1超市中的数字问题随着城市的发展和人民生活水平的日益提高,超市走进了人们的生活,他们给我们的生活带来了许多的方便,我们的生活方式也因超市的“闯入”受到了一定的影响。如今平望的经济高速发展,超市接二连三地开张。但超市发展之路是漫长的,超市在经营发展中又受哪些方面的影响呢?为此,我们初二(5)班研究性学习小组决定对平望的四大超市(华润超市,华联超市,世纪华联超市,葡萄园超市)做一次调查一、对影响平望超市经营发展的因素的调查与分析1、个人喜好喜好经常能影响一个人的思想,驱使一个人去做些事情,当然,包括让人不由自主地去哪家超市咯,而且平望的面积不算很大,人口有限,四大超市竞争激烈,超市能够受到广大消费者的欢迎是超市继续经营发展的重要条件。这也是我们关注这个问题的原因。以下是我们对这个问题做的一份调查(调查问卷附后),结果如 你最常去的超市是( )A 华润 B 华联 C 世纪华联 D 葡萄园超市从调查我们看出,华润超市受欢迎程度最高,华联次之,其它两个超市无过大差异。2、商品质量和地理位置众所周知,对超市发展影响最大的莫过于商品质量和地理位置。超市商品质量的好坏,能够直接影响消费者的购物欲。一个黄金地段往往是商家争取的重点,地理因素包括通达度,进出是否方便,能突出超市的存在,还有安全性等。这四大超市相距并不是很远,那么,地理位置对它们是否有影响呢?为此,我们特在问卷调查中列入了此项内容,并把它与其它因数进行了对比。结果如下:你常去该超市(你最喜欢的超市)的原因是()A 价格便宜 B 离家较近 C 商品质量好 D 服务态度好 E 其它有24%的人选择了B:离家较近,18%的人选择了A:价格便宜,20%的人选择了C:商品质量好,16%的人选择D:服务态度好,还有22%的人认为是其它原因,例如个人喜欢好。可见,人们对消费地点的选择各有不同。数字显示,超市的选址对消费者而言至关重要。因此分布在居民区的超市较受欢迎。“顾客就是上帝”,每个人都希望买到物美价廉的商品,而且如今的竞争已不是简单的价格战了,完全是商品质量的支撑。我们也坚信好的超市在商品质量和服务态度方面是不会懈怠的。3. 超市的经营理念一个超市的经营理念是一个超市对待顾客的宗旨,只有超市把顾客所想的摆在第一位,凡事都以顾客为中心,人们才会想去超市消费,那么超市便会长长久久。所以我们特别对此做了问卷调查。你认为超市应把什么放在第一位 ( )A.价格 B。质量 C。服务态度 D。商品种类 E。其它结果分析:经调查,多数人把质量放在第一位,说明产品质量对超市经营的影响是很大的。一个超市经营状况的好坏直接取决于商品与服务态度的高低,其中,质量占的比重较大,服务态度次之,这说明永安人民此时钞票的拥有量,正处于一个舒适的状态,而超市的物价水平与之正相适应,暂时达到一个双赢的局面,超市消费水平稳定超市的工作效率1. 当今的社会是跑在商业铁轨上的高速列车,任何效率的停滞,都会影响它的运行,当然,超市作为人们生活中重要的活动场所,在社会生活中扮演的台下的主角,它的效率自然成为人们选择超市的重要指标。所以我们设此问题,以考察超市效率在人们心中的比重大小。你会对效率低的超市产生反感吗 ? ( ) A. 会 B .不会 C.无所谓结果分析: 95%的人选择了A,在这个信息技术发达的社会,人们无论做什么事都讲求高效率,少时间,好享受,较差的服务对于消费者来说是对自己利益的损害,对商家而言既是不负责任的表现也是对自身形象的损害,更对今后的发展带来不利影响。消费者希望超市的服务能够一体化,更周到,无论是服务的设施还是售后服务都尽力而为,实事求是。二、超市对人民生活的影响 在超市里,你常常会有感于超市里不减的人气,超市成了逛街的好去处,从另一个侧面可以看出平望是一个生活满足而安逸的好地方,大家都在逛超市了。超市里那么多东西,怎么会没有一件你满意的商品?于是,钱就这样不知不觉从人们的口袋里一点一点的流走,无形中带动了消费的发展了。需多谈的,尤其是大型的超市对工作人员数量的要求是巨大的,无疑解决了很大的就业压力,这也是为什么政府对超市经营大力扶持的一个重要原因。但毕竟这类员工从事的都是体力类的劳动,报酬不高,但尚能维持生计,其中不乏初入社会的青年。超市为他们提供了一个基本的生存工作的岗位,每个人都有机会通过自己的努力提高自己的待遇。但这种机遇依然是有限的,毕竟从事零售服务是一件烦琐乏味的事情,故这类员工的心态也可以作为一个值得探讨的问题,更何况他们也是超市的一块招牌,他们工作的好坏,热情与否有时就是超市与顾客间交流的窗口。研究消费心理,少不了对销售心理的探访。有时一个销售人员的一个微笑,一段让人心动的产品介绍会让人有一种购买的蠢蠢欲动,其实有时这种销售人员的素质正是超市的一份无形的品 永安超市的发展模式需改善三、对平望超市经营的建议从宏观上看:平望现在超市发展的关键,需从价格制胜的竞争观念向集价格、文化、服务、品牌等多种因素的复合型竞争理念过渡. 1 、超市类型的多元化,在平望, 每个超市里的货物品种,价格,布局,氛围都应各有千秋。不能所有超市一个样,那样怎么会有吸引力呢?在平望,可以发展一些其它类型的超市,如农业超市,里面主要都是农业用具,机械等等呀,必竟平望还是一个农业城市为基础。2、超市分布区域的边缘化,何必一定要挤在市中心,可以到一些城乡结合部呀,现在的平望人民已经在提高进超市购买东西的习惯了,等到大家都习惯了,那些街道商铺可都要关门啦!在厦门的人都知道,厦门的那些大超市进来以后,现在人们一买东西都是进大超市,除了有时零星的购买,当然只能是在社区里的小卖部了。3、超市的特色(或者说是文化,或者说吸引人的地方),像在大城市里的一些超市,每天都有几种特价商品,这些商品平时是不打折的,只有轮到刚好的日子才有,而每个月超市都会将下个月要打折的商品日期提前公布,甚至将宣传单寄给每一个持会卡的人员。从微观上来看: 超市应该改进寄包的设施,超市的服务态度也应该有所改善,超市需要多增设几台收营台,超市的卫生也应做得更好。总结:我们希望通过这次的活动,可以对生活中的变化有所了解,激发对生活的热爱,对知识的不断追求,对实践能力有一个提高,甚至能对超市的经营发展有一定的帮助。 4古代数学发展史—宋元数学: 宋元数学是中国数学发展的高峰。 北宋王朝统一中国后,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪〔宋、元两代〕,筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》〔11世纪中叶〕,刘益的《议古根源》〔12世纪中叶〕,秦九韶的《数书九章》〔1247〕,李冶的《测圆海镜》〔1248〕和《益古演段》〔1259〕,杨辉的《详解九章算法》〔1261〕、《日用算法》〔1262〕和《杨辉算法》〔1274-1275〕,朱世杰的《算学启蒙》〔1299〕和《四元玉鉴》〔1303〕等等。 宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰。其中主要的工作有: 公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法。贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”。(《黄帝九章算法细草》已佚) 公元1088—1095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式。沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式。他还运用运筹思想分析和研究了后勤供粮与运兵进退的关系等问题。 公元1247年,南宋秦九韶在《数书九章》中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程。欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法。秦九韶还系统地研究了一次同余式理论。 公元1248年,李冶(李治,公元1192一1279年)著的《测圆海镜》是第一部系统论述“天元术”(一元高次方程)的著作,这在数学史上是一项杰出的成果。在《测圆海镜?序》中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论。 公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。 公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(etienne bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(james gregory)和公元1676一1678年间牛顿(issac newton)才提出内插法的一般公式。 公元十四世纪我国人民已使用珠算盘。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。 另外,其它成就包括勾股形解法新的发展、解球面直角三角形的研究、纵横图(幻方)的研究、小数(十进分数)具体的应用、珠算的出现等等。 这一时期民间数学教育也有一定的发展,以及中国和伊斯兰国家之间的数学知识的交流也得到了发展。
