂中记录的全息图已不能当作是二维的了。因此重要的是要记录住平面全息图的分析结果只能准确地应用于使用相当薄的介质所形成的全息图。体积全息图衍射基本的体积全息图对相干照明的响应可以用偶合波理论来描述。假设有两个在yz平面传播的并具有单位振幅的平面波,其进入记录介质并进行干涉的情况,按折射定律,有sin /sin =sin /sin =nn为记录介质的折射率; 及 分别表示两个波在空气中与z轴的夹角; 及 则为两个波在介质中与z轴的夹角。布拉格定律可以用空气中的波长 ,全息片介质折射率 写成如下形式: 2dsinθ= / 体积全息图的特性由布拉格定律确定,因此对照明显示出选择响应。 二.光全息学典型应用高分辨率成像当一张全息图用与制作全息图参考光束共轭的光束照明时,在理论上能再现没有像差没有畸变的物波,其投影实象的分辨率仅受全息图边界衍射的限制。由于分辨率将随全息图尺寸的增加而增加。由于全息图可以做的很大,因此可以指望在现场大到5×5厘米时空间频率高到1000线/毫米。显然此种情况下放大率为1,但1:1的高分辨率投影成像,在集成电路的光刻工艺中有重要的潜在应用。将光刻掩模精密成象在半导体薄片上的工作,目前是用接触印象法来完成的。但这方法很快就会使模板损坏。用投影方法将影象转移到薄片上是一理想的可供选择的方法,但要非常优良和非常昂贵的镜头才能使投影的掩模象达到要求的分辨率和视场。当用相干光源照明制作全息图时,摄影乳剂的收缩,表面变形,非线性及洽谈噪声源的影响就更大了。它们可使图象产生斑纹,衬度降低和边缘模糊,这些缺陷又是用光刻法制作集成电路所不允许的。新的,更稳定的材料可能是这些问题的解答。特征识别由空间调制参考波形成的傅立叶变换全息图的许多特性,曾被范德鲁等人用于特征识别。他们采用全息法作成的空间滤波器完成了“匹配滤波”在特征识别中的应用。匹配滤波与概念,形成与应用可由下图说明 当要把形成的空间滤波器作为特征识别时,在输入平面内z轴上方部分是一个由平面波透明的,在不透明背景上包含M个透明字符的透明片。我们将这一组字符阵列的透过率表示为 这里所有字符均围绕 点对称分布, 是阵列中的一个典型字符,其中心在 点。另外,在输入平面内 处,有一光强度为 δ 的明亮的点光源,并在空间频率面εη面上形成一张傅立叶变换全息图。这一全息图可以看作是t 与δ函数形成的平面波干涉的记录。但是当全息图完成识别功能时,仅由透过t的一小部分,即通过入射平面内的一个或几个字符的光所照明,我们将会看到,在输出平面上我们所关心的再现,是表示识别结果的一个明亮的象点。信息储存与编码全息图既可以存储二维信息也可以存储三维信息。信息可以是彩色的或者编码的,图象的或者字母数字的;可以存储在全息图的表面,或存储在整个体积中;可以为空间上分离的,或者重叠的;可以是永久记录或者是可以消象的。记录的内容可以是彼此无关的或者相互成对的;可以是可辨认的影象或似乎是无意义的图形。现代光全息学的发展前景十分广阔,而其实用技术必然会实现普及,有识之士当携手共同研究以促进社会进步.

