首页

> 学术发表知识库

首页 学术发表知识库 问题

图像复原基本方法的研究毕业论文

发布时间:

图像复原基本方法的研究毕业论文

数字图像处理主要研究的内容有以下几个方面:1) 图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。2) 图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。3) 图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立"降质模型",再采用某种滤波方法,恢复或重建原来的图像。4) 图像分割图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。5) 图像描述是图像识别和理解的必要前提。作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。6) 图像分类(识别)图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。

图像复原的方法有哪些图像恢复是从退化图像(通常是一个模糊和噪声图像)中恢复图像的过程。图像恢复是图像处理中的一个基本问题,它也为更一般的反问题提供了一个实验平台。在这里,我们必须要解决的关键问题是恢复图像的质量评价、算法计算的效率和点扩展函数(PSF)模型的参数估计。目前,常见图像复原的方法一可以分为确定性图像复原方法和随机图像复原方法两大类。确定性图像复原方法主要有正则化图像复原方法和基于偏微分方程的图像复原方法。对于图像复原中的正则化方法,早期主要使用截断奇异值分解和Tikhonov正则化方法,截断奇异值分解方法主要用来消除复原问题中的病态性,其并没引入任何原始图像的先验信息,而Tikhonov正则化方法则是将原始图像是“平滑的”这一先验信。

图像复原-模糊图像处理解决方案机器视觉智能检测 2017-06-16造成图像模糊的原因有很多,且不同原因导致的模糊图像需要不同的方法来进行处理。从技术方面来讲,模糊图像处理方法主要分为三大类,分别是图像增强、图像复原和超分辨率重构。本文将从这三方面切入剖析。智能化设备管理技术是利用系统管理平台软件的设备管理服务,对所有的监控设备包括摄像机、云台、编码器和系统服务器进行不间断的实时监测,当发现故障时能及时通过各种方式告警,提示维护人员及时处置。一个系统可以按照网络拓扑结构部署多台设备管理服务器,分区域对设备进行实时的巡检,这样可以大大提高系统的维护效率,尽可能做到在设备发生故障时,在不超过10分钟的时间内被监测到并告警。建设目标本方案拟应用先进的机器学习和计算机视觉技术,仿真人类的视觉系统,针对某市公共安全图像资源前端摄像头出现的雪花、滚屏、模糊、偏色、画面冻结、增益失衡和云台失控等常见摄像头故障以及恶意遮挡和破坏监控设备的不法行为做出准确判断,并自动记录所有的检测结果,生成报表。以便用户轻松维护市公共安全图像资源系统。技术路线将视频故障分成视频信号缺失、视频清晰度异常、视频亮度异常、视频噪声、视频雪花、视频偏色、画面冻结、PTZ运动失控八种类型。其中视频信号缺失、随着“平安城市”的广泛建设,各大城市已经建有大量的视频监控系统,虽然监控系统己经广泛地存在于银行、商场、车站和交通路口等公共场所,但是在公安工作中,由于设备或者其他条件的限制,案情发生后的图像回放都存在图像不清晰,数据不完整的问题,无法为案件的及时侦破提供有效线索。经常出现嫌疑人面部特征不清晰、难以辨认、嫌疑车辆车牌模糊无法辨认等问题,这给公安部门破案、法院的取证都带来了极大的麻烦。随着平安城市的推广、各地各类监控系统建设的进一步推进,此类问题将会越来越凸显。模糊图像产生的原因造成图像模糊的原因很多,聚焦不准、光学系统的像差、成像过程中的相对运动、大气湍流效应、低光照、环境随机噪声等都会导致图像模糊。另外图像的编解码、传输过程都可能导致图像的进一步模糊。总体来说,造成图像模糊的主要原因如下:· 镜头聚焦不当、摄像机故障等;· 传输太远、视频线老化、环境电磁干扰等;· 摄像机护罩视窗或镜头受脏污、受遮挡等;· 大雾、沙尘、雨雪等恶劣环境影响;· 由视频压缩算法和传输带宽原因导致的模糊;· 摄像机分辨率低,欠采样成像;· 光学镜头的极限分辨率和摄像机不匹配导致的模糊;· 运动目标处于高速运动状态导致的运动模糊等;……模糊图像常用解决方案对于模糊图像处理技术,国内大学和科研机构在多年以前就在研究这些理论和应用,相关文献也发布了不少,已经取得了一些很好的应用。美国 Cognitech软件是相当成熟的一套模糊图像恢复应用软件,在美国FBI及其他执法机构中已有多年实际应用,其恢复出的图像可以直接当作法庭证据使用,可见模糊图像处理技术已经取得了相当的实际应用。前面提到,造成图像模糊的原因有很多,要取得比较好的处理效果,不同原因导致的模糊往往需要不同的处理方法。从技术方面来讲,模糊图像处理方法主要分为三大类,分别是图像增强、图像复原和超分辨率重构。图像增强很多传统图像算法都可以减轻图像的模糊程度,比如图像滤波、几何变换、对比度拉伸、直方图均衡、空间域锐化、亮度均匀化、形态学、颜色处理等。就单个来讲,这些算法都比较成熟,相对简单。但是对于一个具体的模糊图像,往往需要上面的一种或者多种算法组合,配合不同的参数才能达到理想的效果。这些算法和参数的组合进一步发展成为具体的增强算法,比如“图像去雾”算法、“图像去噪”算法、“图像锐化”算法、“图像暗细节增强”算法等等。这些算法都不同程度提高了图像清晰度,很大程度改善了图像质量。综合使用形态学、图像滤波和颜色处理等算法可以实现图像去雾的算法,图1是一个去雾算法的实际使用效果,类似的图像增强算法还有很多,不再一一列举。图像复原图像复原与图像增强技术一样,也是一种改善图像质量的技术。图像复原是根据图像退化的先验知识建立一个退化模型,然后以此模型为基础,采用各种逆退化处理方法逐步进行恢复,从而达到改善图像质量的目的。图像复原和图像增强是有区别的,两者的目的都是为了改善图像的质量。但图像增强不考虑图像是如何退化的,只有通过试探各种技术来增强图像的视觉效果,而图像复原就完全不同,需要知道图像退化过程的先验知识,据此找出一种相应的逆过程方法,从而得到复原的清晰图像。图像复原主要取决于对图像退化过程的先验知识所掌握的精确程度。对由于离焦、运动、大气湍流等原因引起的图像模糊,图像复原的方法效果较好,常用的算法包括维纳滤波算法、小波算法、基于训练的方法等。图3是使用维纳滤波解决运动模糊图像的例子,取得了很好的复原效果。在知道退化模型的情况下,相对图像增强来说,图像复原可以取得更好的效果。图像超分辨率重构现有的监控系统主要目标为宏观场景的监视,一个摄像机,覆盖一个很大的范围,导致画面中目标太小,人眼很难直接辨认。这类由于欠采样导致的模糊占很大比例,对于由欠采样导致的模糊需要使用超分辨率重构的方法。超分辨率复原是通过信号处理的方法,在提高图像的分辨率的同时改善采集图像质量。其核心思想是通过对成像系统截止频率之外的信号高频成分估计来提高图像的分辨率。超分辨率复原技术最初只对单幅图像进行处理,这种方法由于可利用的信息只有单幅图像,图像复原效果有着固有的局限。序列图像的超分辨率复原技术旨在采用信号处理方法通过对序列低分辨率退化图像的处理来获得一幅或者多幅高分辨率复原图像。由于序列图像复原可利用帧间的额外信息,比单幅复原效果更好,是当前的研究热点。序列图像的超分辨率复原主要分为频域法和空域法两大类,频域方法的优点是:理论简单,运算复杂度低,缺点是:只局限于全局平移运动和线性空间不变降质模型,包含空域先验知识的能力有限。空域方法所采用的观测模型涉及全局和局部运动、空间可变模糊点扩散函数、非理想亚采样等,而且具有很强的包含空域先验约束的能力。常用的空域法有非均匀插值法、迭代反投影方法(IBP)、凸集投影法(POCS)、最大后验估计法(MAP)、最大似然估计法 (ML)、滤波器法等,其中,MAP和POCS二方法研究较多,发展空间很大。对于具体的算法,不是本文的重点,这里不做详细介绍。图五是一个使用多帧低分辨率图像超分辨率重构的例子。模糊图像处理技术的关键和不足虽然很多模糊图像的处理方法在实际应用中取得了很好的效果,但是当前仍然有一些因素制约着模糊图像处理的进一步发展,主要如下。算法的高度针对性绝大部分的模糊图像处理算法只适用于特定图像,而算法本身无法智能决定某个算法模块的开启还是关闭。举例来说,对于有雾的图像,“去雾算法”可以取得很好的处理效果,但是作用于正常图像,反而导致图像效果下降,“去雾算法”模块的打开或者关闭需要人工介入。算法参数复杂性模糊图像处理里面所有的算法都会包含大量的参数,这些参数的选择需要和实际的图像表现相结合,直接决定最终的处理效果。就目前的算法,还没有办法智能地选择哪些是最优的参数。算法流程的经验性由于实际图像非常复杂,需要处理多种情况,这就需要一个算法处理流程,对于一个具体的模糊视频,采用什么样的处理流程很难做到自动选择,需要人工选择一个合适的方法,只能靠人的经验。结语由于环境、线路、镜头、摄像机等影响,监控系统建成并运营一段时间后,都会出现一部分的视频模糊不清的问题。总体来说,虽然模糊图像处理算法已经取得了非常广泛的应用,但是图像算法毕竟有局限性,不能将所有问题都寄希望于图像算法,对于不同种类的模糊问题,要区别对待。对于由镜头离焦、灰尘遮挡、线路老化、摄像机故障等造成的模糊或者图像质量下降,在视频诊断系统的帮助下,一定要及时维修,从源头上解决问题。对于低光照等优先选择日夜两用型高感光度摄像机,对于雨雾、运动和欠采样等造成的图像质量下降,可以借助于“视频增强服务器”包含的各种模糊图像处理算法来提升图像质量。喜欢此内容的人还喜欢17个教师常用网站推荐给你,再也不用到处找资源了17个教师常用网站推荐给你,再也不用到处找资源了 ...高校教师服务工作室 不喜欢不看的原因确定内容质量低 不看此公众号什么是水磨石?被设计师玩出新高度什么是水磨石?被设计师玩出新高度 ...联盟设计库 不喜欢不看的原因确定内容质量低 不看此公众号