三角学与天文学 早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、 *** 数学中都有三角学的内容,可大都是天文观测的副产品.测量天体之间的距离不是一件容易的事. 天文学家把需要测量的天体按远近不同分成好几个等级.离我们比较近的天体,它们离我们最远不超过100光年(1光年=9.46万亿1012公里),天文学家用三角视差法测量它们的距离.三角视差法是把被测的那个天体置于一个特大三角形的顶点,地球绕太阳公转的轨道直径的两端是这个三角形的另外二个顶点,通过测量地球到那个天体的视角,再用到已知的地球绕太阳公转轨道的直径,依靠三角公式就能推算出那个天体到我们的距离了.稍远一点的天体我们无法用三角视差法测量它和地球之间的距离,因为在地球上再也不能精确地测定它们的视差了. 〔河内天体的距离又称为视差,恒星对日地平均距离(a)的张角叫做恒星的三角视差(p),则较近的恒星的距离D可表示为:sinπ=a/D〕 若π很小,π以角秒表示,且单位取秒差距(pc),则有:D=1/π 用周年视差法测定恒星距离,有一定的局限性,因为恒星离我们愈远,π就愈小,实际观测中很难测定.三角视差是一切天体距离测量的基础,至今用这种方法测量了约10,000多颗恒星.因此从天文学中又衍生出了三角学,而三角学则为天文研究奠定了基础. 三角学起源于古希腊.为了预报天体运行路线、计算日历、航海等需要,古希腊人已研究球面三角形的边角关系,掌握了球面三角形两边之和大于第三边,球面三角形内角之和大于两个直角,等边对等角等定理.印度人和 *** 人对三角学也有研究和推进,但主要是应用在天文学方面.15、16世纪三角学的研究转入平面三角,以达到测量上应用的目的.16世纪法国数学家韦达系统地研究了平面三角.他出版了应用于三角形的数学定律的书.此后,平面三角从天文学中分离出来,成了一个独立的分支.平面三角学的内容主要有三角函数、解三角形和三角方程. 而三角学的发展历程又是十分漫长的. 最早,古希腊门纳劳斯(Menelaus of Alexandria)著《球面学》,提出了三角学的基础问题和基本概念,特别是提出了球面三角学的门纳劳斯定理;50年后,另一个古希腊学者托勒密(Ptolemy)著《天文学大成》,初步发展了三角学.而在公元499年,印度数学家阿耶波多(ryabhata I)也表述出古代印度的三角学思想;其后的瓦拉哈米希拉(Varahamihira)最早引入正弦概念,并给出最早的正弦表;公元10世纪的一些 *** 学者进一步探讨了三角学.当然,所有这些工作都是天文学研究的组成部分.直到纳西尔丁(Nasir ed-Din al Tusi,1201~1274)的《横截线原理书》才开始使三角学脱离天文学,成为纯粹数学的一个独立分支.而在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯(J•Regiomontanus,1436~1476). 雷格蒙塔努斯的主要著作是1464年完成的《论各种三角形》.这是欧洲第一部独立于天文学的三角学著作.全书共5卷,前2卷论述平面三角学,后3卷讨论球面三角学,是欧洲传播三角学的源泉.雷格蒙塔努斯还较早地制成了一些三角函数表. 雷格蒙塔努斯的工作为三角学在平面和球面几何中的应用建立了牢固的基础.他去世以后,其著作手稿在学者中广为传阅,并最终出版,对16世纪的数学家产生了相当大的影响,也对哥白尼等一批天文学家产生了直接或间接的影响. 最先使用三角学一词的是文艺复兴时期的德国数学家皮蒂斯楚斯(B.Pitiscus,1561~1613),他在1595年出版的《三角学:解三角形的简明处理》中创造这个词.其构成法是由三角形(tuiangulum)和测量(metuicus)两字凑合而成.要测量计算离不开三角函数表和三角学公式,它们是作为三角学的主要内容而发展的. 三角测量在中国也很早出现,公元前一百多年的《周髀算经》就有较详细的说明,例如它的首章记录“周公曰,大哉言数,请问用矩之道.商高曰,平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远.”(商高说的矩就是今天工人用的两边互相垂直的曲尺,商高说的大意是将曲尺置于不同的位置可以测目标物的高度、深度与广度)1世纪时的《九章算术》中有专门研究测量问题的篇章. 16世纪三角函数表的制作首推奥地利数学家雷蒂库斯(G.J.Rhetucus,1514~1574).他1536年毕业于滕贝格(Wittenbery)大学,留校讲授算术和几何.1539年赴波兰跟随著名天文学家哥白尼学习天文学,1542年受聘为莱比锡大学数学教授.雷蒂库斯首次编制出全部6种三角函数的数表,包括第一张详尽的正切表和第一张印刷的正割表. 17世纪初对数发明后大大简化了三角函数的计算,制作三角函数表已不再是很难的事,人们的注意力转向了三角学的理论研究.不过三角函数表的应用却一直占据重要地位,在科学研究与生产生活中发挥着不可替代的作用. 三角公式是三角形的边与角、边与边或角与角之间的关系式.三角函数的定义已体现了一定的关系,一些简单的关系式在古希腊人以及后来的 *** 人中已有研究. 文艺复兴后期,法国数学家韦达(F.Vieta)成为三角公式的集大成者.他的《应用于三角形的数学定律》(1579)是较早系统论述平面和球面三角学的专著之一.其中第一部分列出6种三角函数表,有些以分和度为间隔.给出精确到5位和10位小数的三角函数值,还附有与三角值有关的乘法表、商表等.第二部分给出造表的方法,解释了三角形中诸三角线量值关系的运算公式.除汇总前人的成果外,还补充了自己发现的新公式.如正切定律、和差化积公式等等.他将这些公式列在一个总表中,使得任意给出某些已知量后,可以从表中得出未知量的值.该书以直角三角形为基础.对斜三角形,韦达仿效古人的方法化为直角三角形来解决.对球面直角三角形,给出计算的完整公式及其记忆法则,如余弦定理,1591年韦达又得到多倍角关系式,1593年又用三角方法推导出余弦定理. 1722年英国数学家棣莫弗(A.De Meiver)得到以他的名字命名的三角学定理 ?(cosθ±isinθ)n=cosnθ+isinnθ, 并证明了n是正有理数时公式成立;1748年欧拉(L.Euler)证明了n是任意实数时公式也成立,他还给出另一个著名公式 ?eiθ=cosθ+isinθ, 对三角学的发展起到了重要的推动作用. 近代三角学是从欧拉的《无穷分析引论》开始的.他定义了单位圆,并以函数线与半径的比值定义三角函数,他还创用小写拉丁字母a、b、c表示三角形三条边,大写拉丁字母A、B、C表示三角形三个角,从而简化了三角公式.使三角学从研究三角形解法进一步转化为研究三角函数及其应用,成为一个比较完整的数学分支学科.而由于上述诸人及19世纪许多数学家的努力,形成了现代的三角函数符号和三角学的完整的理论. 如今,人们从更高、更深的角度来认识“三角学”,是由于复数的引入.人们对复数的思考由来已久,例如对方程x2+1=0的根的思考,但人们认真地将虚数=i引入数学则是16世纪的事了.之后欧拉建立了著名的欧拉公式:eiθ=cosθ+isinθ,使得三角学中的问题都可以化归为复数来讨论,于是三角学中一大批问题得以轻松地解决.有了复数与欧拉公式,使人们对三角学的已有理论的理解更为深刻,并可以把一些原始的、复杂的处理三角学的方法与工具“抛到一边”. 事实上,三角学是一门实用的数学分支,尽管源自于天文学,但在很多其他学科中都有用. 百年前,希尔伯特在他那著名的讲演中,用以下这段话作为结束语:“数学的有机统一,是这门科学固有的特点,因为它是一切精确自然科学知识的基础,为了圆满实现这个崇高的目标,让新世纪给这门科学带来天才的大师和无数热诚的信徒吧!”我深信,只要我们从现在开始,学好数学,用好数学,21世纪一定会“给这门科学带来天才的大师”,而且其中肯定有许多来自我们90后! 注:简单的将网上的排了一下序,仍需修改!