分光计的调节及其棱镜折射率的测定研究与分析杨贵宏(08物理2班 200802050253)引言:我们的生活离不开阳光,通常我们认为阳光是一种单色光(单一波长的光)。其实,笼罩在我们周围的光线本身是复色光(由两种或两种以上的单色光组成的光线),他是由不同波长波线的单色光组成的。广义的说,具有周期性的空间结构或光学性能(如透射率、折射率)的衍射屏,统称光栅。光栅的种类很多,有透射光栅和反射光栅,有平面光栅和凹面光栅,有黑白光栅和正弦光栅,有一维光栅,二维光栅和三维光栅,等等。此次实验所使用的光栅是利用全息照相技术拍摄的全息透射光栅光栅的表面若被污染后不易清洗,使用时应特别注意。分光计是一种能精确测量角度的光学仪器,常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。由于该装置比较精密,控制部件较多而且复杂,所以使用时必须严格按照一定的规则和程序进行调整,以便测量出准确的结果。摘要: 分光计是一种能精确测量折射角的典型光学仪器,经常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。由于该装置比较精密,控制部件较多而且操作复杂,所以使用时必须严格按照一定的规则和程序进行调整,方能获得较高精度的测量结果。关键词:分光计、棱镜、折射率Abstract: The spectrometer can accurately measure the angle of refraction is a typical optical instruments, often used to measure the material's refractive index, dispersion rate, wavelength, and spectral observations. As the more sophisticated devices, control components and operation are more complex, and therefore must be used strictly in accordance with certain rules and procedures to adjust to get the high precision measurement results.Keywords: spectrometer, prism, the refractive index二、实验目的: 1、了解分光计结构,学会正解调节和使用分光计的方法; 2、用分光计测量三棱镜的顶角; 3、学会用最小偏向角法测量三棱镜的折射率。三、实验仪器:分光计主要由五个部件组成:三角底座,平行光管、望远镜、刻度圆盘和载物台。图中各调节装置的名称及作用见表1。 图 1分光计基本结构示意图表1 分光计各调节装置的名称和作用代号 名称 作用1 狭缝宽度调节螺丝 调节狭缝宽度,改变入射光宽度2 狭缝装置 3 狭缝装置锁紧螺丝 松开时,前后拉动狭缝装置,调节平行光。调好后锁紧,用来固定狭缝装置。4 平行光管 产生平行光5 载物台 放置光学元件。台面下方装有三个细牙螺丝7,用来调整台面的倾斜度。松开螺丝8可升降、转动载物台。6 夹持待测物簧片 夹持载物台上的光学元件7 载物台调节螺丝(3只) 调节载物台台面水平8 载物台锁紧螺丝 松开时,载物台可单独转动和升降;锁紧后,可使载物台与读数游标盘同步转动9 望远镜 观测经光学元件作用后的光线10 目镜装置锁紧螺丝 松开时,目镜装置可伸缩和转动(望远镜调焦);锁紧后,固定目镜装置11 阿贝式自准目镜装置 可伸缩和转动(望远镜调焦)12 目镜调焦手轮 调节目镜焦距,使分划板、叉丝清晰13 望远镜光轴仰角调节螺丝 调节望远镜的俯仰角度14 望远镜光轴水平调节螺丝 调节该螺丝,可使望远镜在水平面内转动15 望远镜支架 16 游标盘 盘上对称设置两游标17 游标 分成30小格,每一小格对应角度 1’18 望远镜微调螺丝 该螺丝位于图14-1的反面。锁紧望远镜支架制动螺丝 21 后,调节螺丝18,使望远镜支架作小幅度转动19 度盘 分为360°,最小刻度为半度(30′),小于半度则利用游标读数20 目镜照明电源 打开该电源20,从目镜中可看到一绿斑及黑十字21 望远镜支架制动螺丝 该螺丝位于图14-1的反面。锁紧后,只能用望远镜微调螺丝18使望远镜支架作小幅度转动22 望远镜支架与刻度盘锁紧螺丝 锁紧后,望远镜与刻度盘同步转动23 分光计电源插座 24 分光计三角底座 它是整个分光计的底座。底座中心有沿铅直方向的转轴套,望远镜部件整体、刻度圆盘和游标盘可分别独立绕该中心轴转动。平行光管固定在三角底座的一只脚上25 平行光管支架 26 游标盘微调螺丝 锁紧游标盘制动螺丝27后,调节螺丝26可使游标盘作小幅度转动27 游标盘制动螺丝 锁紧后,只能用游标盘微调螺丝26使游标盘作小幅度转动28 平行光管光轴水平调节螺丝 调节该螺丝,可使平行光管在水平面内转动29 平行光管光轴仰角调节螺丝 调节平行光管的俯仰角四、实验原理:三棱镜如图1 所示,AB和AC是透光的光学表面,又称折射面,其夹角 称为三棱镜的顶角;BC为毛玻璃面,称为三棱镜的底面。图2三棱镜示意图 1.反射法测三棱镜顶角 如图2 所示,一束平行光入射于三棱镜,经过AB面和AC面反射的光线分别沿 和 方位射出, 和 方向的夹角记为 ,由几何学关系可知: 图3反射法测顶角2.最小偏向角法测三棱镜玻璃的折射率假设有一束单色平行光LD入射到棱镜上,经过两次折射后沿ER方向射出,则入射光线LD与出射光线ER间的夹角 称为偏向角,如图3所示。 图4最小偏向角的测定转动三棱镜,改变入射光对光学面AC的入射角,出射光线的方向ER也随之改变,即偏向角 发生变化。沿偏向角减小的方向继续缓慢转动三棱镜,使偏向角逐渐减小;当转到某个位置时,若再继续沿此方向转动,偏向角又将逐渐增大,此位置时偏向角达到最小值,测出最小偏向角 。可以证明棱镜材料的折射率 与顶角 及最小偏向角的关系式为 实验中,利用分光镜测出三棱镜的顶角 及最小偏向角 ,即可由上式算出棱镜材料的折射率 。实验内容与步骤:1.分光计的调整(分光计结构如右图所示) 在进行调整前,应先熟悉所使用的分光计中下列螺丝的位置: ①目镜调焦(看清分划板准线)手轮; ②望远镜调焦(看清物体)调节手轮(或螺丝);③调节望远镜高低倾斜度的螺丝;④控制望远镜(连同刻度盘)转动的制动螺丝;⑤调整载物台水平状态的螺丝;⑥控制载物台转动的制动螺丝;⑦调整平行光管上狭缝宽度的螺丝;⑧调整平行光管高低倾斜度的螺丝; 图5 ⑨平行光管调焦的狭缝套筒制动螺丝。(1)目测粗调。将望远镜、载物台、平行光管用目测粗调成水平,并与中心轴垂直(粗调是后面进行细调的前提和细调成功的保证)。(2)用自准法调整望远镜,使其聚焦于无穷远。①调节目镜调焦手轮,直到能够清楚地看到分划板"准线"为止。 ②接上照明小灯电源,打开开关,可在目镜视场中看到如图4所示的“准线”和带有绿色小十字的窗口。 图6目镜视场 ③将双面镜按图5所示方位放置在载物台上。这样放置是出于这样的考虑:若要调节平面镜的俯仰,只需要调节载物台下的螺丝a1或a2即可,而螺丝a3的调节与平面镜的俯仰无关。图7平面镜的放置  ④沿望远镜外侧观察可看到平面镜内有一亮十字,轻缓地转动载物台,亮十字也随之转动。但若用望远镜对着平面镜看,往往看不到此亮十字,这说明从望远镜射出的光没有被平面镜反射到望远镜中。我们仍将望远镜对准载物台上的平面镜,调节镜面的俯仰,并转动载物台让反射光返回望远镜中,使由透明十字发出的光经过物镜后(此时从物镜出来的光还不一定是平行光),再经平面镜反射,由物镜再次聚焦,于是在分划板上形成模糊的像斑(注意:调节是否顺利,以上步骤是关键)。然后先调物镜与分划板间的距离,再调分划板与目镜的距离使从目镜中既能看清准线,又能看清亮十字的反射像。注意使准线与亮十字的反射像之间无视差,如有视差,则需反复调节,予以消除。如果没有视差,说明望远镜已聚焦于无穷远。 (3)调整望远镜光轴,使之与分光计的中心轴垂直。 平行光管与望远镜的光轴各代表入射光和出射光的方向。为了测准角度,必须分别使它们的光轴与刻度盘平行。刻度盘在制造时已垂直于分光计的中心轴。因此,当望远镜与分光计的中心轴垂直时,就达到了与刻度盘平行的要求。具体调整方法为:平面镜仍竖直置于载物台上,使望远镜分别对准平面镜前后两镜面,利用自准法可以分别观察到两个亮十字的反射像。如果望远镜的光轴与分光计的中心轴相垂直,而且平面镜反射面又与中心轴平行,则转动载物台时,从望远镜中可以两次观察到由平面镜前后两个面反射回来的亮十字像与分划板准线的上部十字线完全重合,如图6(c)所示。若望远镜光轴与分光计中心轴不垂直,平面镜反射面也不与中心轴相平行,则转动载物台时,从望远镜中观察到的两个亮十字反射像必然不会同时与分划板准线的上部十字线重合,而是一个偏低,一个偏高,甚至只能看到一个。这时需要认真分析,确定调节措施,切不可盲目乱调。重要的是必须先粗调:即先从望远镜外面目测,调节到从望远镜外侧能观察到两个亮十字像;然后再细调:从望远镜视场中观察,当无论以平面镜的哪一个反射面对准望远镜,均能观察到亮十字时,如从望远镜中看到准线与亮十字像不重合,它们的交点在高低方面相差一段距离如图6(a)所示。此时调整望远镜高低倾斜螺丝使差距减小为h/2,如图6(b)所示。再调节载物台下的水平调节螺丝,消除另一半距离,使准线的上部十字线与亮十字线重合,如图6(c)所示。之后,再将载物台旋转180o ,使望远镜对着平面镜的另一面,采用同样的方法调节。如此反复调整,直至转动载物台时,从平面镜前后两表面反射回来的亮十字像都能与分划板准线的上部十字线重合为止。这时望远镜光轴和分光计的中心轴相垂直,常称这种方法为逐次逼近各半调整法。图8亮十字像与分划板准线的位置关系 (4)调整平行光管 用前面已经调整好的望远镜调节平行光管。当平行光管射出平行光时,则狭缝成像于望远镜物镜的焦平面上,在望远镜中就能清楚地看到狭缝像,并与准线无视差。 ①调整平行光管产生平行光。取下载物台上的平面镜,关掉望远镜中的照明小灯,用钠灯照亮狭缝,从望远镜中观察来自平行光管的狭缝像,同时调节平行光管狭缝与透镜间的距离,直至能在望远镜中看到清晰的狭缝像为止,然后调节缝宽使望远镜视场中的缝宽约为1mm。 ②调节平行光管的光轴与分光计中心轴相垂直。望远镜中看到清晰的狭缝像后,转动狭缝(但不能前后移动)至水平状态,调节平行光管倾斜螺丝,使狭缝水平像被分划板的中央十字线上、下平分,如图7(a)所示。这时平行光管的光轴已与分光计中心轴相垂直。再把狭缝转至铅直位置,并需保持狭缝像最清晰而且无视差,位置如图7(b)所示。图9狭缝像与分划板位置 至此分光计已全部调整好,使用时必须注意分光计上除刻度圆盘制动螺丝及其微调螺丝外,其它螺丝不能任意转动,否则将破坏分光计的工作条件,需要重新调节。 2. 测量 在正式测量之前,请先弄清你所使用的分光计中下列各螺丝的位置:①控制望远镜(连同刻度盘)转动的制动螺丝;②控制望远镜微动的螺丝。(1)用反射法测三棱镜的顶角  如图2 所示,使三棱镜的顶角对准平行光管,开启钠光灯,使平行光照射在三棱镜的AC、AB面上,旋紧游标盘制动螺丝,固定游标盘位置,放松望远镜制动螺丝,转动望远镜(连同刻度盘)寻找AB面反射的狭缝像,使分划板上竖直线与狭缝像基本对准后,旋紧望远镜螺丝,用望远镜微调螺丝使竖直线与狭缝完全重合,记下此时两对称游标上指示的读数 、 。转动望远镜至AC面进行同样的测量得 、 。可得 三棱镜的顶角 为 重复测量三次取平均。(2) 棱镜玻璃折射率的测定 分别放松游标盘和望远镜的制动螺丝,转动游标盘(连同三棱镜)使平行光射入三棱镜的AC面,如图3 所示。转动望远镜在AB面处寻找平行光管中狭缝的像。然后向一个方向缓慢地转动游标盘(连同三棱镜)在望远镜中观察狭缝像的移动情况,当随着游标盘转动而向某个方向移动的狭缝像,正要开始向相反方向移动时,固定游标盘。轻轻地转动望远镜,使分划板上竖直线与狭缝像对准,记下两游标指示的读数,记为 、 ;然后取下三棱镜,转动望远镜使它直接对准平行光管,并使分划板上竖直线与狭缝像对准,记下对称的两游标指示的读数,记为 、 ,可得 重复测量三次求平均。用上式求出棱镜的折射。五、实验注意事项:1.望远镜、平行光管上的镜头,三棱镜、平面镜的镜面不能用手摸、揩。如发现有尘埃时,应该用镜头纸轻轻揩擦。三棱镜、平面镜不准磕碰或跌落,以免损坏。 2.分光计是较精密的光学仪器,要加倍爱护,不应在制动螺丝锁紧时强行转动望远镜,也不要随意拧动狭缝。 3.在测量数据前务须检查分光计的几个制动螺丝是否锁紧,若未锁紧,取得的数据会不可靠。 4.测量中应正确使用望远镜转动的微调螺丝,以便提高工作效率和测量准确度。 5.在游标读数过程中,由于望远镜可能位于任何方位,故应注意望远镜转动过程中是否过了刻度的零点。 6.调整时应调整好一个方向,这时已调好部分的螺丝不能再随便拧动,否则会造成前功尽弃。 7.望远镜的调整是一个重点。首先转动目镜手轮看清分划板上的十字线,而后伸缩目镜筒看清亮十字。 六、思考题:1. 分光计的调整有哪些要求?其检察的标准?答:①几何要求:“三垂直”。即载物小平台的平面,望远镜的主光轴、平行光管的主光轴均必须与分光计的中心轴垂直。②物理要求:“三聚焦”。即叉丝对目镜聚焦,望远镜对无穷远聚焦,狭缝对平行光管物镜聚焦。③检验三垂直的标准:“四平行”。即载物小平台平面、望远镜的主光轴、平行光管的主光轴和读数刻度盘四者相互平行。④检验三聚焦的标准:“三清晰”。即目镜中观察叉丝清晰,亮十字反回的像(绿十字)清晰,在望远镜中看到狭缝清晰。2. 即是重点又是难点内容的望远镜系统如何调整? 答:①目测粗调②打开小灯调节目镜,看清叉丝。③在载物台上放双平面镜(位置如胶片图所示,为什么?),调节物镜(仰俯角和伸缩)和载物台(螺钉),使双平面镜两面有绿十字像并清晰、无视差,此时望远镜已聚焦无穷远。④调整望远镜的光轴与分光计转轴垂直。使双平面镜两面有绿十字像。再用“减半逐步逼近法”使望远镜的光轴与分光计的中心轴垂直(对照胶片讲解,必要时示范讲解),即叉丝的像与调整叉丝完全重合。3. 平行光管如何调整?答:①用已调节好的望远镜作基准,调节平行光管下部仰俯螺钉,使其出射平行光。②调节平行光管的狭缝宽度(强调:不要损坏刀口!)③使平行光管光轴与分光计转轴垂直。使目镜中看到的水平和竖直的狭缝像均居中。 七、误差分析:在测量三棱镜折射率实验中,当调节分光计的平行光管光轴与望远镜光轴垂直于中心转轴后,由实验可知载物台平面的倾斜程度对最小偏向角的测量没影响,但顶角的测量随着载物台平面的倾斜程度不同,有着不同程度的影响。八、实验心得:1、提高了我们综合分析的能力,当面对一个问题时,首先要考虑怎样解决,既而开始考虑解决的具体方法,在实验前必须提前预习,把整个实验的原理,流程和注意的事项掌握清楚,这才能保证你实验既快又好的完成.在预习时要有目的,心中明白哪里里是实验的重点,哪里是必须注意的问题.设计实验步骤,并预测实验中可能出现的问题。对实验的每一个细节进行分析,尽可能的减小实验误差。这些都使我们初步培养了实验的素质和能力。 2、培养了实验中科学严谨的态度,尊重客观事实,对待任何实验都客观认真仔细。实验正式开始前,应该先清点下实验仪器和材料,并对其进行检查,以确保实验顺利进行.在动手前先将心中的实验知识对照一起过一遍再开始动手。实验过程更始需要很精细的态度和求实的态度。对每个步骤,每个细节都要留心。 3、养成了我们做事认真细致有耐心的习惯。在实验中,你必须有耐心,因为实验中每个变化都可能是细微的,必须集中精神才能去发现它,不可以急于求成。如果实验数据与正确数据相差过大时,应该把整个实验过程回想一下,对照每一步骤寻求问题所在,重新做一次。 4、悉了很多仪器的使用方法,在光学实验室良好的环境和设备的情况下,我们得到了很好的锻炼,对很多仪器的调试、测量,以及如何减小实验误差等,都有了很明确的认识。我想,这在我们以后的实验过程中会非常有用。 5、实验老师们的耐心讲解和对工作的认真态度给我留下了很深刻的印象。辅导我们实验的每一位老师,对工作都极其认真,在实验前,老师通常会给大家讲解下实验的注意事项,对于我们实验中出现的问题都给予耐心的讲解,而且,在我们实验进行中和实验结束后,老师们都启发我们思考实验的一些外延内容,这对我们将实验所进行的内容跟课本密切联系起来,将知识更充分地掌握。九、试验总结:首先:光学试验的仪器测量都十分精密,实验中一个很小的环节都有可能导致试验的失败,以“应用全反射临界角法测定三棱镜的折射率”为例,在实验过程中要注意分光仪在进行本次实验时已做过校正,因此时在测量时就应该注意,只能调节载物台倾斜度调节螺丝,而对于像平行光管倾斜度调节螺丝、望远镜倾斜度调节螺丝等就不应该再进行调节,否则将会导致实验失败。 第二:对于数据的处理,光学实验也有较高的要求,数据不但要求准确度高,精确度也要高,而且通常要记录多组数据,最后取平均。 第三:光学实验的测量仪器在进行测量时,通常要求一个稳定的实验环境,当有光源时,通常要在实验开始前先打开光源,这样在进行实验时,光源已经达到稳定。对于“全息照相”,对环境的稳定性要求更高,实验仪器都放在防震台上,在仪器排好光路后,要用手轻敲台面,看光路是否改变,在进行曝光前,更是要求室内实验人员不得大声说话,因为声波震动而引起的空气密度变化都有可能导致实验失败,在装片后还必须有一个使台面上各元件自然稳定的时间,即使干涉条纹稳定下来了,时间也不得少于3分钟。可以说这是我做过的六次实验中对稳定性要求最高的实验 第四:我始终认为做好实验预习是最重要的,在作实验前,通过预习,我们可以了解要做实验的原理及要使用的仪器的使用方法,这样在实验之前就已对试验有了大概的了解,然后在课堂上通过老师的讲解,可以迅速掌握仪器的使用方法,这样做起实验来才会得心应手,同时也可以减少因不了解实验仪器的使用方法而导致的实验失败,甚至是对仪器造成损坏,可以说做好实验预习是一举多得的事情。九、参考文献:[1]、普通物理实验3光学部分 高等教育出版社 杨述武、赵立竹等编 2008年版;[2]、大学物理实验 章世恒 主编 西南交通大学出版社 2009 年1月 ;[3]、大学物理实验教程(第2版) 何春娟 主编 西北工业大学出版社 2009年4月。