数字图像处理的工具可分为三大类:

第一类包括各种正交变换和图像滤波等方法,其共同点是将图像变换到其它域(如频域)中进行处理(如滤波)后,再变换到原来的空间(域)中。

第二类方法是直接在空间域中处理图像,它包括各种统计方法、微分方法及其它数学方法。

第三类是数学形态学运算,它不同于常用的频域和空域的方法,是建立在积分几何和随机集合论的基础上的运算。

由于被处理图像的数据量非常大且许多运算在本质上是并行的,所以图像并行处理结构和图像并行处理算法也是图像处理中的主要研究方向。

扩展资料

1、数字图像处理包括内容:

图像数字化;图像变换;图像增强;图像恢复;图像压缩编码;图像分割;图像分析与描述;图像的识别分类。

2、数字图像处理系统包括部分:

输入(采集);存储;输出(显示);通信;图像处理与分析。

3、应用

图像是人类获取和交换信息的主要来源,因 此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。

主要应用于航天和航空、生物医学工程、通信   工程、工业和工程、军事公安、文化艺术、机器人视觉、视频和多媒体系统、科学可视化、电子商务等方面。

参考资料来源:百度百科-数字图像处理

基于贝叶斯的复原图像研究论文

下的拼音:xià。

部首一部,部外笔画2画,总笔画3画。

五笔GHI,仓颉MY,郑码AID,四角10230。

结构单一,电码0007,区位4734,统一码4E0B。

基本字义:

1、位置在低处的,与“上”相对:下层。下款。

2、等级低的:下级。下品。下乘(佛教用语,一般借指文学艺术的平庸境界或下品)。下里巴人(泛指通俗的普及的文学艺术,常与“阳春白雪”对举)。

3、方面,方位:两下都同意。

4、次序或时间在后的:下卷。下次。下限。

5、由高处往低处,降落:下山。下车。下马。下达。

6、使降落:下半旗。下棋。

7、进入:下海。

相关组词:

水下[shuǐ xià]

水面以下。

下手[xià shǒu]

(动)动手;开始做:无从~。(名)助手。

低下[dī xià]

(形)(生产水平、经济地位等)在一般标准之下的。

下巴[xià ba]

(名)下颌的通称。颏的通称。

下级[xià jí]

指在同一组织系统中级别低的人员或组织。

通过优化的标准神经网络训练(从概率的角度来看)等同于权重的最大似然估计(MLE)。由于许多原因,这往往是不能令人满意的 —— 使用 MLE 会忽略在适当的权重值中可能存在的任何不确定性,即无法正确评估训练数据中的不确定性,从实际的角度来看,这种类型的训练容易出现过拟合现象。

对此的一个解决方案是引入正则化(从贝叶斯的角度来看,这相当于在权重上引入先验)。如果我们可以通过规范模型来解决过度自信决策和防止模型过度拟合的问题,那为什么我们需要贝叶斯神经网络?答案是: 当前神经网络架构中缺少预测中的不确定性度量,但贝叶斯神经网络将其纳入其中 。BNN 在特定环境中很重要,特别是当我们非常关心不确定性时,贝叶斯方法自然地解释了参数估计中的不确定性,并且可以将这种不确定性传播到预测中。

深度神经网络已成功应用于许多领域,包括非常敏感的领域,如医疗保健,安全性,欺诈性交易等等。这些领域在很大程度上依赖于模型的预测准确性,甚至一个过度自信的决策也可能导致一个大问题。此外,这些领域具有非常不平衡的数据集(百万个交易中的一个是欺诈性交易,百分之五的癌症检测结果是阳性,不到百分之一的电子邮件是垃圾邮件),容易导致该模型过度拟合。

从概率论的角度来看,使用单点估计权重以进行分类是不合理的。而贝叶斯神经网络对于过拟合更加鲁棒,并且可以从小数据集中轻松学习。 贝叶斯方法将其参数以概率分布的形式表示以提供不确定性估计;同时,通过使用先验概率分布的形式来表示参数,训练期间在许多模型上计算平均值,这给网络提供了正则化效果,从而防止过度拟合 。

在标准神经网络中,权重由单个点表示。 而贝叶斯神经网络以分布形式表示权重,如下图所示:

即使使用少量参数,在贝叶斯神经网络中推断后验模型也是一项艰巨的任务,因此通常使用后验模型的近似值,变分推理是一种流行的方法。人们将使用简单的变分分布(例如高斯分布)对后验进行模拟,并尝试调整分布的参数使其尽可能接近真实的后验 —— 通过最小化这种简单变分分布和真实后验之间的 KL 散度来完成。

但是用于逼近 BNN 后验的变分方法在计算上可能相当昂贵,因为使用近似分布会大大增加模型参数的数量,但不会大幅增加模型容量。例如,使用 BNN 后验近似的高斯分布,模型参数的数量增加了一倍,但报告了与使用丢失的传统方法相同的预测性能。 这使得该方法在实践中不适合与 CNN 一起使用,因为参数数量的增加太昂贵。

关于神经网络权重的精确贝叶斯推断是难以处理的,因为参数的数量非常大,并且神经网络的函数形式不适合精确积分。 因此,我们用变分概率分布 q θ (w | D) 逼近难以处理的真实后验概率分布 p(w | D),它包括高斯分布的性质 μ∈ℝ d 和 σ∈ℝ d ,表示为 N(θ | μ,σ²),其中 d 是定义概率分布的参数总数。 这些高斯变分后验概率分布的形状由它们的方差 σ² 确定,表示每个模型参数的不确定性估计。

在观察数据之前定义先验概率分布,一旦观察到数据(训练数据),学习就发生并且分布变换为后验分布。 利用概率论从数据中学习构成了贝叶斯学习的基础。贝叶斯定理如下:

P(θ | x) 为后验概率,也是我们想要计算的;P(θ) 为先验概率,在训练数据之前就是已知的;P(x | θ) 为可能性,显示了数据分布;P(x) 为证据,我们只能通过对所有可能的模型值积分来计算其值:

这使得问题变得棘手,因此我们采用变分近似来找到近似贝叶斯后验分布。

首先,我们的原始目标是,需要根据已有数据推断需要的分布 p;当 p(下图中黄色区域)不容易表达,不能直接求解时,可以尝试用变分推断的方法, 即,寻找容易表达和求解的分布 q(下图中红线和绿线构成的区域),当 q 和 p 的差距很小的时候,q 就可以作为 p 的近似分布,成为输出结果了。例如,我们用 q θ (w | D) 来近似 p(w | D)。首先注意 q θ (w | D) 的表达,其中 w 是变量,θ 是后验概率分布 q 的参数。所以在构造 q 的时候也分两步:第一,概率分布的选择;第二,参数的选择。第一步,我们在选择 q 的概率分布时,通常会直观选择 p 可能的概率分布,这样能够更好地保证 q 和 p 的相似程度。例如高斯混合模型中,原始假设 p 服从高斯分布,则构造的 q 依然服从高斯分布。之后,我们通过改变 θ,使得 q 不断逼近 p。

我们希望尽可能接近真正的分布,这可以通过最小化两者之间的 Kullback-Liebler(KL)散度来做到这一点。然而 KL 的表达式中依然有一部分不可求的后验概率,这个问题仍然是棘手的,所以用到了 ELBO:

但是由于积分的存在,这个公式仍然难以解决。此时,我们可以从近似函数 q θ (w | D) 中进行采样,因为从近似函数中采样权值要比真正的后验函数 p(w | D) 更容易。这样得到容易计算的函数:

这些采样权值 w 被用于神经网络的反向传播,学习后验分布。

贝叶斯建模中,存在两种类型的不确定:偶然不确定性和认知不确定性。

可以通过在模型参数或模型输出上放置概率分布来估计不确定性 。通过在模型的权重上放置先验分布,然后尝试捕获这些权重在给定数据的情况下变化多少来模拟认知不确定性。另一方面,通过在模型的输出上放置分布来模拟偶然不确定性。

传统神经网络常使用反向传播来训练。对于 BNN,其自然地解释了参数估计中的不确定性,并且可以将这种不确定性传播到预测结果中;此外,对参数值进行取平均而不是仅选择单点估计值使得模型不易出现过拟合。因此,对 BNN 参数的训练也需要特殊的训练方法,Bayes by Backprop 就是其中一种(它也是一种变分推断)。

Bayes by Backprop 用来学习神经网络权重的概率分布。它是一种变分推理方法,用于学习神经网络权重 w ~ q θ (w | D) 的后验分布,可以在反向传播中对权重 w 进行采样。整个方法可归纳如下:

由于参数数目较大,所以需要对模型权重进行适当的修剪。模型修剪减少了深度神经网络的各种连接矩阵中的稀疏性,从而减少了模型中有价值的参数的数量。模型修剪的整个想法是减少参数的数量而不会损失模型的准确性。最常用的修剪模型的方法是将低贡献权重映射到零并减少整体非零值权重的数量,可以通过训练大型稀疏模型并进一步修剪来实现。

(这部分内容摘自 一个例子搞清楚 先验分布/后验分布/似然估计 )

给定一些数据样本 x,假定我们知道样本是从某一种分布中随机取出的,但我们不知道这个分布具体的参数 θ。

因为给定样本 x 后, p(x) 会在 θ 空间上为一个定值,和 θ 的大小没有关系,所以可以省略分母 p(x)。 可化简为:

p(x) 相当于是一个归一化项,整个公式就表示为: Posterior∝(Likelihood∗Prior)(后验概率 正比于 先验概率 ∗ 似然函数)

需要一提的是,对贝叶斯 CNN 而言,不仅在卷积层中将概率分布置于权重上,还要求在全连接层中将概率分布置于权重上。

假设权重的变分后验概率分布 q θ (w ijhw | D) = N(μ ijhw ,α ijhw μ 2 ijhw )(其中,i 和 j 分别对应输入和输出层数,h 和 w 分别对应过滤器的高度和宽度),那么卷积公式被重定义为:

其中,ε j ~ N(0,1),A i 为过滤器在第 i 层要卷积的部分,b j 为相应的第 j 层的激活值,∗ 为卷积操作,⊙ 为元素乘法(component-wise multiplication)。

对 CNN 的权重应用概率分布而非单点值,并且要在反向传播时更新变分后验概率分布 q θ (w | D),关键在于过滤器会执行两次卷积操作(在单点预测的 CNN 中只执行一次卷积)。

从前面的公式我们看到,卷积操作的输出 b 是期望 μ ijhw 和方差 α ijhw μ 2 ijhw 的函数,因此我们可以分别计算出 μ ijhw 和 α ijhw μ 2 ijhw 的值,从而可以得到一个高斯概率分布。方法就是执行两次卷积操作:第一次,我们将 b 视为通过频率推理更新的 CNN 的输出,将单点估计值解释为变分后验概率分布的期望;第二次,我们将得到方差。通过这种方式,我们确保每个卷积操作只更新一个参数(第一次为 μ ijhw ,第二次为 α ijhw ),这与通过频率推断更新的 CNN 完全相同。

实际上,当我们执行第一次卷积操作,我们得到的是 q θ (w | D) 的最大后验概率,而第二次卷积操作则是得出权重 w 偏离了最大后验概率多少。另外,为了加速计算,确保方差 α ijhw μ 2 ijhw 为非零正数,并提到准确度,我们学习 logα ijhw 并使用 Softplus 激活函数。

在分类任务中,我们关注的是 P D (y* | x*);对于贝叶斯神经网络,其被表示为:

在 Bayes by Backprop 中,q θ (w | D) ~ N(w | μ, σ 2 ),而 θ = {μ, σ} 在数据集 D = {x i , y i } n i=1 的训练中学习得到。由于分类问题多是离散的,因此:

其中,Σ c f(x c ∗ | w) = 1,C 为总类数。通过从 q θ (w | D) 取样,可以获得期望值的无偏估计:

T 为样本数量。这个估计值允许我们评估预测值的不确定性,因此称为预测方差,用 Var q 表示:

这个值可以进一步分为偶然不确定性和认知不确定性:

由于贝叶斯 CNN 中的权重都由期望和方差来表示其分布,因此,相较于单点估计 CNN,贝叶斯 CNN 的参数数量翻了一倍。为了使贝叶斯 CNN 参数数量等于传统 CNN,可以使 BCNN 的过滤器数目减半。

另一种模型修剪的技术是对每层的权重使用 L1 归一化。通过 L1 归一化,我们使各模型层中的权重向量变得非常稀疏,即大部分矩阵元素变得接近零;同时,剩余的非零元素则捕获数据的最重要特征。我们设置一个阈值,如果该值低于阈值,则使权重为零。通过只保留非零权重,可以减少模型的参数数量,而不会影响模型的整体性能。

看了一些国内的论文,将贝叶斯应用于 BP 神经网络优化,往往是利用贝叶斯定理寻找最优神经网络参数,以解决神经网络权值易陷入局部最优的问题,同时也能解决神经网络过拟合。其中心思想在于: 根据给定的先验分布,利用贝叶斯定理考察神经网络参数的不确定性,从样本数据中,获得网络结构的后验概率,那么,使得该后验概率最大化的网络参数即为所需的最优参数 (我认为这其实是 MAP 而非贝叶斯估计)。最优参数定义为:

为方便计算,对后验概率取对数得到:

假设先验概率分布 p(w) 满足高斯分布:

则有:

上式中,似然函数部分对应于目标函数中的适应度函数,而先验概率部分对应于正则项,因此我们可以通过确定先验概率得到正则项,从而对神经网络的目标函数进行优化,进而有效控制网络规模,提高网络泛化能力。

后验分布是人们在获得样本数据 D 之后对参数 w 的一种调整。 贝叶斯把上一步得到的后验分布信息储存起来,在将来做推测时,上一步的后验信息就成为了先验信息 ,这样持续数次操作之后,样本数据的预测结果会一直进行调整,最后对参数估计的结果精确度更高。

神经网络中最重要的两个性能参数就是权值和阈值,而这两个参数的分布情况受到了目标函数中超参数的控制,但一般的算法不能确定超参数的取值。可以利用贝叶斯定理来求取目标函数的超参数,并且要求达到自主调节超参数取值的目标,并且通过持续的调整最后找到最优的取值,相应的确定 BP 神经网络的最优权值和阈值。