基于网络环境下《三角函数的图像和性质》课堂教学的探讨数学论文 摘 要:互联网的出现,教育模式将有革命性的变化,基于网络环境下的教学已成为当今教学改革的核心,也更能够体现新课程标准精神。基于网络环境下的数学教学,有助于突破难点,真正实现分层教学和因材施教,从而提高教学效益。基于网络环境下的数学教学应处理好网络与学生的和谐关系,网络与教师的关系,教师与学生的关系。关键词:教学 数学 网络 新课标传统的教育模式的教学方法、教学手段和教学评价已不能适应社会发展和人们学习的需要,基于网络环境下的学科教学和课堂评价的出现和普及,极大的丰富了教学改革的内容,充分有效的利用了教学资源,基于网络环境下的课堂教学与评价把文本、图像、图形、视频、音频、动画整合在一起,并通过互联网进行处理、控制传播、为学生提供了最理想的学习环境。 一、基于网络环境下的数学教学的含义 基于网络环境下的数学课堂教学,根据新课程标准的教学内容和教学目标需要,继承传统教学的合理成分,打破传统教学模式,全天候,不间断,因材施教的新型教学方法,教学与评价的信息在互联网上传输与反馈,极大的优化了教师群体,极大的丰富了学生的知识能力。基于网络环境下的教学,可以共享教学资源,传递多媒体信息,适时反馈学生学习情况,刺激学生不同的感官,符合学生的学习认知规律,提高学生的学习兴趣,扩大了信息接受量,增大了课堂教学容量,同时又具有实时性,交互性,直观性的特点大大丰富了课堂教学模式,同时又满足了分层教学,因材施教,远程教学等社会需要,开创了教学的全新局面。 二、基于网络环境下数学教学与评价的应用 基于网络环境下数学教学与评价有两大优点: 1、能做到图文并茂,再现迅速,情境创设,感染力强,能突破时空限制,特别是基于.Net技术的交互式动态网页更能提高学生的多种感官的感知效能,发挥个体的最大潜能和创造力,加快学生对知识的理解、接受和记忆,也最能体现新课标的精神,也极大的满足社会全民教育,终身教育的要求。 2、同时全体老师又能通过网络共享教学资源,适时创新资源,使每一位老师都成为名师,使教学的方法水平永不落后。如在讲授函数这部分内容时,二次函数,幂函数,指数函数,对数函数,三角函数的图像以及图像变换是重点内容,关于函数图像的传统画法,是通过师生列表,描点,连线而得,这些工作烦,静止孤立,间断的点和线。教师要自制每一节的课件难度大,时间又有限,而基于网络环境下的数学教学,就可以充分利用网络版课件,进行网上学习,从而化静为动,化繁为简,减轻教师的体力负担,使教师有更多的时间进行创新研究,同时让学生在交互的动态的网络环境下学习,函数值随自变量变化而同步变化以及对应运动的轨迹,从而得到完整精确的函数图像,通过交互学习让学生充分体会同一函数不同参数与图像特征之间的联系,充分掌握函数的性质和抓住图像的平移、反射、压缩、拉伸和对称变换特征。若有疑问或好的见解,还可以通过网络进行远程的交流互动。通过多媒体,交互反馈,使学生深刻理解,不易遗忘。也培养了学生自我学习和终身学习的能力。网络环境下的数学教学,教师教得轻松,也有更多的时间进行个别指导,学生学得愉快。学得有趣,这样数学教学的效率也提高了。 二、基于网络环境下数学教学突破教学难点 高中数学中有一些知识需要通过抽象思维来解决问题,而这也正是高中数学的难点之一,基于网络环境下的教学可以化抽象为直观,有利于突破难点。 如“二次函数即:y=ax2+bx+c(a≠0)在[m,n]上的最值的探讨,学生对二次函数的开口,对称轴移而区间不动或图像不动而区间变化时函数的最值”不易理解,在网络环境下,学生通过对网络课件的阅读和对a,b,c,m,n的动态控制,能深刻理解数学知识的要点,加上在网上的即时测试和评价,更能有效的掌握它,不再感到难以理解。 三、基于网络环境下的数学教学与评价形式多样化,即时化。 传统的教学形式是教师讲,学生听,这样教学方式课堂容量有限,反馈方式单调,信息交流少,所有的学生步伐相同不利于因材施教,不利于培养学生现代的终身的学习能力,同时不能解放教师,让教师从事更有意义的教育工作。而网络环境下的教学可以同时满足不同用户不同要求,培养活学活用的能力,真正实现教学以学生为中心,教学面向全体通过互联交流互联互动进行分层教学、个别教学实现因材施教,体现新课标的要求, 四、基于网络环境下数学教学应处理好的关系 (1)网络与学生的关系 和谐是教学成功的关键。实践中发现基于网络环境下的学科教学,应加强对互联网海量信息的搜索,筛选,加工,创新。在选好教育资源后,教师要努力探索适时、适用问题,创设学习情境,营造和谐的环境。加上学生对网络应用知识基本掌握,达到网络与人的和谐统一。 (2)网络与教师的关系 基于网络环境下的学科教学优势空前,实践中发现,只有网络环境下的教学与教师灵活生动的讲解和创新的适时评价互相配合,相互促进,协调传递信息,最大限度地发挥网络和教师的优势。 (3)教师与学生的关系 教为主导,学为主体,这是在任何教学模式中都应遵循的原则,要体现学生的主体发展与教师的主导相互作用的关系。专题教学网站和网络教学资源库的形成,即将教师从繁杂的重复劳动中解放出来了,但教师的主导作用不是减弱了而是加强了,网络环境下的教学,对教师提出了更高的要求,教师必须挤出大量的时间学习Windows,Authorwear,3Dmax,Flash等方面的知识,还要学会搜索,筛选,创新信息的能力,甚至包括各种电教媒体的操作技能和技巧,只有这样,才能使自己在网络环境下的学科教学中获得自由,掌握主动,充分发挥网络教学的优势,提高我国的教育教学质量。
原文链接:几何中的两个基本量是:线段的长度和角的大小.三角函数的本质就是用线段长度之比来表示角的大小,从而将两个基本量联系在一起,使我们可以借助三角变换或三角计算来解决一些较难的几何问题.三角函数不仅是一门有趣的学问,而且是解决几何问题的有力工具. 1. 角函数的计算和证明问题 在解三角函数问题之前,除了熟知初三教材中的有关知识外,还应该掌握: (1)三角函数的单调性 当a为锐角时,sina与tga的值随a的值增大而增大;cosa与ctga随a的值增大而减小;当a为钝角时,利用诱导公式转化为锐角三角函数讨论. 注意到sin45°=cos45°=,由(1)可知,当时0<a<45°时,cosa>sina;当45°<a<90°时,cosa<sina. (2)三角函数的有界性|sina|≤1,|cosa|≤1,tga、ctga可取任意实数值(这一点可直接利用三角函数定义导出). 例1(1986年全国初中数学竞赛备用题)在△ABC中,如果等式sinA+cosA=成立,那么角A是( ) (A)锐角 (B)钝角 (C)直角 分析 对A分类,结合sinA和cosA的单调性用枚举法讨论. 解当A=90°时,sinA和cosA=1; 当45°<A<90°时sinA>,cosA>0, ∴sinA+cosA> 当A=45°时,sinA+cosA= 当0<A<45°时,sinA>0,cosA> ∴sinA+cosA> ∵1, 都大于. ∴淘汰(A)、(C),选(B). 例2(1982年上海初中数学竞赛题)ctg67°30′的值是( ) (A)-1 (B)2- (C)-1 (D) (E) 分析 构造一个有一锐角恰为67°30′的Rt△,再用余切定义求之.