《大学物理-光学》百度网盘资源免费下载

链接:

大学物理-光学|3.偏振.mp4|2.干涉.mp4|1.衍射.mp4

有关物理方面应用的论文范文

物理学是研究物质运动最一般规律和物质基本结构的学科,下面就是高中物理论文范文,欢迎大家阅读!

摘要 :物理规律教学是使学生掌握物理科学理论的中心环节,是物理教学的核心之一。

本文结合笔者自身多年的物理教学经验,浅谈在物理教学中,如何搞好中学物理规律的教学。

关键词: 物理规律教学

物理规律反映了各物理概念之间的相互制约关系,反映在一定条件下一定物理过程的必然性。

它是中学物理基础知识最重要的内容,是物理知识结构体系的枢纽.所以,物理规律教学是使学生掌握物理科学理论的中心环节,是物理教学的核心之一。

怎样才能搞好规律教学呢?现结合本人多年的物理教学经历,浅谈以下几点看法:

一、创设发现问题、探索规律的物理环境

教师带领学生学习物理规律,首先需要引导学生在物理世界中发现问题。

因此,在教学的开始阶段,要应给学生创设一个便于发现问题的物理环境。

在中学阶段,主要是通过观察、实验发现问题,也可以从分析学生生活中熟知的典型事例中发现问题,有时也可以从对学生已有知识的分析展开中发现问题。

另一方面,创设的物理环境要有利于引导学生探索规律。

例如使学生获得探索物理规律必要的感性知识和数据;提供进一步思考问题的线索和依据;为研究问题提供必要的知识准备等等。

创设的物理环境还应有助于激发学生的学习兴趣和求知欲望.

二、带领学生探索物理规律

在学生有一定的需要和积极的准备状态下,教师要利用各种适宜的方法,如实验探索、理论推导等,向学生阐明概念和规律的形成过程,建立新旧知识的链接。

如在牛顿第二定律的教学中,让学生通过实验探索加速度与力的关系以及加速度与质量的关系,得出在质量一定的条件下加速度与外力成正比、在外力一定的条件下加速度与质量成反比的结论。

在此基础上,教师指导学生总结加速度、外力和质量的关系,归纳出牛顿第二定律。

这样学生对该规律的建立就有了一个清晰的过程,才能较深刻地理解物理规律、领悟其物理含义。

另一方面,向学生呈现物理规律内容时不但要准确,而且对一些关键字词应加以突出,给予适当的说明,以引导学生足够的注意和正确理解,并与其他类似的或易混淆的概念和规律进行比较,建立类比联系,加深对物理规律的理解。

三、要使学生深刻理解规律的物理意义

在规律的教学中,要引导学生深刻理解其物理意义,防止死记硬背。

物理规律的表达形式主要有两种:一种是文字语言,另一种是数学语言,即公式。

对物理规律的文字表述,必须在学生对有关问题进行分析、研究、并对它的本质有相当认识的基础上进行,切不可在学生毫无认识或认识不足的情况下“搬出来”,“灌”给学生,然后再逐字逐句解释和说明。

只有这样,学生才能真正理解它的含义。

例如,牛顿第一定律“一切物体在没有受到外力作用的时候,总保持匀速直线运动状态或静止状态。”在理解时,要注意弄清定律的条件是“物体没有受到外力作用”,还要理解“或”这个字的含义。

“或”不是指物体有时保持匀速直线运动状态,有时保持静止状态,而是指如果物体原来是运动的,它就保持匀速直线运动状态;如果原来是静止的,它就保持静止状态。

对于用数学语言即公式表达的物理规律,应使学生从物理意义上去理解公式中所表示的物理量之间的数量关系,而不能从纯数学的角度加以理解。

如,对电场中同一点而言,不能说场强E与电场力F成正比,与电量q成反比,因为场强E由电场和电场中该点的位置决定。

四、要使学生明确物理规律的适用条件和范围

物理规律往往都是在一定的条件下建立或推导出来的,只能在一定的范围内使用.超越这个范围,物理规律则不成立,有时甚至会得出错误结论.这一点往往易被学生忽视,他们一遇到具体问题,就乱套乱用物理规律,得出错误结论.因此,在物理规律教学中,要使学生明确物理规律的适用条件和范围,正确地运用规律来研究和解决问题。

例如动量守恒定律,它的成立条件是,所研究的系统不受外力或者所受外力的合力为零,这属基准条件。

如果系统受到外力F外或合力F合不为零,其动量是不守恒的,但可能有两种情形:其一,系统中物体相互作用的内力F内远大于F外(或F合),该系统的动量可看作是守恒的,其条件属近似条件;其二,选定直角坐标系后,将不在坐标轴上的外力各自沿x轴和y轴进行正交分解,若沿某一坐标轴(如x轴)的各个外力(含分力)的合力为零,则系统在该轴方向上的动量守恒,其条件属分动量守恒条件。

动量守恒定律是自然界普遍适用的基本定律之一,它适用于两个物体或多个物体组成的系统;它不但能解决低速运动问题,而且能解决高速运动问题;不但适用于宏观物体,而且适用于电子、质子、中子等微观粒子。

此外,无论是什么性质的相互作用,动量守恒定律都是适用的。

五、加强应用物理规律解决实际问题的训练和指导

物理规律来源于物理现象,反过来应用于实际问题,学习物理规律的目的就在于能够运用物理规律解决实际问题,同时,通过运用,还能检验学生对物理规律的掌握情况,加深对物理规律的理解。

在规律教学中,一方面要选择恰当的物理问题,有计划、有目标、由简到繁、循序渐进、反复多次地进行训练,使学生结合对实际问题的讨论,深化、活化对物理规律的理解,逐渐领会分析、处理和解决问题的思路和方法;另一方面,要引导和训练学生善于联系日常生活中的实际问题学习物理规律,经常用学过的规律科学地说明和解释有关的现象,通过训练,使学生逐步学会逻辑地说理和表达.对于运用物理规律分析和解决实际问题,要逐步训练学生运用分析、解决问题的思路和方法,使学生学会正确地运用数学解决物理问题。最后指出,由于物理规律的复杂性,必须注意规律教学的阶段性,使学生对规律的认识要有一个由浅入深,逐步深化、提高的过程。

只有这样,才能有效地指导学生掌握物理规律,培养学生的思维能力。

参考文献

1.人民教育出版社物理室。

全日制普通高级中学《物理教学大纲》2003

2.田世昆,胡卫平.物理思维论[M].南宁:广西教育出版社,1996.167.