公式和特殊字符没有翻译,自己带进去看看吧,希望有帮助:非负矩阵算法因式分解丹尼尔-李贝尔实验室朗讯科技默里山,新泽西州07974H.塞巴斯蒂安承脑和齿轮系。SCI。麻省理工学院剑桥,马02138摘要非负矩阵分解(NMF)先前已被证明是一个有用的分解多元数据。两种不同的多—折扇状的NMF算法的分析。他们只是略有不同用于更新规则的乘法因子。一个算法可以以减少传统的最小二乘误差而其他广义的Kullback-Leibler散度最小化。单调的这两种算法的收敛可以使用一个辅助函数证明—法类似于用于证明的期望收敛—最大化算法。该算法也可以被解释为诊断—只要调整梯度下降,其中的缩放因子是最佳的选择以确保收敛。1引言无监督学习算法,如主成分分析和矢量量化—量化可以理解为不同约束条件下的数据矩阵分解。德—待时限制利用,产生的因素可以有非常不同的—不同的代表性的性能。主成分分析执行只有微弱的或—波函数的正交约束,导致在一个完全分布式的表示使用取消产生变异,[ 1,2 ]。另一方面,矢量量化,用硬的赢家—把所有的约束,结果聚类中的数据分为相互排斥的原型[ 3 ]。我们先前已经表明,非负矩阵分解是一个有用的约束可以学习数据中的一部分表示[ 4,5 ]。非负的基础载体,所使用的分布式,但仍然稀疏的组合产生的表现重建[ 6,7 ]。在本次提交的,我们分析了两种数值算法从数据中学习最优非负因子。2非负矩阵分解我们正式考虑算法解决以下问题:非负矩阵分解(NMF)给定一个非负矩阵fi,和非负矩阵的因素和这样:1。NMF可以应用在以下方式多元数据的统计分析。给定一组的多维数据矢量,矢量被放置在列的矩阵在哪儿是一些例子中的数据集。这矩阵,然后分解成一个近似矩阵和一个矩阵。通常选择小于或你说呢和比原来的矩阵。这个结果在一个原始数据矩阵的压缩版本。在方程近似意义fi意义是什么(1)?它可以改写柱柱在哪儿和有相应的列和。在其他的话,每个数据向量通过对列的一个线性组合近似,通过成分加权。因此可被视为含有基础这是该数据在线性近似优化。由于相对较少的基础向量来代表许多数据载体,良好的逼近,只能实现如果基础矢量数据中发现潜在的结构。本文件是不是应用NMF,而把注意力集中在技术—非负矩阵分解的finding技术方面。当然,其他类型的马—矩阵分解已在数值线性代数被广泛研究,但不—负约束使得许多以前的工作不适用于本案8。在这里,我们讨论的NMF基于迭代更新的两种算法和。因为这是很容易实现的算法及其收敛性保证,我们发现他们在实际应用中非常有用。其他的算法可能更有效fi整体计算时间充足,但也更困难fi崇拜的实现可能无法推广到不同的成本函数。我们的算法类似的地方只有一个的因素适于先前已被用于发射断层扫描的反褶积和天文图像[ 9,10,11,12 ]。在每一次迭代的算法,新的价值或被发现了一些因素,取决于情商的近似质量的电流值(1)。我们证明了近似的质量与应用单调提高这些乘法更新规则。在实践中,这意味着,反复迭代更新规则,保证收敛到局部最优矩阵分解。3的成本函数对fiNd近似因式分解首先,我们fi需要fiNE的成本函数量化近似的质量。这样的成本函数可以构造采用一些措施两个非负矩阵之间的距离和。一个有用的测量是简单的平方之间的欧氏距离这是下界的零,当且仅当地消失和13。。2。另一个有用的措施3。这也是像欧氏距离的下界的零,如果只有和消失如果。但它不能被称为一个“距离”,因为它不是对称的和,所以我们将它称为“发散”从。它减少的Kullback-Leibler距离发散,或相对熵,当你说呢和可作为归一化的概率分布。我们现在考虑NMF两种配方的优化问题:1最小化问题相对于和,受约束。2最小化问题相对于和,受约束。虽然功能和是凸的只有或只是,他们在这两个变量是不凸。因此,它是期望算法不切实际解决问题1和2在finding全局极小的感觉。然而,有许多从数值优化,可以应用于fi和局部极小的方法。梯度下降可能是实现最简单的方法,但收敛可以缓慢的。其他方法,如共轭梯度法有更快的收敛速度,至少在局部极小值附近,但更复杂的实现比梯度下降8。基于梯度的方法也很不利对步长的选择敏感,可为大型应用程序很不方便。4乘法更新规则我们发现,下面的“乘法更新规则”是一个很好的妥协在速度和易于实施的解决问题1和2。定理1的欧氏距离更新的规则下是减4。欧氏距离是不变的这些更新的当且仅当固定点的距离。和在一个定理2的分歧更新的规则下是减5。分歧是不变的这些更新的当且仅当和在一个固定的的分歧点。在后面的章节中给出了这些定理的证明。现在,我们注意到,每个更新由乘法的一个因素。特别是,它是直接看到这个乘法因子统一时,这样完美的重建是必要的一个fiXED的更新规则点。5的乘法和添加剂的更新规则这是对比这些乘法的更新与梯度下降产生有用的14。特别是,一个简单的添加剂的更新减少平方距离可写为6。如果都设置为等于一些小的正数,这相当于传统梯度下降。只要这个数是足够地小fi,更新应减少。现在如果我们对角缩放变量和设定7。我们得到的更新规则这给出了定理1。请注意,这个尺度在梯度的积极成分的派别宗教的乘法因子的结果—但是第和因子的分子的负分量的绝对值。的发散,对角缩放梯度下降的形式8。再次,如果是小的和积极的,此更新应减少。如果我们现在集9。我们得到的更新规则这给出了定理2。这种调整也可以被解释为与梯度的积极成分的乘法规则分母和负成分作为乘法因子分子。由于我们的选择不小,似乎也不能保证这样的调整梯度下降导致成本函数下降。令人惊讶的是,这是事实上的情况下,在下一节中所示。6的收敛证明为了证明定理1和定理2,我们将使用一个辅助函数类似于使用在期望最大化算法[ 15,16 ]。德fi定义1是一个辅助函数如果条件10。均fi版。辅助功能是一个有用的概念,因为下面的引理,这也是图1图示。1如果引理是一个辅助函数,然后是减下的更新11。证明:请注意,只有是一个局部最小值。如果衍生物的存在并有连续的一个小邻域内的,这也意味着衍生物。因此,通过迭代更新公式(11)我们得到一个序列估计的收敛到一个局部最小值的目的功能:12。我们将表明,德fi宁合适的辅助功能两和定理1,更新规则和2容易遵循从式(11)。分享到: 1.4万G(H,HT)F(H)HT HT+1图1:最小化的辅助功能为。2如果引理正对角矩阵HMINH保证13。然后14。是一个辅助函数15。证明:自很明显,我们只需要表明。以做到这一点,我们比较16。利用公式(14),fi发现相当于17。118。这是一个标度的组件semidefi黑夜的当且仅当是的,和。然后是积极的19。20。21。22。23。1你也可以证明正semidefi有限考虑矩阵。然后是一个积极的特征向量随着统一的特征值,和Frobenius Perron定理的应用表明,公式17持有。分享到: 1.4万现在我们可以证明定理1的收敛性:定理1的证明替代从式(14)是一个辅助函数,在公式(11)由式(14)中的更新规则的结果:24。这是减更新规则下,根据引理1。写这个方程的成分明确,我们得到25。通过扭转的作用和引理1和2,同样可以证明是减的更新规则下。我们现在考虑以下的发散的成本函数的辅助功能:引理3 defiNE26。27。这是一个辅助函数28。证明:它是简单的验证。表明,我们使用对数函数的凸性得到的不等式29。所有非负的货舱那笔统一。设置30。我们得到的31。从这个不等式如下。定理2,然后从引理1中的应用:定理2的证明:最小的相对于通过设置梯度为零:32。因此,方程的更新规则(11)的形式33。自是一个辅助函数,在公式(28)是减下此更新。重写—十的矩阵形式,这相当于在情商的更新规则(5)。通过扭转的作用和,更新规则同样可以证明是减。7讨论我们已经证明,在情商的更新规则中的应用。(4)和(5)保证问题1和2fiNd至少局部最优解,分别。的收敛性证明依赖的fi宁适当的辅助功能。我们目前的工作这些定理推广到更复杂的约束。更新规则本身实现的计算非常简单,且可望利用别人各种各样的应用。我们承认,贝尔实验室的支持。我们也要感谢卡洛斯布洛迪,Ken克拉克森,科琳娜科尔特斯,罗兰弗氏,琳达考夫曼,晏乐村,山姆学报,拉里撒乌耳,和玛格丽特Wright有益的讨论。工具书类[ 1 ]乔利夫,它(1986)。主成分分析。纽约:斯普林格出版社。[ 2 ]土耳其,并购Pentland,一(1991)。特征脸的识别。J.认识。神经科学。3,86,71–。[ 3 ] Gersho,一个灰色,RM(1992)。矢量量化的信号压缩。中国科学院。出版社。【4】李,DD和承,HS。利用凸锥编码的无监督学习(1997)。诉讼的神经信息处理系统9会议上,515–521。【5】李,DD和承,HS(1999)。非负矩阵factoriza学习物体的部分—和灰。性质401,788–791。[ 6 ]领域,DJ(1994)。感官编码的目的是什么?神经计算。6,601,559–。[ 7 ] foldiak,P & Young,M(1995)。稀疏的灵长类动物大脑皮层的编码。该手册的大脑理论和神经网络,895–898。(麻省理工学院出版社,剑桥,MA)。[ 8 ]出版社,WH,展示,SA,维特林,重量和弗兰纳里,英国石油公司(1993)。数值方法:艺术科学计算fiC。(剑桥大学出版社,剑桥,英国)。[ 9 ]西普,La和瓦迪,Y(1982)。用于最大似然重建发射断层扫描。IEEE Transactions。113–2,122。[ 10 ]理查德森,谁(1972)。基于贝叶斯网络的迭代的图像恢复方法。J.选择。SOC。我。62,59,55–。[ 11 ]露西,LB(1974)。观察到的分布的fi阳离子的迭代技术。天文学。·74,745–754。[ 12 ]博曼,CA和绍尔,K(1996)。一个大学fiED的方法来利用坐标统计断层扫描下降的优化。IEEE Transactions。图像处理。5,492,480–。[ 13 ] paatero,P和T,U(1997)。最小二乘法制定的鲁棒非负因子分析—SIS。计量学。智能。实验37,23–35。[ 14 ] Kivinen和Warmuth,J,M(1997)。添加剂和幂梯度更新线性预测。信息与计算杂志132,1–64。[ 15 ] Dempster,Laird,AP,纳米和Rubin,DB(1977)。通过最大似然数据不完整EM算法。J.皇家统计系统。39,38,1–。[ 16 ]撒乌耳,L和佩雷拉,F(1997)。集料和混合阶马尔可夫模型的统计语言处理。C.心和R.魏谢德尔(EDS)。第二次会议录在自然语言处理中的实证方法,81–89。ACL出版社。