早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、阿拉伯数学中都有三角学的内容,但那大都是天文观测的副产品.例如,古希腊门纳劳斯著的《球面学》,提出了三角学的基础问题和基本概念.50年后,另一个古希腊学者托勒密著《天文学大成》,初步发展了三角学.而在公元499年,印度数学家阿耶波多也表述出古代印度的三角学思想;其后的瓦拉哈米希拉最早引入正弦概念,并给出最早的正弦表;公元10世纪的一些阿拉伯学者进一步探讨了三角学.当然,所有这些工作都是天文学研究的组成部分.直到纳西尔丁的《横截线原理书》才开始使三角学脱离天文学,成为纯粹数学的一个独立分支.而在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯.雷格蒙塔努斯的主要著作是1464年完成的《论各种三角形》.这是欧洲第一部独立于天文学的三角学著作.全书共5卷,前2卷论述平面三角学,后3卷讨论球面三角学,是欧洲传播三角学的源泉.雷格蒙塔努斯还较早地制成了一些三角函数表.最先使用三角学一词的是德国数学家皮蒂斯楚斯,他在1595年出版的《三角学:解三角形的简明处理》中创造这个词.其构成法是由三角形和测量两字凑合而成.要测量计算离不开三角函数表和三角学公式,它们是作为三角学的主要内容而发展的.16世纪三角函数表的制作首推奥地利数学家雷蒂库斯.雷蒂库斯首次编制出全部6种三角函数的数表,包括第一张详尽的正切表和第一张印刷的正割表.
这个还可以吧、再举个例题如图7,已知某小区的两幢10层住宅楼间的距离为AC=30m,由地面向上依次为第1层、第2层、…、第10层,每层高度为3m.假设某一时刻甲楼在乙楼侧面的影长EC=h,太阳光线与水平线的夹角为α.(1)用含α的式子表示h(不必指出α的取值范围);(2)当α=30°时,甲楼楼顶B点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光?21.(1)过点E作EF⊥AB于F,由题意,四边形ACEF为矩形………………………………………1分∴EF=AC=30,AF=CE=h,∠BEF=α,∴BF=3×10-h=30-h………………………………………2分又在Rt△BEF中,tan∠BEF=BFEF,………………………………………3分∴tanα=,即30-h=30tanα.∴h=30-30tanα………………………………………4分(2)当α=30°时,h=30-30tan30°=30-30×≈12.7,………………………………………5分∵12.7÷3≈4.2,∴B点的影子落在乙楼的第五层………………………………………6分当B点的影子落在C处时,甲楼的影子刚好不影响乙楼采光.此时,由AB=AC=30,知△ABC是等腰直角三角形,∴∠ACB=45°,7分∴45-30/15=1(小时).故经过1小时后,甲楼的影子刚好不影响乙楼采光………………………………………8分
测量山高测量树高,确定航海行程问题,确定光照及房屋建造合理性调整电网,比如两个电网并接的时候用于山的坡度 TAN 平面所走的距离 比上 上升的高度 ,同理还可以测量楼的高啊 塔的高测量树高,确定航海行程问题,确定光照及房屋建造合理性 ______________________________________________________________________________名称定义 研究平面三角形和球面三角形边角关系的数学学科。三角学是以研究三角形的边和角的关系为基础,应用于测量为目的,同时也研究三角函数的性质及其应用的一门学科。[编辑本段]三角学的起源 三角学起源于古希腊。为了预报天体运行路线、计算日历、航海等需要,古希腊人已研究球面三角形的边角关系,掌握了球面三角形两边之和大于第三边,球面三角形内角之和大于两个直角,等边对等角等定理。印度人和阿拉伯人对三角学也有研究和推进,但主要是应用在天文学方面。15、16世纪三角学的研究转入平面三角,以达到测量上应用的目的。16世纪法国数学家韦达系统地研究了平面三角。他出版了应用于三角形的数学定律的书。此后,平面三角从天文学中分离出来,成了一个独立的分支。平面三角学的内容主要有三角函数、解三角形和三角方程。 三角测量在中国也很早出现,公元前一百多年的《周髀算经》就有较详细的说明,例如它的首章记录“周公曰,大哉言数,请问用矩之道。商高曰,平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远。”(商高说的矩就是今天工人用的两边互相垂直的曲尺,商高说的大意是将曲尺置于不同的位置可以测目标物的高度、深度与广度)1世纪时的《九章算术》中有专门研究测量问题的篇章.[编辑本段]三角学的历史 早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、阿拉伯数学中都有三角学的内容,可大都是天文观测的副产品.例如,古希腊门纳劳斯(Menelaus of Alexandria,公元100年左右)著《球面学》,提出了三角学的基础问题和基本概念,特别是提出了球面三角学的门纳劳斯定理;50年后,另一个古希腊学者托勒密(Ptolemy)著《天文学大成》,初步发展了三角学.而在公元499年,印度数学家阿耶波多(ryabhata I)也表述出古代印度的三角学思想;其后的瓦拉哈米希拉(Varahamihira,约505~587年)最早引入正弦概念,并给出最早的正弦表;公元10世纪的一些阿拉伯学者进一步探讨了三角学.当然,所有这些工作都是天文学研究的组成部分.直到纳西尔丁(Nasir ed-Din al Tusi,1201~1274年)的《横截线原理书》才开始使三角学脱离天文学,成为纯粹数学的一个独立分支.而在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯(J Regiomontanus,1436~1476年)。 �雷格蒙塔努斯的主要著作是1464年完成的《论各种三角形》。这是欧洲第一部独立于天文学的三角学著作。全书共5卷,前2卷论述平面三角学,后3卷讨论球面三角学,是欧洲传播三角学的源泉。雷格蒙塔努斯还较早地制成了一些三角函数表。 �雷格蒙塔努斯的工作为三角学在平面和球面几何中的应用建立了牢固的基础.他去世以后,其著作手稿在学者中广为传阅,并最终出版,对 16 世纪的数学家产生了相当大的影响,也对哥白尼等一批天文学家产生了直接或间接的影响. �三角学一词的英文是trigonometry,来自拉丁文tuigonometuia.最先使用该词的是文艺复兴时期的德国数学家皮蒂斯楚斯(B.Pitiscus,1561~1613年),他在1595年出版的《三角学:解三角形的简明处理》中创造这个词.其构成法是由三角形(tuiangulum)和测量(metuicus)两字凑合而成.要测量计算离不开三角函数表和三角学公式,它们是作为三角学的主要内容而发展的. �16世纪三角函数表的制作首推奥地利数学家雷蒂库斯(G.J.Rhetucu s,1514~1574年)。他1536年毕业于滕贝格大学,留校讲授算术和几何。1539 年赴波兰跟随著名天文学家哥白尼学习天文学,1542年受聘为莱比锡大学数学教授.雷蒂库斯首次编制出全部6种三角函数的数表,包括第一张详尽的正切表和第一张印刷的正割表。 17世纪初对数发明后大大简化了三角函数的计算,制作三角函数表已不再是很难的事,人们的注意力转向了三角学的理论研究.不过三角函数表的应用却一直占据重要地位,在科学研究与生产生活中发挥着不可替代的作用. �三角公式是三角形的边与角、边与边或角与角之间的关系式.三角函数的定义已体现了一定的关系,一些简单的关系式在古希腊人以及后来的阿拉伯人中已有研究. �文艺复兴后期,法国数学家韦达(F Vieta)成为三角公式的集大成者.他的《应用于三角形的数学定律》(1579年)是较早系统论述平面和球面三角学的专著之一.其中第一部分列出6种三角函数表,有些以分和度为间隔。给出精确到5位和10位小数的三角函数值,还附有与三角值有关的乘法表、商表等。第二部分给出造表的方法,解释了三角形中诸三角线量值关系的运算公式.除汇总前人的成果外,还补充了自己发现的新公式.如正切定律、和差化积公式等等.他将这些公式列在一个总表中,使得任意给出某些已知量后,可以从表中得出未知量的值.