3.南冲.中学物理教学研究[M].北京:海潮出版社,1993.09.

【摘要】 高考是关系到千家万户的大事,也是国家目前选拔人才的途径。认真学习和研究《教学大纲》和《考试说明》,按照教学规律科学的进行复习,及时的收集和处理信息,充分的调动学生的学习积极性,一定会取得好的成绩。

【关键词】 高考组织复习能力

为使高考复习能落到实处,使复习的过程更科学、复习的效率更高、有利于最大限度的提高学生的成绩,特提出以下几点建议:

1.强化基础知识的复习,加强学生对概念和规律的深入理解

在高中,对基本概念、基本规律的要求一贯是高考物理考查的主要内容和重点内容,主要考查考生在理解的基础上掌握基本概念、基本规律和基本方法,并要求深入理解概念和规律之间的内在联系。不少学生存在着这样的表现:概念,定义都知道,但一用就错,试卷上表现主要是选择题得分率低。这些都是基础较差,对物理概念和规律的理解不够有密切的关系。而近几年的各地高考试卷中的物理试题也都明确反映出重视基本概念、规律考查的特点。

对此,在复习中应该按照物理《教学大纲》和《考试说明》对学生五个方面的能力的加以严格要求,同时要让学生明白:理解能力是基础。只有理解能力提高了,其他能力才能较好的发展,而理解能力的前提是牢固的基础知识、扎实的基本技能和规范的基本方法,只有抓好基本知识、基本技能和基本方法的复习,对概念和规律的理解才能正确、深入、透彻。

2.加强学生的计算推理能力、论证表述能力、分析综合能力

高考物理试题度于推理能力的考查贯穿于各种题型中,从不同的角度、不同的层次,通过不同的题型、不同的情景设置来考查考生推理的逻辑性、严密性;对论证表述则重在考查能否准确地、简明地把推理过程表达出来,以此鉴别考生表述能力的高低。要克服学生思维推理过程不能严格合乎逻辑,对受力分析、运动过程分析不予重视,给解题带来盲目性;不会用物理语言表述物理过程或物理规律,使解题过程残缺不全;牛顿运动定律、动量、功能关系三条常用解题线索相互脱节,不能有机整合,使解题思路僵化、方法呆板、正确率低。

3.提高学生应用数学知识解决物理问题的能力

物理和数学是紧密联系的,数学为物理学的发展提供了强有力的工具,几乎所有的物理概念和物理规律,都是通过量化的方法用数学公式进行描述,应用数学处理物理问题的能力也是进入高校深造的考生应具有的能力,因此高考物理试题一直注重考查考生的应用数学处理物理问题的能力。

近年来,高考物理中的数学能力要求有明显的调整,主要表现在尽量回避繁杂的机械运算,而在考察方面,为此,我们一方面要求学生在平时学习中,能过一定数目的练习,掌握解决物理问题常用的数学规律及方法,在此基础上,引导学生逐步形成运用数学工具处理物理问题的基本思路,重点在于通过精讲精练使学生能熟练地将物理问题转化为数学问题。另外,要重视估算题的训练,复习时应注意引导学生逐渐掌握近似估算法,快速求出物理量的数量级。同时,提倡学生平时不用或少用计算器进行计算,因为在平时练习中,很多同学习惯于使用计算器,连非常简单的加减法都非用计算器不可,这样使得他们数学运算能力很差。

4.加强实验复习

实验是物理学的基础,实验能力在物理高考中一直占有相当重要的地位。物理高考力图通过在笔试的形式下考查学生的实验能力。

在教学中,一是要正确对待实验教材,实验复习时不应该机械地记忆教材中各个实验的目的、原理、器材、步骤、记录、结果等等,而应引导学生领悟教材中物理实验的设计思想、所运用的科学方法、规范的操作程序和合理的实验步骤。二是要引起学生对实验的有意注意,提供更多的动手动脑的机会,让他们主动地发现问题,解决问题。老师有意地改变实验条件、设置问题,激励学生努力寻找方法,解决问题。三是从培养学生的实验能力出发,让他们学会通过实验测量和有计划的实践活动去认识自然、发现自然规律、验证假想和猜测的方法,培养他们科学的思维方式、科学方法、实际操作技能和解决实际问题的能力。四是鼓励学生大胆创新,认识到实验教材提供的做法并不是一成不变,拘泥成规的,可以对课本中的实验做一些合理的变通,或补充一些模仿性实验,增加一些设计性实验,培养学生运用所学的知识、方法解决新问题的能力。

为使复习备考工作顺利进行,努力完成学校的工作任务,特提出以下几点措施:

1.认真钻研《高考大纲》、《教学大纲》及《课本》,充分提高“二纲一本”在高考中的作用,研究“二纲”,特别是去分析每年高考大纲之间的.细微的不同的地方,显得更加的重要,同时,也要建议学生常去翻物理课本,不可只顾按资料进行复习,却脱离了高考大纲的现象的发生。

2.高三教学应以人为本因为我们的授课对象是学生,是活生生的人,不是听课的机器,这就要求我们在教学中多点人性化,与学生之间多点交流,加强与学生的沟通,树立服务意识,不可高高之上,使教与学发生脱节。

3.要让学生明明白白的学习,让学生明白:“糊里糊涂作10道题,不如清清楚楚作1道题”。也就是说,在上课时要让学生明白,为什么要这么去作而不那样去作,为什么这样作是对的而那样作是错的,也就是时时要让学生明白一个“理”字,处处要讲“理”,在这一方面我的体会是我自己讲“理”的时候多,而让学生去讲“理”的时候少,以后在可能的情况下要让学生来讲讲“理”。

4.要让学生不可走入题海中,必要的题目是要做的,但一定要精选题目,讲前一定要求学生先做,作后再讲,讲后再留时间让学生消化吸收。

5.克服以教代学的现象,教得再好,没有学生的学(理解、消化、吸收),也是徒劳的,我们在高三复习中应该定位为一是指导学生进行知识的归纳和总结,补漏,建立知识网络,二是应有服务意识――帮助学生克服学习中遇到的困难和障碍。

6.要努力提高教学效率,效率的高低不是以你今天讲了多少个知识点,讲了多少道题为标准的,面是以你上课前定下的教学目标是不是在计划的时间内完成为标准的,说通俗一点,就是以这节课学生能过教师指导,真正学到的知识是多少为标准的。

7.狠抓基础内容及重点内容,高考的追求就是区分度,一套成功的试题是通过区分度来实现的,并不是由难度来实现的,而中等题目才是真正实现区分度的手段,因为易题都会,分不出好差,过难的题几乎没有几个人会,基本上也不会区分出好差,这一点一定要让学生知道,只有重视了基础,才能有效地完成中档难度的题,要防止学生钻牛角,老师要及时加以引导。

8.抓中等生要想在明年的高考中有突破,眼睛不能只盯着为数不多的几个好学生身上,要在尖子生吃饱吃好的情况下,重点兼顾中等生或有弱门课的学生,要想法提高他们的物理成绩,而提高他们成绩的方法中最好的方法就是要设法提高他们的学习物理的兴趣,让他们动起来,这样才是最为有效的,另外要多关心他们,多提问他们,在教学中采用灵活的方法,如分层布置作业,根据各班的实际灵活的采用不同的教学方法等,以提高他们的学习的积极性。

我们坚信,只要我们努力,按照教学规律科学的进行复习,及时的收集和处理信息,充分的调动学生的学习积极性,一定会取得好的成绩。

力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。下文是我为大家整理的关于物理学力学论文的范文,欢迎大家阅读参考!