自己不能翻译吗

基于小波图像去噪方法的研究论文

题目基于小波变换的图像去噪方法研究学生姓名陈菲菲学号 1113024020 所在学院物理与电信工程学院专业班级通信工程专业1 101 班指导教师陈莉完成地点物理与电信工程学院实验中心 201 5年5月 20日 I 毕业论文﹙设计﹚任务书院(系) 物理与电信工程学院专业班级通信 1 101 班学生姓名陈菲菲一、毕业论文﹙设计﹚题目基于小波变换的图像去噪方法研究二、毕业论文﹙设计﹚工作自 201 5年3月1日起至 201 5年6月20 日止三、毕业论文﹙设计﹚进行地点: 物理与电信工程学院实验室四、毕业论文﹙设计﹚的内容 1、图像处理中,输入的是质量低的图像,输出的是改善质量后的图像。常用的图像处理方法有图像增强、复原、编码、压缩等。一般图像的能量主要集中在低频区域中,只有图像的细节部的能量才处于高频区域中。因为在图像的数字化和传输中常有噪声出现,而这部分干扰信息主要集中在高频区域内,所以消去噪声的一般方法是衰减高频分量或称低通滤波,但与之同时好的噪方法应该是既能消去噪声对图像的影响又不使图像细节变模糊。为了改善图像质量,从图像提取有效信息,必须对图像进行去噪预处理。设计任务: (1 )整理文献,研究现有基于小波变换的图像去噪算法,尝试对现有算法做出改进; (2 )在 MATLAB 下仿真验证基于小波变换的图像去噪算法。 2 、要求以论文形式提交设计成果,应掌握撰写毕业论文的方法, 应突出“目标,原理,方法,结论”的要素,对所研究内容作出详细有条理的阐述。进度安排: 1-3 周:查找资料,文献。 4-7 周:研究现有图像去噪技术,对基于小波变换的图像去噪算法作详细研究整理。 8-11 周: 研究基于小波的图像去噪算法,在 MATLAB 下对算法效果真验证。 12-14 周:分析试验结果,对比各种算法的优点和缺点,尝试改进算法。 15-17 周:撰写毕业论文,完成毕业答辩。指导教师陈莉系(教研室) 系( 教研室) 主任签名批准日期 接受论文( 设计) 任务开始执行日期 学生签名 II 基于小波变换的图像去噪方法研究陈菲菲( 陕西理工学院物理与电信工程学院通信 1 101 班,陕西汉中 72300 0) 指导教师: 陈莉[摘要] 图像去噪是信号处理中的一个经典问题, 随着小波理论的不断完善,它以自身良好的时频特性在图像去噪领域受到越来越多的关注。基于小波变换的去噪方法有很多

在高光谱影像中不可避免地混杂了大量的冗余噪声信息,为了得到较为纯净的信息以便于更好地对不同地物进行分类,就必须对图像进行降噪处理。在图像频率域范围,噪声信息主要集中在高频部分。去除图像的噪声要在保留图像细节信息的基础上尽可能的去除掉图像的噪声污染,利用小波包理论既可以实现降低噪声信息,又可以较大程度地保留图像的细节部分信息。

设一个含噪声的图像表示如下(周丹等,2009):

高光谱遥感影像信息提取技术

式中:F(t)为含噪声信息的高光谱影像;f(ti)为纯净的信息,ti=i/n;η为噪声级别;zi为噪声。

对原始影像F(t)进行小波变换分解,得到:

高光谱遥感影像信息提取技术

式中:Di(F)代表混合光谱系数;Di(f)代表纯净光谱系数;Di(z)代表噪声系数。

常用的小波包系数降噪方法有硬阈值和软阈值两类(吕瑞兰等,2004)。硬阈值消噪方法定义为

高光谱遥感影像信息提取技术

软阈值消噪方法定义为

高光谱遥感影像信息提取技术

式中:λ为阈值;sgn为保持系数的符号不变。

利用传统的阈值选择方法可以起到过滤器的作用,能去除冗余信息,保留或变换有用的信息。

图像复原技术毕业论文

论文简介: 利用图像传输理论测量海水的点扩散函数和调制传递函数并且使用维纳滤波器复原模糊的图像。退化方程H(u,v)在水槽中测量得到。在实验中利用狭缝图像和光源,第一步:一维光照射到水中从而得到不同距离下的狭缝图像数据,这样一维的海水点扩散函数就可以通过去卷积得到。又因为点扩散函数的对称性二维的函数模型也可以通过数学方法得到。利用相似的方法调制传递函数也可以得到。这样传输方程便可以得到:

图像可以由下式获得:

论文简介: 论文中提出自然光照下的水下图像退化效果与光偏振相关,而场景有效箱射则与光偏振无关。在相机镜头端安装可调偏振器,使用不同偏振角度对同一场景成两幅图像,所得到的图像中的背景光会有明显不同。通过对成像物理模型的分析,利用这两幅图像和估计出的偏振度,就能恢复出有效场景辐射。他还提出了一个计算机视觉方法水下视频中的退化效应。分析清晰度退化的物理原因发现主要与光的部分偏振有关。然后提出一个逆成像方法来复原能见度。该方法基于几张通过不同偏振方向的偏振片采集图像。

论文简介: 论文提出了一种自适应滤波的水下图像复原方法。通过最优化图像局部对比度质量判决函数,可以估计出滤波器中所使用的参数值。 论文提出一种基于简化的Jaffe-McGlamery水下成像模型的自调谐图像复原滤波器。滤波器的最优参数值是针对每幅图像通过优化一个基于全局对比度的质量准则自动估算的。(对一幅图像滤波器能根据全局对比度自动估计最优参数值),简化的模型理想地适合后向散射较少的漫射光成像.1.首先简化Jaffe-McGlamery水下成像模型:假设光照均匀(浅水区阳光直射),并且忽略后向散射部分.然后基于简化后的成像模型设计一个简单的反滤波器2.将滤波器设计成自适应滤波器。