该书以直角三角形为基础。对斜三角形,韦达仿效古人的方法化为直角三角形来解决.对球面直角三角形,给出计算的完整公式及其记忆法则,如余弦定理,1591年韦达又得到多倍角关系式,1593 年又用三角方法推导出余弦定理。 1722年英国数学家棣莫弗(A De Meiver)得到以他的名字命名的三角学定理 �(cosθ±isinθ)n=cosnθ+isinnθ, �并证明了n是正有理数时公式成立;1748年欧拉(L Euler)证明了n是任意实数时公式也成立,他还给出另一个著名公式 �eiθ=cosθ+isinθ, �对三角学的发展起到了重要的推动作用. 近代三角学是从欧拉的《无穷分析引论》开始的.他定义了单位圆,并以函数线与半径的比值定义三角函数,他还创用小写拉丁字母a、b、c表示三角形三条边,大写拉丁字母A、B、C表示三角形三个角,从而简化了三角公式.使三角学从研究三角形 解法进一步转化为研究三角函数及其应用,成为一个比较完整的数学分支学科.而由于上述诸人及 19 世纪许多数学家的努力,形成了现代的三角函数符号和三角学的完整的理论.[编辑本段]三角学的特点与运用 早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、阿拉伯数学中都有三角学的内容,可大都是天文观测的副产品.直到13世纪中亚数学家纳速拉丁在总结前人成就的基础上,著成《完全四边形》一书,才把三角学从天文学中分离出来.15世纪,德国的雷格蒙塔努斯(J·Regiomontanus,1436—1476)的《论三角》一书的出版,才标志古代三角学正式成为独立的学科.这本书中不仅有很精密的正弦表、余弦表等,而且给出了现代三角学的雏形. 16世纪法国数学家韦达(F·Viete,1540—1603)则更进一步将三角学系统化,在他对三角研究的第一本著作《应用于三角形的数学法则》中,就有解直角三角形、斜三角形等的详述.18世纪瑞士数学家欧拉(L·Euler,1707—1783),他首先研究了三角函数.这使三角学从原先静态研究三角形的解法中解脱出来,成为反映现实世界中某些运动和变化的一门具有现代数学特征的学科.欧拉不仅用直角坐标来定义三角函数,彻底解决了三角函数在四个象限中的符号问题,同时引进直角坐标系,在代数与几何之间架起了一座桥梁,通过数形结合,为数学的学习与研究提供了重要的思想方法.著名的欧拉公式,把原来人们认为互不相关的三角函数和指数函数联系起来了,为三角学增添了新的活力. 因此三角学是源于测量实践,其后经过了漫长时间的孕育,众多中外数学家的不断努力,才逐渐丰富,演变发展成为现在的三角学。[编辑本段]三角函数的计算方法 三角学中的三角函数有6个,是用几何方法定义的。在直角坐标系中,设以射线Ox为始边,OP为终边的角为θ,P点的坐标为(x,y),|OP|=r,这时6个比由θ的大小确定,都是θ的函数,称它们为角θ的三角函数,分别记作并分别称为角θ的正弦、余弦、正切、余切、正割、余割。 同角三角函数间有3组运算关系,即 三角函数都是周期函数,以2π为周期。 三角函数的基本恒等式有和角公式: sin(!+@)=sin!cos@+cos!sin@ cos(!+@)=cos!cos@-sin!sin@ 由这两个公式可以导出差角公式、倍角公式、半角公式、和差化积与积化和差等公式。 解三角形是已知三角形的某些元素(边和角)时求其余未知元素。设三角形的三个角为A,B,C,它们所对的边分别为a,b,c,则有 正弦定理:a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,是此三角形外接圆的半径的两倍) 余弦定理:a2=b2+c2-2bccosA这两个定理是解三角形的主要依据。 三角方程一般指含有某些三角函数的方程,并且三角函数的自变量中含有未知数。由于每个三角函数都是周期函数,所以任何一个三角方程只要有解,就有无穷多个解。 三角测量 三角测量是指在导航,测量及土木工程中精确测量距离和角度的技术,主要用于为船只或飞机定位。它的原理是:如果已知三角形的一边及两角,则其余的两边一角可用平面三角学的方法计算出来。在西方,古希腊著名的数学家毕达哥拉斯首次证明了有关直角三角形的“毕达哥拉斯定理”,即中国的“勾股定理”,对几何学研究及其应用做出了巨大贡献.
如电缆桥架规格宽20cm,髙20㎝,我需做一个平水高低之字,高与低相差20cm,其中高与低直线距离为100Cm,问斜边为多长?应该切割桥架多少?
1、比如直角弯管处的接口,如果用两张铁皮制成圆管,并用两棵来垂直相接,那么铁皮的接口处的切线就是它的一部分,只有这样拼接厚才能保证是垂直相接的。
2、三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。
3、解决物理中的力学问题时很重要,主要在于力与力之间的转换,并列出平衡方程。
4、利用三角函数,根据地上影子的长度,可以求出大树、旗杆等不便测量的物体的高度。
扩展资料
三角函数的起源
公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。
三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。
我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是”全弦表”,而是”正弦表”了。
印度人称连结弧(AB)的两端的弦(AB)为”吉瓦(jiba)”,是弓弦的意思;称AB的一半(AC) 为”阿尔哈吉瓦”。后来”吉瓦”这个词译成阿拉伯文时被误解为”弯曲”、”凹处”,阿拉伯语是 ”dschaib”。十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了”sinus”。
参考资料来源:百度百科-三角函数
参考资料来源:百度百科-正弦三角函数
原文链接:几何中的两个基本量是:线段的长度和角的大小.三角函数的本质就是用线段长度之比来表示角的大小,从而将两个基本量联系在一起,使我们可以借助三角变换或三角计算来解决一些较难的几何问题.三角函数不仅是一门有趣的学问,而且是解决几何问题的有力工具. 1. 角函数的计算和证明问题 在解三角函数问题之前,除了熟知初三教材中的有关知识外,还应该掌握: (1)三角函数的单调性 当a为锐角时,sina与tga的值随a的值增大而增大;cosa与ctga随a的值增大而减小;当a为钝角时,利用诱导公式转化为锐角三角函数讨论. 注意到sin45°=cos45°=,由(1)可知,当时0<a<45°时,cosa>sina;当45°<a<90°时,cosa<sina. (2)三角函数的有界性|sina|≤1,|cosa|≤1,tga、ctga可取任意实数值(这一点可直接利用三角函数定义导出). 例1(1986年全国初中数学竞赛备用题)在△ABC中,如果等式sinA+cosA=成立,那么角A是( ) (A)锐角 (B)钝角 (C)直角 分析 对A分类,结合sinA和cosA的单调性用枚举法讨论. 解当A=90°时,sinA和cosA=1; 当45°<A<90°时sinA>,cosA>0, ∴sinA+cosA> 当A=45°时,sinA+cosA= 当0<A<45°时,sinA>0,cosA> ∴sinA+cosA> ∵1, 都大于. ∴淘汰(A)、(C),选(B). 例2(1982年上海初中数学竞赛题)ctg67°30′的值是( ) (A)-1 (B)2- (C)-1 (D) (E) 分析 构造一个有一锐角恰为67°30′的Rt△,再用余切定义求之.
知识目标:
1.理解锐角的正弦函数、余弦函数、正切函数、余切函数的意义。
2.会由直角三角形的边长求锐角的正、余弦,正、余切函数值。
能力、情感目标:
1.经历由情境引出问题,探索掌握数学知识,再运用于实践过程,培养学生学数学、用数学的意识与能力。
2.体会数形结合的数学思想方法。
3.培养学生自主探索的精神,提高合作交流能力。
重点、难点:
1.直角三角形锐角三角函数的意义。
2.由直角三角形的边长求锐角三角函数值。
教学过程:
一、创设情境
前面我们利用相似和勾股定理解决一些实际问题中求一些线段的长度问题。但有些问题单靠相似与勾股定理是无法解决的。同学们放过风筝吗?你能测出风筝离地面的高度吗?