浅析物理力学的产生及其发展

摘 要:物理力学主要是研究宏观力学的微观理论学科。研究物理力学的主要目的是通过理解微观粒子性质的相互作用,找出介质的力学性质计算方法,进而使解决力学问题建立在微观分析的基础上。本文主要探讨了物理力学的产生和发展,为有关物理力学问题的解决提供理论基础。

关键词:物理力学;产生;发展

一、物理力学发展需要解决的问题分析

在物理力学的发展过程中,我们需要解决两方面的问题,一个是关于物性的问题,另一个是有关运动规律的问题。物理力学主要通过物性及其运动规律这两个方面的微观化而成为解决问题、建立微观分析的基础。关于物性的参数主要表现为运动方程组中的系数,例如弹性系数、热导率、粘性系数、声速、比热等。为了求解运动的方程组,需要知道它们相关的数值。

在传统力学中,物性参数的数值是需要试验测定的。而在我们研究的物理力学中,是通过微观的分析以及对宏观数据分析相结合的方法计算参数的数值。我们研究物理力学,不仅是为了能够找出物质性质的微观规律,而且还需要找能够预见新物质性质的方法。

针对物理力学发展中的相关问题,先了解一下有关激波结构问题的例子。物态在激波前后会有很大的变化,在波阵面一定的厚度之内,物质是处在远离平衡的状态的。这时,对于宏观物态的参数已经不适用了。因此,我们需要从分子运用的这一个角度进行描述。像从波尔兹曼方程的角度出发,进而直接进行求解。

在上世纪60年代,一对无内部自由度的影响激波结构的问题得到了进一步发展。其发展主要得力于计算机技术的发展,从而能够使波尔兹曼方程进而得到模型数学方程,求精确解。另外,还能够实现激波管与稀薄气体风洞在较高区域的分辨率的相关方面的测量。虽然对于这些问题的处理都是初步的,但是从物理力学微观运动规律上看,确是一个非常大的进步。

还有一个相似的例子就是对爆震波反应区结构方面的研究。对于这方面的研究是比激波结构更加复杂的,解决问题的困难在于理论的复杂性,也有实验经验的不足等原因。分子气体的动力激光器中非平衡流方面的问题,主要是因为分子内部自由度性质在不断膨胀的气流中产生的自身不平衡现象。在这种迅速膨胀的气流中,分子振动的自由度两方面是不平衡的,不能够采用统一的温度对其进行描述。因此,这也是一个远离平衡的问题。

二、新技术不断推动物理力学的发展

物理力学的产生及其发展即是力学学科发展的重要趋势,也是促进现代工程技术发展的重要手段。自上世纪40年代至今,由于尖端的技术以及基础科学的不断发展与进步,力学面临着大量的超高温和超高压等特殊条件下的问题。我国著名的力学家钱学森在上世纪50年代初提出应该建立物理力学这门学科,其真知灼见把握了力学发展的大趋势,并且预见了今后突飞猛进的结果。

人类社会科学技术的不断发展,给物理力学的研究提供了更多的条件。纵观近五十年间的物理力学的发展,值得一提的是液体理论的重大进步。1972年,麦克唐纳等人计算出等压线结果和多种液体实测数据等,促进了对液体理论的研究。1997年,威尔逊提出了采用重正化群理论解决临界现象,取得了重大的进展。近20年来,对于耗散结构理论是非平衡系统的研究也取得了突破性的进展。上世纪50年代之后,原子分子物理学才重新被重视,尤其是计算机的不断应用大大地促进了这门学科的发展。其他的像分子束技术、光散射技术、中子衍射技术等都成为了研究固体以及液体微观结构的有效手段。另外,高压技术能够产生千万大气压以上的高压条件,高倍电子显微镜能够用来观测原子尺的现象等。新技术以及新发明都为进一步研究物理力学提供了有利的条件。

本文对物理力学的产生及其发展进行了相关的探讨。通过本文的研究,我们了解到,在对物理力学进行研究时,我们应该明确物理力学研究的目的,还应该充分采用新技术、新发明,将其不断应用到研究中。只要我们不断探索和实践,一定能够进一步促进物理力学的发展。

参考文献:

[1]范继美.理论力学与普通物理力学的关系[J].云南师范大学学报(自然科学版),2009,(02).

[2]钱学森.从原子分子物理出发,经由物理力学的思路和方法搞发明创造[J].原子与分子物理学报,2007,(02).

[3]干洪.力学学科的发展现状与21世纪展望[J].安徽建筑工业学院学报(自然科学版),2001,(02)。

[4]陈卫平.现代力学发展趋势及研究课题[J].台州师专学报,2007,(06).

浅析力学在机械中的应用

[摘 要]力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。本文立足于力学,简要论述了力学的内涵及其发展历程,并对力学在机械中的应用进行了较为深入的探讨与分析。

[关键词]力学 弹性力学 断裂力学 工程力学 机械

力学是力与运动的科学,它的研究对象主要是物质的宏观机械运动,它既是一门基础科学,又是一门应用众多且广泛的科学。力学与天文学和微积分学几乎同时诞生,在经典物理的发展中起关键作用,推动了地球科学的发展进步,如大气物理、海洋科学等,同时力学也在机械中起着越来越重要的作用,且应用广泛。

一、力学

力学是一门独立的基础学科,主要研究能量和力以及它们与固体、液体及气体的平衡、变形或运动的关系,可粗分为静力学、运动学和动力学三部分。

力学的发展历史悠久,古希腊时代力学附属于自然哲学,后来成为物理学的一个大分支,1687年,牛顿三大定律的提出标志着力学作为一门独立的学科开始形成。此后,随着资本主义生产的发展,到18世纪末,以动力学和运动学为主要特征的经典力学日益完善。19世纪,大机器生产促进了力学在工程技术和应用方面的发展,推动了结构力学、弹性固体力学和流体力学等主要分支的建立。19世纪末,力学已是一门相当发展并自成体系的独立学科。

二、力学在机械中的应用

力学在机械中的应用广泛,其典型应用主要有以下几种:

1.弹性力学在机械设计中的应用

弹性力学也称弹性理论,是固体力学的重要分支,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。机械运动当中,许多机械运转速度较高、承载很大,机械的弹性变形对系统的影响不容忽视,必须将机械系统按弹性系统进行分析和设计。由此可见,弹性力学在机械设计中应用广泛。一般情况下,弹性力学在凸轮机构设计、齿轮机构设计、轴设计中应用较为广泛。

齿轮机构在设计时运用了弹性力学的知识,渐开线作为齿廓曲线存在诸多优点,但用弹性力学知识加以分析便可得出它存在的一些固有缺陷,即当两齿轮啮合传动时,根据弹性力学中的赫兹公式分析可得,在其它条件相同的情况下,要想降低两齿轮在接触处的最大接触力,就必须增大两轮齿廓在接触点处的综合曲率半径,对于渐开线齿轮传动来说,由于要增大两轮齿廓在接触点处的综合曲率半径,就需要增大齿轮机构的尺寸,而两轮齿廓在接触点处的综合曲率半径增大的范围是有限的,所以难以进一步达到齿轮机构尺寸小、而承载能力大幅度提高的目的。同时,弹性力学在轴设计中也有众多应用。为避免共振现象,对高转速的轴,如汽轮机主轴、发动机曲轴等设计时振动计算尤其重要,此时必须运用弹性力学知识。

2.断裂力学在机械工程中的应用

断裂力学,是固体力学的一门新分支,主要研究含裂纹构件的强度与寿命,是结构损伤容限设计的理论基础。断裂力学主要可分为线弹性断裂力学与弹塑性断裂力学两大类,前者适用于裂纹尖端附近小范围屈服的情况;而后者适用于裂纹尖端附近大范围屈服的情况。断裂力学发展迅速,在机械工程中应用广泛,并占据重要地位。断裂力学在机械工程中的有效应用,不仅可以提高机械的性能与功效,更能防止工程设备发生灾难性的断裂事故,以确保机械、设备的安全可靠与良好运行。

首先,我国在采用断裂力学方法制订结构缺陷评定标准及安全设计规范方面已取得了较好的成绩,如压力容器、小型但用量大的液化石油气钢瓶及汽轮一发电机组等。

其次,概率断裂力学在可靠性设计中应用较多。概率断裂力学在可靠性设计中的广泛应用推动了可靠性设计的快速发展。运用参量的分布及安全余度来反映常规设计中不能准确反映的客观实际和常规设计安全评定中用安全系数不能准确反映的真实安全性。由于安全余度考虑了应力和强度的二阶矩,较好地反映了结构可靠度的实质,既考虑了变异特性又考虑了平均值,因而与失效分布有较直接的关系,使安全设计更可靠。国外已较完整地应用于飞机结构,如概率损伤容限分析、飞机结构可靠性和事故分析、飞机结构的耐久性分析等方面。我国在这方面开展的典型性研究则是海洋石油平台导管架焊接管节点的疲劳强度分析。

再者,可用断裂力学方法进行机械产品的失效分析。失效分析是指事故或故障发生后所进行的检侧和分析,目的在于找到失效的部位、失效原因和机理,从而掌握产品应当改进的方向及修复的方法,防止同类问题再次发生,以推进技术不断前进。因此,失效分析技术受到了社会各界的重视。断裂力学在机械产品失效分析中具有着重要作用。机械产品的主要失效模式有: 断裂、蠕变、疲劳、腐蚀、磨损及热损伤等,它们都可以借助断裂力学方法及断裂分析技术予以解决,断裂力学方法是失效分析的有力工具。

最后,运用断裂力学可以指导改进工艺及合理选材,如模具、焊接工艺等方面,可以减少工人的劳动量。

3.工程力学在机械修理中的应用

工程力学涉及众多的力学学科分支与广泛的工程技术领域,是一门理论性较强、与工程技术联系极为密切的技术基础学科,工程力学的定理、定律和结论广泛应用于各行各业的工程技术中,是解决工程实际问题的重要基础。处理机械工程出现的大量破坏问题,绝大多数是根据力学方面的知识作出判断和分析的。例如,汽车修理中汽车零部件的破坏分析与修理也是如此,其中,判断汽车半轴套管断裂的原因与确定修复方案等,全部流程无一不体现着工程力学知识在汽修中的应用。

三、结语

当今社会,科学技术迅猛发展,作为一门基础学科,力学也一定会得到进一步的发展与进步,且在机械中获得更广更深的应用。

参考文献

[1]林同骥,浦群.现代力学的发展[J].力学进展,1990,(1).