论文简介: 论文对于调制传递函数给出了详细准确的系统函数信息,水下图像可以用它或点扩散函数进行复原.作者进行实验测量了水质参数得出了这些函数,并用得出的函数进行了图像复原。同时他还建立了一个框架来最大限度复原水下图像,在这个框架下传统的图像复原方法得到了拓展,水下光学参数被包含了进去,尤其时域的点扩散函数和频域的调制传递函数。设计了一个根据环境光学特性进行调整的客观图像质量度量标准来测量复原的有效性。

论文简介: 调制传递函数给出了详细准确的系统函数信息,水下图像可以用它或点扩散函数进行复原.作者进行实验测量了水质参数得出了这些函数,并用得出的函数进行了图像复原。(这一部分在王子韬的论文中有比较详细介绍)

论文简介: 在散射媒介中的正则化图像复原。论文在基于物理原因的复原方法难以去除噪声以及透射率低的基础上,提出一种自适应的过滤方法,即能明显的改善可见性,又能抑制噪声放大。本质上,恢复方法的正规化,是适合变化媒介的透射率,因此这个正则化不会模糊近距离的目标。

论文简介: 论文提出一种基于对边缘进行GSA(灰度规范角度)加权的测量图像清晰度的方法。图像首先被小波变换分解,去除部分随机噪声,增加真实边缘检测的可能性。每个边缘锐度由回归分析方法基于灰度的一个角的正切来确定边缘像素的灰度值之间的斜率和位置。整个图像的清晰度是平均每个测量的GSA的比例加权的第一级分解细节的量,作为图像的总功率,最后通过图像噪声方差自适应的边缘宽度。

论文简介: 论文提出了基于主动偏振的人工光照下水下图像处理技术。在宽场人工光照下的水下成像中,在光源端或相机端安装可调偏振器。通过调整光源或相机端的偏振器,同时拍摄两幅或多幅同一场景的图像,从两幅图像中可估计出背景光的偏振度。结合水下成像物理模型,就可以进行图像复原和场景3D信息估计。该方法操作简单,设备筒易,适用于水下画定目标的成像。 大范围人工照明条件下研究成像过程,基于该成像模型,提出一种恢复object signal的方法,同时能获得粗糙的3D scene structure.相机配备检偏振器,瞬间获取同一场景的两帧图片with different states of the analyzer or light-source polarizer,然后用算法处理获取的图片.它统一并推广了以前提出的基于偏振的方法.后向散射可以用偏振技术降低,作者在此基础上又用图像后处理去除剩余的后向散射,同时粗糙估测出3D场景结构.创新:之前的方法有的认为目标物反射光的偏振度可以忽略(即认为只有后向散射是偏振的);另外还有的认为后向散射的偏振度可以忽略(即认为只有目标物反射光是偏振的)。本文作者认为两者都是部分偏振光。

论文简介: 论文在没有应用任何标准模式、图像先验、多视点或主动照明的条件下同时估算了水面形状和恢复水下二维场景。重点是应用水面波动方程建立紧凑的空间扭曲模型,基于这个模型,提出一个新的跟踪技术,该技术主要是解决对象模型的缺失以及水的波动存在的复杂的外观变化。在模拟的和真实的场景中,文本和纹理信息得到了有效的复原。

论文简介: 论文提出暗通道先验算法复原有雾图像。暗通道先验是一系列户外无雾图像的数理统计,基于观察户外无雾图像的大部分补丁补丁中包含至少一个颜色通道中低强度的像素点。在有雾图像中应用这些先验,我们可以直接的估算雾的厚度,复原成高质量的无雾图像,同时还能获得高质量的深度图。

论文简介: 论文比较研究了盲反卷积算法中的:R-L算法(Richardson-Lucy)、最小二乘法以及乘法迭代法。并且应用了水下图像去噪和威尔斯小角度近似理论推导出点分布函数。通过执行威尔斯的小角度散射理论和模糊度量方法对三种盲反卷积算法进行比较,确定总迭代次数和最佳图像复原结果。通过比较得出:最小二乘算法的复原率最高,但是乘法迭代的速度最好。

论文简介: 论文提出点扩算函数(PSF)和调制解调函数(MFT)的方法用于水下图像复原,应用基于威尔斯小角度近似理论来进行图像增强。在本文中作者分析了水下图像退化的原因,在强化超快激光成像系统中采用了距离选通脉冲的方法,降低了反向散射中的加性噪声。本文对图像的基本噪声模式进行了分析,并使用算术平均滤波首先对图像进行去噪,然后,使用执行迭代盲反褶积方法的去噪图像的初始点扩散函数的理想值,来获得更好的恢复结果。本文通过比较得出,盲反褶积算法中,正确使用点扩散函数和调制解调函数对于水下图像复原的重要性。

论文简介: 本文提出一种图像复原的新方法,该方法不需要专门的硬件、水下条件或现在知识结构只是一个与小波变换的融合框架支持相邻帧之间的时间相干性进行一个有效的边缘保留噪声的方法。该图像增强的特点是降低噪声水平、更好的暴露黑暗区域、改善全局对比、增强细节和边缘显著性。此算法不使用补充信息,只处理未去噪的输入退化图像,三个输入主要来源于计算输入图像的白平衡和min-max增强版本。结论证明,融合和小波变换方法的复原结果优于直接对水下退化图像进行去雾得到的结果。

论文简介: 本文是一篇综述性质的论文。介绍了:1、水下光学成像系统 2、图像复原的方法(对各种图像复原方法的总结) 3、图像增强和颜色校正的方法总结 4、光学问题总结。

论文简介: 论文针对普通水下图像处理的方法不适用于水下非均匀光场中的问题,提出一种基于专业区域的水下非均匀光场图像复原方法,在该算法中,考虑去除噪声和颜色补偿,相对于普通的水下图像复原和增强算法,该方法获得的复原复原的清晰度和色彩保真度通过视觉评估,质量评估的分数也很高。

论文简介: 论文基于水下图像的衰减与光的波长的关系,提出一种R通道复原方法,复原与短波长的颜色,作为水下图像的预期,可以对低对比度进行复原。这个R通道复原的方法可以看做大气中有雾图像的暗通道先验方法的变体。实验表明,该方法在人工照明领域应用良好,颜色校正和可见性得到提高。

论文简介: 作者对各种水下图像增强和复原的算法做了调查和综述,然后对自己的提高水下质量的方法做了介绍。作者依次用到了过滤技术中的同态滤波、小波去噪、双边过滤和对比度均衡。相比于其他方法,该方法有效的提高了水下目标物的可见性。

论文简介: 论文应用湍流退化模型以质量标准为导向复原因水下湍流退化的图像。参考大气湍流图像复原的算法,省略了盐分的影响,只考虑水中波动引起的湍流对水下成像的影响,应用一种自适应的平均各向异性的度量标准进行水下图像复原。经过验证,使用STOIQ的方法优于双频谱的复原方法。

论文简介: 本文提出了一种新的方法来提高对比度和降低图像噪声,该方法将修改后的图像直方图合并入RGB和HSV颜色模型。在RGB通道中,占主导地位的直方图中的蓝色通道以95%的最大限度延伸向低水平通道,RGB通道中的低水平通道即红色通道以5%的最低限度向上层延伸且RGB颜色模型中的所有处理都满足瑞利分布。将RGB颜色模型转化为HSV颜色模型,S和V的参数以最大限度和最小限度的1%进行修改。这种方法降低了输出图像的欠拟合和过拟合,提高了水下图像的对比度。

论文简介: 论文根据简化的J-M模型提出一种水下图像复原的有效算法。在论文中定义了R通道,推导估算得到背景光和变换。场景可见度被深度补偿,背景与目标物之间的颜色得到恢复。通过分析PSF的物理特性,提出一种简单、有效的低通滤波器来去模糊。论文框架如下:1.重新定义暗通道先验,来估算背景光和变化,在RGB的每个通道中通过标准化变换来复原扭曲颜色。2.根据PSF的性能,选择没有被散射的光,用低通滤波器进行处理来提高图片的对比度和可见度。