学生讨论、回答各种方法。教师加以评论。
总结:前面我们学习了勾股定理,对于以上的问题中,我们求的是BC的长,而的AB的长是可知的,只要知道AC的长就可要求BC了,但实际上要测量AC是很难的。因此,我们换个角度,如果可测量出风筝的线与地面的夹角,能不能解决这个问题呢?学了今天这节课的内容,我们就可以很好地解决这个问题了。
(由一个学生比较熟悉的事例入手,引起学生的学习兴趣,调动起学生的学习热情。由此导入新课)
二、新课讲述
在Rt△ABC中与Rt△A1B1C1中∠C=90°, C1=90°∠A=∠A1,∠A的对边、斜边分别是BC、AB,∠A1的对边、斜边分别是B1C1、A1B2 (学生探索,引导学生积极思考,利用相似发现比值相等)
( )
若在Rt△A2B2C2中,∠A2=∠A,那么
问题1:从以上的探索问题的过程,你发现了什么?(学生讨论)
结论:这说明在直角三角形中,只要一个锐角的大小不变,那么无论这个直角三角形的大小如何,该锐角的对边与斜边的比值是一个固定值。
在一个直角三角形中,只要角的大小一定,它的对边与斜边的比值也就确定了,与这个角所在的三角形的大小无关,我们把这个比值叫做这个角的正弦,即∠A的正弦= ,记作sin A,也就是:sin A=
几个注意点:①sin A是整体符号,不能所把看成sinA;②在一个直角三角形中,∠A正弦值是固定的,与∠A的两边长短无关,当∠A发生变化时,正弦值也发生变化;③sin A表示用一个大写字母表示的一个角的正弦,对于用三个大写字母表示的角的正弦时,不能省略角的符号“∠”;例如表示“∠ABC”的正弦时,应该写成“sin∠ABC”;④ Sin A= 可看成一个等式。已知两个量可求第三个量,因此有以下变形:a=csinA,c=
由此我们又可以知道,在直角三角形中,当一个锐角的大小保持不变时,这个锐角的邻边与斜边、对边与邻边、邻边与对边的比值也是固定的。分别叫做余弦、正切、余切。
在Rt△ABC中
∠A的邻边与斜边的比值是∠A的余弦,记作
∠A的对边与邻边的比值是∠A的正切,记作
∠A的邻边与对边的比值是∠A的余切,记作
(以上可以由学生自行看书,教师简单讲述)
锐角三角函数:以上随着锐角A的角度变化,这些比值也随着发生变化。我们把sinA、csA、tanA、ctA统称为锐角∠A的三角函数
问题2:观察以上函数的比值,你能从中发现什么结论?
结论:①、锐角三角函数值都是正实数;
②、0<sinA<1,0<csA<1;
③、tanActA=1。
三、实践应用
例1 求出如图所示的Rt△ABC中∠A的四个三角函数值。
解
问题3:以上例子中,若求sin B、tan B 呢?
问题4:已知:在直角三角形ABC中,∠C=90&rd;,sin A=4/5,BC=12,求:AB和cs A
(问题3、4从实例加深学生对锐角三角函数的理解,以此再加以突破难点)
四、交流反思
通过这节课的学习,我们理解了在直角三角形中,当锐角一定时,它的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的,这几个比值称为锐角三角函数,它反映的'是两条线段的比值;它提示了三角形中的边角关系。
五、课外作业:
同步练习
目标:
1、理解锐角三角函数的定义,掌握锐角三角函数的表示法;
2、能根据锐角三角函数的定义计算一个锐角的各个三角函数的值;
3、掌握Rt△中的锐角三角函数的表示:
sinA=,cosA=,tanA=
4、掌握锐角三角函数的取值范围;
5、通过经历三角函数概念的形成过程,培养学生从特殊到一般及数形结合的思想方法。
教学重点:
锐角三角函数相关定义的理解及根据定义计算锐角三角函数的值。
教学难点:
锐角三角函数概念的形成。
教学过程:
一、创设情境:
鞋跟多高合适?
美国人体工程学研究人员卡特·克雷加文调查发现,70%以上的女性喜欢穿鞋跟高度为6至7厘米左右的高跟鞋。但专家认为穿6厘米以上的高跟鞋腿肚、背部等处的肌肉非常容易疲劳。
据研究,当高跟鞋的鞋底与地面的夹角为11度左右时,人脚的感觉最舒适。假设某成年人脚前掌到脚后跟长为15厘米,不难算出鞋跟在3厘米左右高度为最佳。
问:你知道专家是怎样计算的吗?
显然,高跟鞋的鞋底、鞋跟与地面围城了一个直角三角形,回顾直角三角形的已学知识,引出课题。
二、探索新知:
1、下面我们一起来探索一下。
实践一:作一个30°的∠A,在角的边上任意取一点B,作BC⊥AC于点C。
⑴计算,,的值,并将所得的结果与你同伴所得的结果进行比较。∠A=30°时学生1结果学生2结果学生3结果学生4结果⑵将你所取的AB的值和你的同伴比较。
实践二:作一个50°的∠A,在角的边上任意取一点B,作BC⊥AC于点C。
(1)量出AB,AC,BC的长度(精确到1mm)。
(2)计算BC/AB,AC/AB,的值(结果保留2个有效数字),并将所得的结果与你同伴所得的结果进行比较。∠A=50°时ABACBC学生1结果学生2结果学生3结果学生4结果(3)将你所取的AB的值和你的同伴比较。
2、经过实践一和二进行猜测
猜测一:当∠A不变时,三个比值与B在AM边上的位置有无关系?
猜测二:当∠A的大小改变时,相应的三个比值会改变吗?
3、理论推理
如图,B、B1是一边上任意两点,作BC⊥AC于点C,B1C1⊥AC1于点C1,
判断比值与,与,与是否相等,并说明理由。
4、归纳总结得到新知:
⑴三个比值与B点在的边AM上的位置无关;
⑵三个比值随的变化而变化,但(0°﹤∠α﹤90°)确定时,三个比值随之确定;
比值,,都是锐角的函数
比值叫做的正弦,sinα=
比值叫做的余弦,cosα=
比值叫做的正切,tanα=
(3)注意点:sinα,cosα,tanα都是一个完整的符号,单独的“sin”没有意义,其中前面的“∠”一般省略不写。
强化读法,写法;分清各三角函数的自变量和应变量。
三、深化新知
1、三角函数的定义
在Rt△ABC中,如果锐角A确定,那么∠A的对边与斜边的比、邻边与斜边的比也随之确定.则有
sinA=
cosA=
2、提问:根据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗?
(点拨)直角三角形中,斜边大于直角边.
生:独立思考,尝试回答,交流结果.
明确:锐角的三角函数值的范围:0<sinα<1,0<cosα<1.
四、巩固新知
例1.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,
(1)求∠A的正弦、余弦和正切.
(2)求∠B的正弦、余弦和正切.
分析:由勾股定理求出AC的长度,再根据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。
提问:观察以上计算结果,你发现了什么?
明确:sinA=cosB,cosA=sinB,tanA·tanB=1
五、升华新知
例2.如图:在Rt△ABC,∠B=90°,AC=200,sinA=0.6,求BC的长.
由例2启发学生解决情境创设中的问题。
六、课堂小结:谈谈今天的收获
1、内容总结
(1)在RtΔABC中,设∠C=90°,∠α为RtΔABC的一个锐角,则
∠α的正弦,∠α的余弦,
∠α的正切
2、方法归纳
在涉及直角三角形边角关系时,常借助三角函数定义来解
四、布置作业
一、案例实施背景
本节课是九年级解直角三角形讲完后的一节复习课
二、本章的课标要求:
1、通过实例锐角三角函数(sinA、cosA、tanA)
2、知道特殊角的三角函数值
3、会使用计算器由已知锐角求它的三角函数值,已知三角函数值求它对应的锐角
4、能运用三角函数解决与直角三角形有关的简单实际问题
此外,理解直角三角形中边、角之间的关系会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形,进一步感受数形结合的数学思想方法,通过对实际问题的思考、探索,提高解决实际问题的能力和应用数学的意识。
三、课时安排:
1课时
四、学情分析:
本节是在学完本章的前提之下进行的总复习,因此本节选取三个知识回顾和四个例题,使学生将有关锐角三角函数基础知识条理化,系统化,进一步培养学生总结归纳的能力和运用知识的能力.
因此,本节的重点是通过复习,使学生进一步体会知识之间的相互联系,能够很好地运用知识.进一步体会三角函数在解决实际问题中的作用,从而发展数学的应用意识和解决问题的能力.