[2]李彦军.工程力学在汽修中的应用与对策[J].科技向导,2012,(32).

[3]侯岩滨.弹性力学在机械设计中的应用[J].辽宁师专学报,2005,(1).

[4]吴清可,刘元杰,张毓槐.断裂力学在机械工程中的应用[J].机械强度,1988,(6).

论文光学分析法的应用与研究

如果用照相机来比喻眼睛,巩膜就相当于照相机的主体(机身);瞳孔是光圈,光圈的大小由虹膜的扩大或缩小所控制;角膜和晶状体像一组镜头;视网膜相当于菲林底片。如果要将远和近的景物摄下来,那么就必须调校焦距,才能让景象清晰地投射在菲林底片上。在真正的照相机里,机制是调整镜片与菲林之间的距离。在眼睛,这个步骤是由睫状肌所控制。睫状肌是围绕晶状体的一组不随意肌。当看近物时,这组肌肉令晶状体的弧度变得较弯,厚度增大,使屈光度增加,这样影像就清楚地投射在视网膜上。相反地,看远景时,睫状肌令晶状体的弯曲度减低,前后表面都变得较为扁平,屈光度数亦相应减低,最后影像仍然是清晰地投影在视网膜上。睫状肌控制晶状体屈光度的功能,称为调节。当眼睛看着无限远的物体时,如果无需调节而影像能清楚地投射到视网膜上,这种屈光状态称为“正视”。反之,如果无限远的景物,在没有调节的情况下,不能清楚地投射在视网膜上,那就称为“屈光不正”,或称为“屈光误差”,也就是我们通常所谈及的近视、远视或散光了。其实,即使有清晰的视网膜影像,不等于我们一定可以“看”得清楚,还在于视觉信息由视神经传到大脑视皮层的过程中是否出现问题。这就是说,眼球、视神经、视觉地带以及大脑视皮层一定要全部正常地运作,我们才能清晰准确地看到外界的影像。当光线由空气进入另一媒质构成的单球面折光体时,它在该物质的折射情况决定于该物质与空气界面的曲率半径R和该物质的折光指数n2;若空气的折光指数为n1,则关系式为:空气侧的焦距为前主焦距或第1焦距。F2称为后主焦距或第2焦距,指由折射面到后主焦点的距离,可以表示此折光体的折光能力;或者用另一种方法,即把主焦距以m(米)作单位来表示,再取该数值的倒数,后者就称为该折光体的焦度(diopter);如某一透镜的主焦距为10cm,这相当于0.1m,则该透镜的折光能力为10焦度(10D)。通常规定凸透镜的焦度为正值,凹透人眼的折光系统是一个复杂的光学系统。射入眼内的光线,通过角膜、房水、晶状体和玻璃体四种折射率不同的介质,并通过四个屈光度不同的折射面(角膜的前、后表面,晶状体的前、后界面)才能在视网膜上成像,其中,入射光线最主要的折射发生在角膜的前表面。依据几何光学原理进行的计算结果表明,正常成人眼在安静而不进行调节时,它的折光系统的后主焦点的位置正好是视网膜所在的位置。这一解剖关系对于理解正常眼的折光成像能力十分重要。它说明,凡是位于眼前方6m以外直至无限远处的物体,它们发出或反射出的光线在到达眼的折光系统时已近于平行,因而都可以在视网膜上形成清晰的像,这正如放置于照相机主焦点处的底片,可以拍出清晰的远景一样。当然,人眼不是无条件地看清任意远处的物体的。例如,人眼可以看清楚月亮(或其它更远的星体)和它表面较大的阴影,但不能看清楚月球表面更小的物体或特征。其原因是,如果来自某物体的光线过弱,或光线在空间或眼内传播时被散射或吸收,那么它们到达视网膜时已减弱到不足以兴奋感光细胞的程度,这样就不可能被感知;另外,如果物体过小或它们离眼的距离过大,则它们在视网膜上的成像将会小到视网膜分辨能力的限度以下,因此也不能感知。光线通过眼折光系统发生的折射现象,称为屈光(refraction),眼的总折光能力可用屈光度(焦度,diopter, 简称D)表示。屈光度数值等于该折光体主焦距(以m为单位)的倒数。人眼在非调节状态下的总折光能力约为59D。镜的焦度为负值。主焦距是一个折光体最重要的光学参数,由此可算出位于任何位置的物体所形成的折射像的位置。以薄透镜为例,如果物距a是已知的,像距b可由下式算出:由式(2)可以看出,当物距a趋于无限大时,1/a趋近于零,于是1/b接近于1/F2,亦即像距b差不多和F2相等;这就是说,当物体距一个凸透镜无限远时,它成像的位置将在后主焦点的位置。同样不难看出,凡物距小于无限大的物体,它的像距b恒大于F2,即它们将成像在比主焦点更远的地方。以上结论,对于理解眼的折光成像能力十分重要。另外,根据光学原理,主焦点的位置是平行光线经过折射后聚焦成一点的位置,这一结论与上面提到的第一点结论相一致。每一物体的表面,都可认为是由无数的发光点或反光点组成,而由每一个点发出的光线都是辐散形的;只有当这些点和相应的折射面的距离趋于无限大时,由这些点到达折射面的光线才能接近于平行,于是它们经折射后在主焦点所在的面上聚成一点,由这些点再组成物像。当然,无限远是一个不可能到达的位置,实际上对人眼和一般光学系统来说,来自6m以外物体的各光点的光线,都可以认为是近于平行的,因而可以在后主焦点所在的面上形成物像。

论文?我只想说设计这样一个系统,只进行仿真,没有实物,我们真的可以做出来吗?

金属的光谱分析法是利用光谱学的原理和实验方法以确定物质的结构和化学成分的分析方法。英文为spectral analysis或spectrum analysis。各种结构的物质都具有自己的特征光谱,光谱分析法就是利用特征光谱研究物质结构或测定化学成分的方法。光谱分析法主要有原子发射光谱法、原子吸收光谱法、紫外-可见吸收光谱法、红外光谱法 等。根据电磁辐射的本质,光谱分析又可分为分子光谱和原子光谱。

大数据在哪些方面有应用论文研究

可以应用在云计算方面。

大数据具体的应用:

1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。

2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。

3、统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。

4、麻省理工学院利用手机定位数据和交通数据建立城市规划。

5、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。

6、医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。

7、及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。

8、为成千上万的快递车辆规划实时交通路线,躲避拥堵。

9、分析所有SKU,以利润最大化为目标来定价和清理库存。

10、根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。

大数据的用处:

1、与云计算的深度结合。大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。

自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。

2、科学理论的突破。随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。

百度百科--大数据

大数据的应用是以大数据技术为基础,对各行各业或生产生活方面提供决策参考。

大数据应用的典型有:电商领悟、传媒领领域、金融领域、交通领域、电信领域、安防领域、医疗领域等。

1、电商领域:

电商领域是大数据技术应用最为广泛的领域之一,如个性化推荐,精准广告推送,其中抖音,快手就是很好的例子。此外还有大数据杀熟等技术,但是大数据杀熟技术已经被法律明令禁止了。

2、传媒领域:

传媒领域得益于大数据技术的应用,可以做到精准营销,直达目标群体,不仅如此,在交互推荐,猜你喜欢上大数据技术也有着关键作用。

3、金融领域:

金融领域也是大数据应用的一个重要领域,比如信用评估,风险管控,客户细分,精细化营销,都是很好的例子。可以根据用户的行为大数据对用户进行评估,根据当时的金融形势大数据进行风险评估。

4、交通领域:

交通领域与我们息息相关,预测交通拥堵状况,最优导航规划,路况分析,给出最优路线。此外还有智能红绿灯等,都是大数据技术应用的典型。

5、电信领域:

电信领域也有大数据技术的身影,如电信基站的选址就要用到用户地址大数据,舆情监控等。

6、安防领域:

大数据也可以应用于安防领域,如犯罪预防,通过对大量犯罪细节的分析总结,帮助警察找到犯罪证据,犯罪嫌疑人。此外还有天网监控等。

7、医疗领域:

医疗领域的大数据应用主要体现在智慧医疗,疾病预防,病源追踪等方面。典型的例子就是现在的新冠疫情防控。

同时大数据的应用是把双刃剑,一方面可以为我们带来便利,另一方面也会造成个人隐私泄露的问题。

伴随着通讯技术从2G网络时代发展成现如今5G网络时代,各行业的信息传输速率变得越来越快,信息量也呈爆发式增长。传统数据处理办法早已无法满足大量信息的处理要求,所以为解决庞大信息管理上的问题,大数据技术应运而生。

大数据技术作为智能化时代的产物,可以解决各个领域大量数据有效处理的发展瓶颈问题的重要方式。作为一名大三的计算机专业学生,我想从以下两个方面分享大数据技术的应用。

与交通有关的数据链接都终将会形成交通大数据集合。交通是大数据技术应用领域的一个比较典型的代表。伴随着交通管制的发展,和音频、视频、图像、数字监控等渠道的增加,交通行业的数据已经膨胀到“一发不可收拾”的地步。