论文简介: 论文中对当代水下图像处理的复原与增强做了综述,作者阐明了两种方法的模型的假设和分类,同时分析了优缺点以及适用的场景。

参考:

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

2.1 指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

2.2 人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

2.3 文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K K.Information Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

破损图像复原技术本科毕业论文

本节主要目的是介绍图像复原一些基本概念,如图像退化/复原过程的模型,图像复原的滤波方法,包括非约束复原(逆滤波)、有约束复原(维纳滤波)、非线性约束还原(最大熵),还有几何失真复原,来源于东北大学 魏颖教授的数字图像课程笔记。

在图像退化/复原建模之前先得知道 什么是图像退化 ?图像的质量变坏叫做退化。退化的形式有图像模糊、图像有干扰等。 为什么图像会退化呢 ?无论是由光学、光电或电子方法获得的图像都会有不同程度的退化; 退化的形式多种多样 。如传感器噪声、摄像机未聚焦、物体与摄像设备之间的相对移动、随机大气湍流、光学系统的相差、成像光源或射线的散射等;

图像复原和图象增强一样,都是为了 改善图像视觉效果 ,以及便于后续处理。 与图像增强不同 ,图像增强方法更偏向 主观判断 ,而图像复原则是根据图象畸变或退化原因,进行 模型化处理 。

图像恢复处理的关键问题在于建立退化模型。在缺乏足够的先验知识的情况下,可利用已有的知识和经验对模糊或噪声等 退化过程进行数学模型的建立及描述 ,并针对此退化过程的数学模型进行图像复原。

图像退化过程的先验知识在图像复原技术中起着重要作用。

一般地讲,复原的好坏应有一个规定的客观标准,以能对复原的结果作出某种最佳的估计。

在信号处理领域中,常常提及线性移不变系统(或线性空间不变系统),线性移不变系统有许多重要的性质,合理地利用这些性质将有利于我们对问题的处理。

寻找滤波传递函数,通过频域图像滤波得到复原图像的傅立叶变换,再求反变换,得到复原图像。

非约束复原是指除了使准则函数 最小外, 再没有其他的约束条件。因此只需了解退化系统的传递函数或冲激响应函数, 就能利用如前所述的方法进行复原。但是由于传递函数存在病态问题,复原只能局限在靠近原点的有限区域内进行, 这使得非约束图像复原具有相当大的局限性。

退化的原因为已知 :对退化过程有先验知识,如希望能确定PSF和噪声特性:即确定: 与 , 。

根据导致模糊的物理过程(先验知识) :

数字图像在获取过程中,由于成像系统的非线性,成像后的图像与原景物图像相比,会产生比例失调,甚至扭曲,这类图像退化现象称之为几何畸变。

几何畸变校正要对失真的图像进行精确的几何校正, 通常是先确定一幅图像为基准,然后去校正另一幅图像的几何形状。

几何畸变校正一般分两步来做:一是图像空间坐标的变换——空间变换;二是重新确定在校正空间各像素点的取值——灰度级插值。

空间变换:防止图象内容支离破碎(弄断直线)

灰度插值:目标图象会要求到原图象的非整数点。

图像经几何位置校正后,在校正空间中各像点的灰度值等于被校正图像对应点的灰度值。一般校正后的图像某些像素点可能挤压在一起,或者分散开,不会恰好落在坐标点上,因此常采用内插法来求得这些像素点的灰度值。经常使用的方法有如下两种。

1) 最近邻点法 :

最近邻点法是取与像素点相邻的4个点中距离最近的邻点灰度值作为该点的灰度值。如图所示。最近邻点法计算简单,但精度不高,同时校正后的图像亮度有明显的不连续性。

2) 双线性内插法 :

论文简介: 利用图像传输理论测量海水的点扩散函数和调制传递函数并且使用维纳滤波器复原模糊的图像。退化方程H(u,v)在水槽中测量得到。在实验中利用狭缝图像和光源,第一步:一维光照射到水中从而得到不同距离下的狭缝图像数据,这样一维的海水点扩散函数就可以通过去卷积得到。又因为点扩散函数的对称性二维的函数模型也可以通过数学方法得到。利用相似的方法调制传递函数也可以得到。这样传输方程便可以得到:

图像可以由下式获得:

论文简介: 论文中提出自然光照下的水下图像退化效果与光偏振相关,而场景有效箱射则与光偏振无关。在相机镜头端安装可调偏振器,使用不同偏振角度对同一场景成两幅图像,所得到的图像中的背景光会有明显不同。通过对成像物理模型的分析,利用这两幅图像和估计出的偏振度,就能恢复出有效场景辐射。他还提出了一个计算机视觉方法水下视频中的退化效应。分析清晰度退化的物理原因发现主要与光的部分偏振有关。然后提出一个逆成像方法来复原能见度。该方法基于几张通过不同偏振方向的偏振片采集图像。

论文简介: 论文提出了一种自适应滤波的水下图像复原方法。通过最优化图像局部对比度质量判决函数,可以估计出滤波器中所使用的参数值。 论文提出一种基于简化的Jaffe-McGlamery水下成像模型的自调谐图像复原滤波器。滤波器的最优参数值是针对每幅图像通过优化一个基于全局对比度的质量准则自动估算的。(对一幅图像滤波器能根据全局对比度自动估计最优参数值),简化的模型理想地适合后向散射较少的漫射光成像.1.首先简化Jaffe-McGlamery水下成像模型:假设光照均匀(浅水区阳光直射),并且忽略后向散射部分.然后基于简化后的成像模型设计一个简单的反滤波器2.将滤波器设计成自适应滤波器。

论文简介: 论文对于调制传递函数给出了详细准确的系统函数信息,水下图像可以用它或点扩散函数进行复原.作者进行实验测量了水质参数得出了这些函数,并用得出的函数进行了图像复原。同时他还建立了一个框架来最大限度复原水下图像,在这个框架下传统的图像复原方法得到了拓展,水下光学参数被包含了进去,尤其时域的点扩散函数和频域的调制传递函数。设计了一个根据环境光学特性进行调整的客观图像质量度量标准来测量复原的有效性。

论文简介: 调制传递函数给出了详细准确的系统函数信息,水下图像可以用它或点扩散函数进行复原.作者进行实验测量了水质参数得出了这些函数,并用得出的函数进行了图像复原。(这一部分在王子韬的论文中有比较详细介绍)

论文简介: 在散射媒介中的正则化图像复原。论文在基于物理原因的复原方法难以去除噪声以及透射率低的基础上,提出一种自适应的过滤方法,即能明显的改善可见性,又能抑制噪声放大。本质上,恢复方法的正规化,是适合变化媒介的透射率,因此这个正则化不会模糊近距离的目标。

论文简介: 论文提出一种基于对边缘进行GSA(灰度规范角度)加权的测量图像清晰度的方法。图像首先被小波变换分解,去除部分随机噪声,增加真实边缘检测的可能性。每个边缘锐度由回归分析方法基于灰度的一个角的正切来确定边缘像素的灰度值之间的斜率和位置。整个图像的清晰度是平均每个测量的GSA的比例加权的第一级分解细节的量,作为图像的总功率,最后通过图像噪声方差自适应的边缘宽度。

论文简介: 论文提出了基于主动偏振的人工光照下水下图像处理技术。在宽场人工光照下的水下成像中,在光源端或相机端安装可调偏振器。通过调整光源或相机端的偏振器,同时拍摄两幅或多幅同一场景的图像,从两幅图像中可估计出背景光的偏振度。结合水下成像物理模型,就可以进行图像复原和场景3D信息估计。该方法操作简单,设备筒易,适用于水下画定目标的成像。 大范围人工照明条件下研究成像过程,基于该成像模型,提出一种恢复object signal的方法,同时能获得粗糙的3D scene structure.相机配备检偏振器,瞬间获取同一场景的两帧图片with different states of the analyzer or light-source polarizer,然后用算法处理获取的图片.它统一并推广了以前提出的基于偏振的方法.后向散射可以用偏振技术降低,作者在此基础上又用图像后处理去除剩余的后向散射,同时粗糙估测出3D场景结构.创新:之前的方法有的认为目标物反射光的偏振度可以忽略(即认为只有后向散射是偏振的);另外还有的认为后向散射的偏振度可以忽略(即认为只有目标物反射光是偏振的)。本文作者认为两者都是部分偏振光。