五、教学目标:
知识与技能目标
1、通过复习使学生将有关锐角三角函数基础知识条理化,系统化.
2、通过复习培养学生总结归纳的能力和运用知识的能力.
过程与方法:
1、通过本节课的复习,使学生进一步体会知识之间的相互联系,能够很好地运用知识.
2、通过复习锐角三角函数,进一步体会它在解决实际问题中的作用.
情感、态度、价值观
充分发挥学生的积极性,让学生从实际运用中得到锻炼和发展.
六、重点难点:
1.重点:锐角三角函数的定义;直角三角形中五个元素之间的相互联系.
2.难点:知识的深化与运用.
七、教学过程:
知识回顾一:
(1) 在Rt△ABC中,C=90, AB=6,AC=3,则BC=_________,sinA=_________,
cosA=______,tanA=______, A=_______, B=________.
知识回顾二:
(2) 比较大小: sin50______sin70
cos50______cos70
tan50______tan70.
知识回顾三:
(3)若A为锐角,且cos(A+15)= ,则A=________.
本环节的设计意图:通过三个小题目回顾:
1、锐角三角函数的定义:
在Rt△ABC中,C=90
锐角A的正弦、余弦、和正切统称A的锐角三角函数。
2、直角三角形的边角关系:
(1)三边之间的关系: .
(2)锐角之间的关系:B=90
(3)边角之间的关系:
sinA= cosA= tanA= sinB= cosB= tanB=
3、解直角三角形:
由直角三角形中的已知元素,求出所有未知元素的过程,叫做解直角三角形。
4、特殊角的三角函数值
三角函数
锐角A
sin A
cos A
tan A
30
45
60
5、锐角三角函数值的变化:
(1)当A为锐角时,各三角函数值均为正数, 且0
(2)当A为锐角时,sinA、tanA随角度的增大而增大,cosA随角度的增大而减小.
例题解析
【例1】在⊿ABC中,AD是BC边上的高,E是AC的中点,BC=14,AD=12,sinB=0.8,求DC及tanCDE。
解题反思:通过本题让学生明白:
1、必须在直角三角形中求锐角的三角函数;
2、等角代换间接求解.
【例2】要在宽为28m的海堤公路的路边安装路灯,路灯的灯臂AD长3m,且与灯柱CD成120角,路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直,当灯罩的轴线通过公路路面的中线时,照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?
解题反思:通过本题让学生知道解决这类问题时常分为以下几个步骤:
①理清题目所给信息条件和需要解决的问题;
②通过画图进行分析,将实际问题转化为数学问题;
③根据直角三角形的边角关系寻找解决问题的方法;
④正确进行计算,写出答案。
【例3】一艘轮船以每小时30海里的速度向东北方向航行,当轮船在A处时,从轮船上观察灯塔S,灯塔S在轮船的北偏东75方向,航行12分钟后,轮船到达B处,在B处观察灯塔S,S恰好在轮船的正东方向,已知距离灯塔S8海里以外的海区为航行安全区域,问:如果这艘轮船继续沿东北方向航行,它是否安全?
解题反思:解决这类问题时常用的模型:
小结:
P93 例3
P94 检测评估
教学反思:
锐角三角函数在解决现实问题中有着重要的作用,但是锐角三角函数首先是放在直角三角形中研究的,显示的是边角之间的关系。锐角三角函数值是边与边之间的比值,锐角三角函数沟通了边与角之间的联系,它是解直角三角形最有力的工具之一。
在今后教学过程中,自己还要多注意以下两点:
(1)还要多下点工夫在如何调动课堂气氛,使语言和教态更加生动上。初中学生的注意力还是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。如何找到适合自己适合学生的教学风格?或严谨有序,或生动活泼,或诙谐幽默,或诗情画意,或春风细雨润物细无声,或激情飞扬,每一种都是教学魅力和人格魅力的展现。我将不断摸索,不断实践。
(2)我将尽我可能站在学生的角度上思考问题,设计好教学的每一个细节,上课前多揣摩。让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,舍得把课堂让给学生,让学生做课堂这个小小舞台的主角。而我将尽我最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作,不断总结得失,不断进步。只有这样,才能真正提高课堂教学效率。
一元一次函数的应用 一元一次函数在我们的日常生活中应用十分广泛。当人们在社会生活中从事买卖特别是消费活动时,若其中涉及到变量的线性依存关系,则可利用一元一次函数解决问题。 例如,当我们购物、租用车辆、入住旅馆时,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。这时我们应三思而后行,深入发掘自己头脑中的数学知识,做出明智的选择。俗话说:“从南京到北京,买的没有卖的精。”我们切不可盲从,以免上了商家设下的小圈套,吃了眼前亏。 一元二次函数的应用 在企业进行诸如建筑、饲养、造林绿化、产品制造及其他大规模生产时, 其利润随投资的变化关系一般可用二次函数表示。企业经营者经常依据这方面的知识预计企业发展和项目开发的前景。他们可通过投资和利润间的二次函数关系预测企业未来的效益,从而判断企业经济效益是否得到提高、企业是否有被兼并的危险、项目有无开发前景等问题。常用方法有:求函数最值、某单调区间上最值及某自变量对应的函数值。 三角函数的应用 三角函数的应用极其广泛,这里仅讲最简的也是最常见的一类——锐角三角函数的应用:“山林绿化”问题。
有呀,汉斯的应用数学进展这本刊上的文献就是呀,你有时间可以去看看呐
测量山高测量树高,确定航海行程问题,确定光照及房屋建造合理性调整电网,比如两个电网并接的时候用于山的坡度 TAN 平面所走的距离 比上 上升的高度 ,同理还可以测量楼的高啊 塔的高测量树高,确定航海行程问题,确定光照及房屋建造合理性 ______________________________________________________________________________名称定义 研究平面三角形和球面三角形边角关系的数学学科。三角学是以研究三角形的边和角的关系为基础,应用于测量为目的,同时也研究三角函数的性质及其应用的一门学科。[编辑本段]三角学的起源 三角学起源于古希腊。为了预报天体运行路线、计算日历、航海等需要,古希腊人已研究球面三角形的边角关系,掌握了球面三角形两边之和大于第三边,球面三角形内角之和大于两个直角,等边对等角等定理。印度人和阿拉伯人对三角学也有研究和推进,但主要是应用在天文学方面。15、16世纪三角学的研究转入平面三角,以达到测量上应用的目的。16世纪法国数学家韦达系统地研究了平面三角。他出版了应用于三角形的数学定律的书。此后,平面三角从天文学中分离出来,成了一个独立的分支。平面三角学的内容主要有三角函数、解三角形和三角方程。 三角测量在中国也很早出现,公元前一百多年的《周髀算经》就有较详细的说明,例如它的首章记录“周公曰,大哉言数,请问用矩之道。商高曰,平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远。”(商高说的矩就是今天工人用的两边互相垂直的曲尺,商高说的大意是将曲尺置于不同的位置可以测目标物的高度、深度与广度)1世纪时的《九章算术》中有专门研究测量问题的篇章.[编辑本段]三角学的历史 早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、阿拉伯数学中都有三角学的内容,可大都是天文观测的副产品.例如,古希腊门纳劳斯(Menelaus of Alexandria,公元100年左右)著《球面学》,提出了三角学的基础问题和基本概念,特别是提出了球面三角学的门纳劳斯定理;50年后,另一个古希腊学者托勒密(Ptolemy)著《天文学大成》,初步发展了三角学.而在公元499年,印度数学家阿耶波多(ryabhata I)也表述出古代印度的三角学思想;其后的瓦拉哈米希拉(Varahamihira,约505~587年)最早引入正弦概念,并给出最早的正弦表;公元10世纪的一些阿拉伯学者进一步探讨了三角学.当然,所有这些工作都是天文学研究的组成部分.