与以往数据对比,交通数据的规模、种类和多元复杂性的层面都不容易解决。因而,有效解决交通大数据是交通行业重中之重。为加强对交通数据管理,完成智能化交通的目标,可以选择将大数据技术用于交通的管制中。

以运用大数据技术自主发现交通违规行为为例子。比如:搜集超速行驶、闯红灯违章、人行道不降速等图像数据,建立相应的交通违反规定的数据库。根据对数据的筛选,选择各种各样违法违规行为的典型性数据展开分析,建立相关机器学习模型,并利用已有的数据进行训练,在满足判断准确率的要求后投入实际应用。

做好土木工程基础建设是促进经济发展前进的一大法宝,但是由于土木工程工程量大以及涉及到的有关项目很多,工程数据的管理已经成为牵制土木工程持续发展的短板。因而,大数据技术与推动土木工程基本建设紧密结合,是促进工程项目发展、完成智能工程目标的关键对策。

工程造价数据作为土木工程建设不可或缺的一部分,伴随着土木工程工程项目的推动而不断积累增多。大量的造价数据促使工程成本很难测算,传统数据管理方案不再适用。因而,为解决工程预算大量数据的难题,必须将大数据技术融进土木工程工程造价的各个阶段中。

大数据技术作为工业生产4.0的代表性技术,可以有效的解决、剖析和运用大量数据。大数据发掘出的潜藏信息是现阶段稀缺的资源,大数据技术在智能化交通和土木工程中的运用,进一步验证了大数据技术的时代感和适用范围。

我认为大数据技术在各个行业发展方向里将具备更宽广的发展前景,这将变成领域改革创新与经济发展的驱动力。

光电效应的研究历史与应用论文

看看下帖11楼的论文如何——

难道是光电效应,没听说过电光效应锕

你自己去幸福校园论文网里去找找 很多呢 我也在写 就是从那找的 你可以去搜搜看 参考一下霍耳顿教授在60年代末发表的一篇著名论文《马赫、爱因斯坦和对实在的探索》 中这样写道:“在我们这个世纪的思想史中,有一章可以题为‘阿尔伯特•爱因斯坦的哲学历程',这是一段从以感觉论和经验论为中心的科学哲学,到以理性论的实在论为基础的哲学历程。”霍耳顿在论文中还首次披露了爱因斯坦1938年1月24日写给老朋友C.兰佐斯的信。爱因斯坦在信中明确地讲了他的哲学“转变”及其主要原因:“从有点类似马赫的那种怀疑的经验论出发,经过引力问题,我转变成为一个有信仰的理性论者,也就是说,成为一个到数学的简单性中去寻求真理的惟一可靠源泉的人。逻辑简单的东西,当然不一定就是物理上真实的东西。但是,物理上真实的东西一定是逻辑上简单的东西,也就是说,它在基础上具有统一性。”霍耳顿论文的主要学术贡献在于,他通过翔实的考证和史料,详细地描绘了爱因斯坦哲学转变的历程,尤其是对马赫哲学态度的演变;他认为爱因斯坦转变后的哲学思想是理性论的实在论,并揭示出其形成受到开普勒和普朗克为代表的自然科学家的影响。许良英教授同意霍耳顿的分析和论断。他在一篇有分量的论文 中列举五大事例进而表明,即使在早期,理性论在爱因斯坦的思想中就占主导地位, 只不过不及后期那样明显罢了;而且,爱因斯坦的理性论思想主要来自历史上最彻底的理性论哲学家斯宾诺莎,是对斯宾诺莎思想进行批判改造的结果......