直到纳西尔丁(Nasir ed-Din al Tusi,1201~1274年)的《横截线原理书》才开始使三角学脱离天文学,成为纯粹数学的一个独立分支.而在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯(J Regiomontanus,1436~1476年)。 �雷格蒙塔努斯的主要著作是1464年完成的《论各种三角形》。这是欧洲第一部独立于天文学的三角学著作。全书共5卷,前2卷论述平面三角学,后3卷讨论球面三角学,是欧洲传播三角学的源泉。雷格蒙塔努斯还较早地制成了一些三角函数表。 �雷格蒙塔努斯的工作为三角学在平面和球面几何中的应用建立了牢固的基础.他去世以后,其著作手稿在学者中广为传阅,并最终出版,对 16 世纪的数学家产生了相当大的影响,也对哥白尼等一批天文学家产生了直接或间接的影响. �三角学一词的英文是trigonometry,来自拉丁文tuigonometuia.最先使用该词的是文艺复兴时期的德国数学家皮蒂斯楚斯(B.Pitiscus,1561~1613年),他在1595年出版的《三角学:解三角形的简明处理》中创造这个词.其构成法是由三角形(tuiangulum)和测量(metuicus)两字凑合而成.要测量计算离不开三角函数表和三角学公式,它们是作为三角学的主要内容而发展的. �16世纪三角函数表的制作首推奥地利数学家雷蒂库斯(G.J.Rhetucu s,1514~1574年)。他1536年毕业于滕贝格大学,留校讲授算术和几何。1539 年赴波兰跟随著名天文学家哥白尼学习天文学,1542年受聘为莱比锡大学数学教授.雷蒂库斯首次编制出全部6种三角函数的数表,包括第一张详尽的正切表和第一张印刷的正割表。 17世纪初对数发明后大大简化了三角函数的计算,制作三角函数表已不再是很难的事,人们的注意力转向了三角学的理论研究.不过三角函数表的应用却一直占据重要地位,在科学研究与生产生活中发挥着不可替代的作用. �三角公式是三角形的边与角、边与边或角与角之间的关系式.三角函数的定义已体现了一定的关系,一些简单的关系式在古希腊人以及后来的阿拉伯人中已有研究. �文艺复兴后期,法国数学家韦达(F Vieta)成为三角公式的集大成者.他的《应用于三角形的数学定律》(1579年)是较早系统论述平面和球面三角学的专著之一.其中第一部分列出6种三角函数表,有些以分和度为间隔。给出精确到5位和10位小数的三角函数值,还附有与三角值有关的乘法表、商表等。第二部分给出造表的方法,解释了三角形中诸三角线量值关系的运算公式.除汇总前人的成果外,还补充了自己发现的新公式.如正切定律、和差化积公式等等.他将这些公式列在一个总表中,使得任意给出某些已知量后,可以从表中得出未知量的值.该书以直角三角形为基础。对斜三角形,韦达仿效古人的方法化为直角三角形来解决.对球面直角三角形,给出计算的完整公式及其记忆法则,如余弦定理,1591年韦达又得到多倍角关系式,1593 年又用三角方法推导出余弦定理。 1722年英国数学家棣莫弗(A De Meiver)得到以他的名字命名的三角学定理 �(cosθ±isinθ)n=cosnθ+isinnθ, �并证明了n是正有理数时公式成立;1748年欧拉(L Euler)证明了n是任意实数时公式也成立,他还给出另一个著名公式 �eiθ=cosθ+isinθ, �对三角学的发展起到了重要的推动作用. 近代三角学是从欧拉的《无穷分析引论》开始的.他定义了单位圆,并以函数线与半径的比值定义三角函数,他还创用小写拉丁字母a、b、c表示三角形三条边,大写拉丁字母A、B、C表示三角形三个角,从而简化了三角公式.使三角学从研究三角形 解法进一步转化为研究三角函数及其应用,成为一个比较完整的数学分支学科.而由于上述诸人及 19 世纪许多数学家的努力,形成了现代的三角函数符号和三角学的完整的理论.[编辑本段]三角学的特点与运用 早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、阿拉伯数学中都有三角学的内容,可大都是天文观测的副产品.直到13世纪中亚数学家纳速拉丁在总结前人成就的基础上,著成《完全四边形》一书,才把三角学从天文学中分离出来.15世纪,德国的雷格蒙塔努斯(J·Regiomontanus,1436—1476)的《论三角》一书的出版,才标志古代三角学正式成为独立的学科.这本书中不仅有很精密的正弦表、余弦表等,而且给出了现代三角学的雏形. 16世纪法国数学家韦达(F·Viete,1540—1603)则更进一步将三角学系统化,在他对三角研究的第一本著作《应用于三角形的数学法则》中,就有解直角三角形、斜三角形等的详述.18世纪瑞士数学家欧拉(L·Euler,1707—1783),他首先研究了三角函数.这使三角学从原先静态研究三角形的解法中解脱出来,成为反映现实世界中某些运动和变化的一门具有现代数学特征的学科.欧拉不仅用直角坐标来定义三角函数,彻底解决了三角函数在四个象限中的符号问题,同时引进直角坐标系,在代数与几何之间架起了一座桥梁,通过数形结合,为数学的学习与研究提供了重要的思想方法.著名的欧拉公式,把原来人们认为互不相关的三角函数和指数函数联系起来了,为三角学增添了新的活力. 因此三角学是源于测量实践,其后经过了漫长时间的孕育,众多中外数学家的不断努力,才逐渐丰富,演变发展成为现在的三角学。[编辑本段]三角函数的计算方法 三角学中的三角函数有6个,是用几何方法定义的。在直角坐标系中,设以射线Ox为始边,OP为终边的角为θ,P点的坐标为(x,y),|OP|=r,这时6个比由θ的大小确定,都是θ的函数,称它们为角θ的三角函数,分别记作并分别称为角θ的正弦、余弦、正切、余切、正割、余割。 同角三角函数间有3组运算关系,即 三角函数都是周期函数,以2π为周期。 三角函数的基本恒等式有和角公式: sin(!+@)=sin!cos@+cos!sin@ cos(!+@)=cos!cos@-sin!sin@ 由这两个公式可以导出差角公式、倍角公式、半角公式、和差化积与积化和差等公式。 解三角形是已知三角形的某些元素(边和角)时求其余未知元素。设三角形的三个角为A,B,C,它们所对的边分别为a,b,c,则有 正弦定理:a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,是此三角形外接圆的半径的两倍) 余弦定理:a2=b2+c2-2bccosA这两个定理是解三角形的主要依据。 三角方程一般指含有某些三角函数的方程,并且三角函数的自变量中含有未知数。由于每个三角函数都是周期函数,所以任何一个三角方程只要有解,就有无穷多个解。 三角测量 三角测量是指在导航,测量及土木工程中精确测量距离和角度的技术,主要用于为船只或飞机定位。它的原理是:如果已知三角形的一边及两角,则其余的两边一角可用平面三角学的方法计算出来。在西方,古希腊著名的数学家毕达哥拉斯首次证明了有关直角三角形的“毕达哥拉斯定理”,即中国的“勾股定理”,对几何学研究及其应用做出了巨大贡献.
这个还可以吧、再举个例题如图7,已知某小区的两幢10层住宅楼间的距离为AC=30m,由地面向上依次为第1层、第2层、…、第10层,每层高度为3m.假设某一时刻甲楼在乙楼侧面的影长EC=h,太阳光线与水平线的夹角为α.(1)用含α的式子表示h(不必指出α的取值范围);(2)当α=30°时,甲楼楼顶B点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光?21.(1)过点E作EF⊥AB于F,由题意,四边形ACEF为矩形………………………………………1分∴EF=AC=30,AF=CE=h,∠BEF=α,∴BF=3×10-h=30-h………………………………………2分又在Rt△BEF中,tan∠BEF=BFEF,………………………………………3分∴tanα=,即30-h=30tanα.∴h=30-30tanα………………………………………4分(2)当α=30°时,h=30-30tan30°=30-30×≈12.7,………………………………………5分∵12.7÷3≈4.2,∴B点的影子落在乙楼的第五层………………………………………6分当B点的影子落在C处时,甲楼的影子刚好不影响乙楼采光.此时,由AB=AC=30,知△ABC是等腰直角三角形,∴∠ACB=45°,7分∴45-30/15=1(小时).故经过1小时后,甲楼的影子刚好不影响乙楼采光………………………………………8分