电光效应 历史版本某些各向同性的透明物质在电场作用下显示出光学各向异性,物质的折射率因外加电场而发生变化的现象为电光效应.电光效应包括泡克耳斯(Pockels)效应和克尔(Kerr)效应。电光效应是指某些各向同性的透明物质在电场作用下显示出光学各向异性的效应。电光效应包括克尔效应和泡克耳斯效应[1]。折射率与所加电场强度的一次方成正比改变的为Pockels效应或线性电光效应,1893年由德国物理学家泡克耳斯(Friedrich Carl Alwin Pockels ,1865 - 1913)发现.折射率与所加电场强度的二次方成正比改变的为Kerr效应或二次电光效应,1875年由英国物理学家克尔(John kerr,1824-1907)发现。利用电光效应可以制作电光调制器,电光开关,电光光偏转器等,可用于光闸,激光器的Q开关和光波调制,并在高速摄影,光速测量,光通信和激光测距等激光技术中获得了重要应用.当加在晶体上的电场方向与通光方向平行,称为纵向电光调制(也称为纵向运用);当通光方向与所加电场方向相垂直,称为横向电光调制(也称为横向运用).利用电光效应可以实现对光波的振幅调制和位相调制.[编辑本段]克尔效应1875年英国物理学家J.克尔发现,玻璃板在强电场作用下具有双折射性质,称克尔效应(Kerr effect)。后来发现多种液体和气体都能产生克尔效应。观察克尔效应的实验装置。内盛某种液体(如硝基苯)的玻璃盒子称为克尔盒,盒内装有平行板电容器,加电压后产生横向电场。克尔盒放置在两正交偏振片之间。无电场时液体为各向同性,光不能通过P2。存在电场时液体具有了单轴晶体的性质,光轴沿电场方向,此时有光通过P2(见偏振光的干涉)。实验表明 ,在电场作用下,主折射率之差与电场强度的平方成正比。电场改变时,通过P2的光强跟着变化,故克尔效应可用来对光波进行调制。液体在电场作用下产生极化,这是产生双折射性的原因。电场的极化作用非常迅速,在加电场后不到10-9秒内就可完成极化过程,撤去电场后在同样短的时间内重新变为各向同性。克尔效应的这种迅速动作的性质可用来制造几乎无惯性的光的开关——光闸,在高速摄影、光速测量和激光技术中获得了重要应用。[编辑本段]泡克耳斯效应1893年由德国物理学家F.C.A.泡克耳斯发现。一些晶体在纵向电场(电场方向与光的传播方向一致)作用下会改变其各向异性性质,产生附加的双折射效应。例如把磷酸二氢钾晶体放置在两块平行的导电玻璃之间,导电玻璃板构成能产生电场的电容器,晶体的光轴与电容器极板的法线一致,入射光沿晶体光轴入射。与观察克尔效应一样,用正交偏振片系统观察。不加电场时,入射光在晶体内不发生双折射,光不能通过P2。加电场后,晶体感生双折射,就有光通过P2。泡克耳斯效应与所加电场强度的一次方成正比。大多数压电晶体都能产生泡克耳斯效应。泡克耳斯效应与克尔效应一样常用于光闸、激光器的Q开关和光波调制等。[编辑本段]电光效应实验【实验目的】1.掌握晶体电光调制的原理和实验方法。2.学会用简单的实验装置测量晶体半波电压,电光常数的实验方法。观察电光效应所引起的晶体光性的变化和会聚偏振光的干涉现象。【学史背景】当给晶体或液体加上电场后,该晶体或液体的折射率发生变化,这种现象成为电光效应.电光效应在工程技术和科学研究中有许多重要应用,它有很短的响应时间(可以跟上频率为1010Hz的电场变化),可以在高速摄影中作快门或在光速测量中作光束斩波器等。在激光出现以后,电光效应的研究和应用得到迅速的发展,电光器件被广泛应用在激光通讯,激光测距,激光显示和光学数据处理等方面。【实验原理】1.一次电光效应和晶体的折射率椭球由电场所引起的晶体折射率的变化,称为电光效应.通常可将电场引起的折射率的变化用下式表示:n = n0 + aE0 +bE02+……式中a和b为常数,n0为不加电场时晶体的折射率。由一次项aE0 引起折射率变化的效应,称为一次电光效应,也称线性电光效应或普克尔(Pokells)效应;由二次项bE02引起折射率变化的效应,称为二次电光效应,也称平方电光效应或克尔(Kerr)效应。一次电光效应只存在于不具有对称中心的晶体中,二次电光效应则可能存在于任何物质中,一次效应要比二次效应显著。 光在各向异性晶体中传播时,因光的传播方向不同或者是电矢量的振动方向不同,光的折射率也不同。如图1,通常用折射率球来描述折射率与光的传播方向,振动方向的关系。晶体的一次电光效应分为纵向电光效应和横向电光效应两种.纵向电光效应是加在晶体上的电场方向与光在晶体里传播的方向平行时产生的电光效应;横向电光效应是加在晶体上的电场方向与光在晶体里传播方向垂直时产生的电光效应.通常KD*P(磷酸二氘钾)类型的晶体用它的纵向电光效应,LiNbO3(铌酸锂)类型的晶体用它的横向电光效应.本实验研究铌酸锂晶体的一次电光效应,用铌酸锂晶体的横向调制装置测量铌酸锂晶体的半波电压及电光系数,并用两种方法改变调制器的工作点,观察相应的输出特性的变化.2.电光调制原理要用激光作为传递信息的工具,首先要解决如何将传输信号加到激光辐射上去的问题,我们把信息加载于激光辐射的过程称为激光调制,把完成这一过程的装置称为激光调制器.由已调制的激光辐射还原出所加载信息的过程则称为解调.因为激光实际上只起到了"携带"低频信号的作用,所以称为载波,而起控制作用的低频信号是我们所需要的,称为调制信号,被调制的载波称为已调波或调制光.按调制的性质而言,激光调制与无线电波调制相类似,可以采用连续的调幅,调频,调相以及脉冲调制等形式,但激光调制多采用强度调制.强度调制是根据光载波电场振幅的平方比例于调制信号,使输出的激光辐射的强度按照调制信号的规律变化.激光调制之所以常采用强度调制形式,主要是因为光接收器一般都是直接地响应其所接受的光强度变化的缘故.激光调制的方法很多,如机械调制,电光调制,声光调制,磁光调制和电源调制等.其中电光调制器开关速度快,结构简单.因此,在激光调制技术及混合型光学双稳器件等方面有广泛的应用.电光调制根据所施加的电场方向的不同,可分为纵向电光调制和横向电光调制.利用纵向电光效应的调制,叫做纵向电光调制,利用横向电光效应的调制,叫做横向电光调制.这次实验中,我们只做LiNbO3晶体的横向调制实验.【实验仪器】电光效应实验仪,电光调制电源,接收放大器,He-Ne激光器,二踪示波器和万用表.(1)晶体电光调制电源.调制电源由-200V—+200V之间连续可调的直流电源,单一频率振荡器(振荡频率约为1kHz),音乐片和放大器组成,电源面板上有三位半数字面板表,可显示直流电压值.晶体上加的直流电压的极性可以通过面板上的"极性"键改变,直流电压的大小用"偏压"旋钮调节.调制信号可由机内振荡器或音乐片提供,此调制信号是用装在面板上的"信号选择"键来选择三个信号中的任意一个信号.所有的调制信号的大小是通过"幅度"旋钮控制的.通过前面板上的"输出"插孔输出的参考信号,接到二踪示波器的一个通道与被调制后的接收信号比较,观察调制器的输出特性.(2)调制器.调制器由三个可旋转的偏振片,一个可旋转的1/4波片和一块铌酸锂晶体组成,采用横向调制方式.晶体放在两个正交的偏振片之间,起偏振片和晶体的x轴平行.检偏振片和晶体之间可插入1/4波片,偏振片和波片均可绕其几何轴旋转.晶体放在四维调节架上,可精细调节,使光束严格沿晶体光轴方向通过.(3)接收放大器.接收放大器由3DU光电三极管和功率放大器组成.光电三极管把被调制了的氦氖激光经光电转换,输入到功率放大器上,放大后的信号接到二踪示波器,同参考信号比较,观察调制器的输出特性.交流信号输出的大小通过"交流输出"旋钮调节.放大器内装有扬声器,用来再现声音调制信号,放大器面板上还有"直流输出"插孔,接到万用表的200mV直流电压档,用于测量光电三极管接收到的光强信号的大小.【实验内容】1.观察晶体的会聚偏振光干涉图样和电光效应形象(1)调节激光管使激光束与晶体调节台上表面平行,同时使光束通过各光学元件中心(这一步老师已调好,学生不要动).调节起偏振片和检偏振片正交,且分别平行于x轴,y轴,放上晶体后各器件要细调,精细调节是利用单轴晶体的锥光干涉图样的变化完成的.由于晶体的不均匀性,在检偏振片后面的白屏上可看到一弱光点,然后紧靠晶体前放一张镜头纸,这时在白屏上可观察到单轴晶体的锥光干涉图样,如图4.一个暗十字图形贯穿整个图样,四周为明暗相间的 图 4同心干涉圆环,十字形中心同时也是圆环的中心,它对应着晶体的光轴方向,十字形方向对应于两个偏振片的偏振轴方向.在观察过程中要反复微调晶体,使干涉图样中心与光点位置重合,同时尽可能使图样对称,完整,确保光束既与晶体光轴平行,又从晶体中心穿过的要求,再调节使干涉图样出现清晰的暗十字,且十字的一条线平行于x轴.这一步调节很重要,调节的好坏,直接影响下一步的测量,因此,一定要耐心,仔细调节.注意此时放大器的电源要关掉,激光光点应落在白屏上,而不能对准光电三极管,以免烧坏.(2)加上直流偏压时呈现双轴晶体的锥光干涉图样,它说明单轴晶体在电场的作用下变成了双轴晶体.(3)两个偏振片正交时和平行时干涉图样是互补的.(4)改变直流偏压的极性时,干涉图样旋转90°.(5)只改变直流偏压的大小时,干涉图样不旋转,只是双曲线分开的距离发生变化.这一现象说明,外加电场只改变感应主轴方向的主折射率的大小,折射率椭球旋转的角度与电场大小无关.2.测定铌酸锂晶体的透过率曲线(即T~U曲线),求出半波电压,再算出电光系数.在我们实验中,用两种方法测量铌酸锂晶体的半波电压,一种方法是极值法,另一种方法是调制法.(1)极值法晶体上只加直流电压,不加交流信号,把直流电压从小到大逐渐改变,输出的光强将会出现极小值和极大值,相邻极小值和极大值对应的直流电压之差即是半波电压.具体做法是:取出镜头纸,光电三极管接收器对准激光光点,放大器的直流输出接到万用表上,万用表调到200mV直流档.为了使光电三极管不致损坏,在起偏振片前再加一块偏振片作为减光片,加在晶体上的电压从零开始,逐渐增大,注意万用表读数的变化,当读数超过200mV时,应旋转减光片,使光强减小,再增大直流偏压到最大,保持万用表的读数始终不超过200mV,再减小直流偏压到零,若万用表的读数始终不超过200mV,则可以开始测量数据了.加在晶体上的电压在电源面板上的数字表读出,每隔5V增大一次,再读出相应的万用表的读数作为接收器接收到的光强值.(2)调制法晶体上直流电压和交流信号同时加上,与直流电压调到输出光强出现极小值或极大值对应的电压值时,输出的交流信号出现倍频失真,出现相邻倍频失真对应的直流电压之差就是半波电压.具体做法是:按下电源面板上"正弦"键,把电源前面板上的调制信号"输出"接到二踪示波器的CH2上,把放大器的调制信号接到示波器的CH1上,把CH1,CH2上的信号做比较,调节直流电压,当晶体上加的直流电压到某一值U1时,输出信号出现倍频失真,再调节直流电压,当晶体上加的直流电压到另一值U2时,输出信号又出现倍频失真,相继两次出现倍频失真时对应的直流电压之差U2-U1就是半波电压.这种方法比极值法更精确,因为用极值法测半波电压时,很难准确的确定T~U曲线上的极大值或极小值,因而其误差也较大.但是这种方法对调节的要求很高,很难调到最佳状态.如果观察不到两次倍频失真,则需要重新调节暗十字形干涉图样,调整好以后再做本内容.3.改变直流偏压,选择不同的工作点,观察正弦波电压的调制特性电源面板上的信号选择按键开关可以提供三种不同的调制信号,按下"正弦"键,机内单一频率的正弦波振荡器工作,产生正弦信号,此信号经放大后,加到晶体上,同时,通过面板上的"输出"孔,输出此信号,把它接到二踪示波器的CH1上,作为参考信号.改变直流偏压,使调制器工作在不同的状态,把被调制信号经光电转换,放大后接到二踪示波器的CH2上,和CH1上的参考信号比较.选择5个不同的工作点40V,80V,120V,160V,200V,观察接收信号的波形并画出图形.工作点选定在曲线的直线部分,即U0=/2附近时是线性调制;工作点选定在曲线的极小值(或极大值)时,输出信号出现"倍频"失真;工作点选定在极小值(或极大值)附近时输出信号失真,观察时调制信号幅度不能太大,否则调制信号本身失真,输出信号的失真无法判断由什么原因引起的,把观察到的波形描下来,并和前面的理论分析作比较.做这一步实验时,把电源上的调制幅度,调制器上的输入光强,放大器的输出,示波器上的增益(或哀减)这四部分调好,才能观察到很好的输出波形.4.用1/4波片改变工作点,观察输出特性在上述实验中,去掉晶体上所加的直流偏压,把1/4波片置入晶体和偏振片之间,绕光轴缓慢旋转时,可以看到输出信号随着发生变化.当波片的快慢轴平行于晶体的感应轴方向时,输出信号线性调制;当波片的快慢轴分别平行于晶体的x,y轴时,输出光失真,出现"倍频"失真.因此,把波片旋转一周时,出现四次线性调制和四次"倍频"失真.值得注意的是,不仅通过晶体上加直流偏压可以改变调制器的工作点,也可以用1/4波片选择工作点,其效果是一样的,但这两种方法的机理是不同的.5.光通讯的演示按下电源面板的"音乐"键,此时,正弦信号被切断,输出装在电源里的"音乐"片信号.拔掉交流输出插头,输出信号通过接收放大器上的扬声器播放,可听到音乐.如改变直流偏压的大小,则会听到音乐的音质有变化,说明音乐也有失真和不失真.用不透明的物体遮光,则音乐停止,不遮光,则音乐又响起,由此说明激光可以携带信号,实现光通讯.把音乐信号接到示波器上,可以看到我们听到的音乐信号的波形,它是由振幅相的不同频率的正弦波迭加而成的.【注意事项】1.He-Ne激光管出光时,电极上所加的直流电压高达千伏,要注意人身安全.2.晶体又细又长,容易折断,电极是真空镀的铝膜,操作时要注意,晶体电极上面的铝条不能压的太紧或给晶体施加压力,以免压断晶体.3.光电三极管应避免强光照射,以免烧坏.做实验时,光强应从弱到强,缓慢改变,尽可能在弱光下使用,这样能保证接收器光电转换时线性性良好.4.电源和放大器上的旋钮顺时针方向为增益加大的方向,因此,电源开关打开前,所有旋钮应该逆时针方向旋转到头,关仪器前,所有旋钮逆时针方向旋转到头后再关电源.

相关百科

热门百科

首页
发表服务