论文简介: 论文在没有应用任何标准模式、图像先验、多视点或主动照明的条件下同时估算了水面形状和恢复水下二维场景。重点是应用水面波动方程建立紧凑的空间扭曲模型,基于这个模型,提出一个新的跟踪技术,该技术主要是解决对象模型的缺失以及水的波动存在的复杂的外观变化。在模拟的和真实的场景中,文本和纹理信息得到了有效的复原。

论文简介: 论文提出暗通道先验算法复原有雾图像。暗通道先验是一系列户外无雾图像的数理统计,基于观察户外无雾图像的大部分补丁补丁中包含至少一个颜色通道中低强度的像素点。在有雾图像中应用这些先验,我们可以直接的估算雾的厚度,复原成高质量的无雾图像,同时还能获得高质量的深度图。

论文简介: 论文比较研究了盲反卷积算法中的:R-L算法(Richardson-Lucy)、最小二乘法以及乘法迭代法。并且应用了水下图像去噪和威尔斯小角度近似理论推导出点分布函数。通过执行威尔斯的小角度散射理论和模糊度量方法对三种盲反卷积算法进行比较,确定总迭代次数和最佳图像复原结果。通过比较得出:最小二乘算法的复原率最高,但是乘法迭代的速度最好。

论文简介: 论文提出点扩算函数(PSF)和调制解调函数(MFT)的方法用于水下图像复原,应用基于威尔斯小角度近似理论来进行图像增强。在本文中作者分析了水下图像退化的原因,在强化超快激光成像系统中采用了距离选通脉冲的方法,降低了反向散射中的加性噪声。本文对图像的基本噪声模式进行了分析,并使用算术平均滤波首先对图像进行去噪,然后,使用执行迭代盲反褶积方法的去噪图像的初始点扩散函数的理想值,来获得更好的恢复结果。本文通过比较得出,盲反褶积算法中,正确使用点扩散函数和调制解调函数对于水下图像复原的重要性。

论文简介: 本文提出一种图像复原的新方法,该方法不需要专门的硬件、水下条件或现在知识结构只是一个与小波变换的融合框架支持相邻帧之间的时间相干性进行一个有效的边缘保留噪声的方法。该图像增强的特点是降低噪声水平、更好的暴露黑暗区域、改善全局对比、增强细节和边缘显著性。此算法不使用补充信息,只处理未去噪的输入退化图像,三个输入主要来源于计算输入图像的白平衡和min-max增强版本。结论证明,融合和小波变换方法的复原结果优于直接对水下退化图像进行去雾得到的结果。

论文简介: 本文是一篇综述性质的论文。介绍了:1、水下光学成像系统 2、图像复原的方法(对各种图像复原方法的总结) 3、图像增强和颜色校正的方法总结 4、光学问题总结。

论文简介: 论文针对普通水下图像处理的方法不适用于水下非均匀光场中的问题,提出一种基于专业区域的水下非均匀光场图像复原方法,在该算法中,考虑去除噪声和颜色补偿,相对于普通的水下图像复原和增强算法,该方法获得的复原复原的清晰度和色彩保真度通过视觉评估,质量评估的分数也很高。

论文简介: 论文基于水下图像的衰减与光的波长的关系,提出一种R通道复原方法,复原与短波长的颜色,作为水下图像的预期,可以对低对比度进行复原。这个R通道复原的方法可以看做大气中有雾图像的暗通道先验方法的变体。实验表明,该方法在人工照明领域应用良好,颜色校正和可见性得到提高。

论文简介: 作者对各种水下图像增强和复原的算法做了调查和综述,然后对自己的提高水下质量的方法做了介绍。作者依次用到了过滤技术中的同态滤波、小波去噪、双边过滤和对比度均衡。相比于其他方法,该方法有效的提高了水下目标物的可见性。

论文简介: 论文应用湍流退化模型以质量标准为导向复原因水下湍流退化的图像。参考大气湍流图像复原的算法,省略了盐分的影响,只考虑水中波动引起的湍流对水下成像的影响,应用一种自适应的平均各向异性的度量标准进行水下图像复原。经过验证,使用STOIQ的方法优于双频谱的复原方法。

论文简介: 本文提出了一种新的方法来提高对比度和降低图像噪声,该方法将修改后的图像直方图合并入RGB和HSV颜色模型。在RGB通道中,占主导地位的直方图中的蓝色通道以95%的最大限度延伸向低水平通道,RGB通道中的低水平通道即红色通道以5%的最低限度向上层延伸且RGB颜色模型中的所有处理都满足瑞利分布。将RGB颜色模型转化为HSV颜色模型,S和V的参数以最大限度和最小限度的1%进行修改。这种方法降低了输出图像的欠拟合和过拟合,提高了水下图像的对比度。

论文简介: 论文根据简化的J-M模型提出一种水下图像复原的有效算法。在论文中定义了R通道,推导估算得到背景光和变换。场景可见度被深度补偿,背景与目标物之间的颜色得到恢复。通过分析PSF的物理特性,提出一种简单、有效的低通滤波器来去模糊。论文框架如下:1.重新定义暗通道先验,来估算背景光和变化,在RGB的每个通道中通过标准化变换来复原扭曲颜色。2.根据PSF的性能,选择没有被散射的光,用低通滤波器进行处理来提高图片的对比度和可见度。

论文简介: 论文中对当代水下图像处理的复原与增强做了综述,作者阐明了两种方法的模型的假设和分类,同时分析了优缺点以及适用的场景。

参考:

数字图像处理方面了解的了。

随着经济的发展和科技的进步,医疗行业也取得了长足的发展,医学影像技术在医疗行业的应用也更加广泛,医学影像技术专业人才需求不断增大。下面是我为大家整理的医学影像论文,供大家参考。

创建高职医学影像技术专业人才培养新模式

医学影像论文摘要

摘要:近几年高职 教育 面临大好发展机遇,高职医学影像技术专业应抓住这个大好发展机遇,以专业建设为先导,明确高职教育特色;以职业能力为本位,强化实践教学改革;以学生就业为目的,创建高职医学影像技术专业人才培养新模式。

医学影像论文内容

关键词:高职;医学影像技术专业;人才培养模式;创新

随着科学技术的进步,医学影像检查设备在不断更新换代,诊疗手段日益先进,医院将面临严峻的挑战,这同时也对医学院校提出更高更新的要求。对于高职医学影像技术专业来说,必须进行相应的改革,才能适应社会、医疗单位对医学影像技术专业人才的需求。

我院2001年由鹤壁中专、鹤壁师范学校、鹤壁电大和鹤壁教育学院四所学校合并为鹤壁职业技术学院。其中医学影像技术专业是2002年在原鹤壁卫生学校(1995年合并入鹤壁中专)医学影像诊断专业的基础上开设的新专业,现该专业有在校学生350人。

根据大量的市场调研得知,社会对医学影像技术方面应用型人才的需求较大,因此我们设置了医学影像技术专业,确定了特定的培养目标和基本规格以适应相应的职业岗位,并进行了大胆的改革。

明确高职教育特色,促进可持续发展

当前,高职教育成为社会关注的 热点 ,面临大好的发展机遇。同时,经济、科技和社会发展也对高职教育人才培养工作提出了许多新的、更高的要求。因此,高职医学影像技术专业要抓住机遇、与时俱进,以改革教育思想和教育观念为先导,在教学与改革的过程中,逐步建立适应医学发展需求、能顺利实现医学影像技术专业人才培养目标的高职教育思想和观念。为此,我院组织有关人员深入实习医院和用人单位,广泛开展调研和 毕业 生追踪调查,邀请医学影像专家组成教育教学改革指导委员会,对高职医学影像技术专业人才培养目标进行讨论。

经过充分的论证,我们认识到高职教育是高等教育的重要组成部分,属于高等教育的范畴。高职人才必须具备与高等教育相适应的基本理论知识和技能,掌握相应的新知识、新技术和新工艺,以较强的实践动手能力和分析、解决实际问题的能力,区别于普通高等教育,以较宽的知识面和较深厚的理论知识,区别于中等职业教育。也就是说既不能“吃”本科教育的“压缩饼干”,也不能“蒸”中专教育的“发面馒头”,而应该按照高职教育人才规格和基本特征,把培养目标定位在基础理论适度、技术应用能力强、知识面较宽、素质较高的技术应用型专门人才上,要全面推进素质教育,树立科学的人才观、质量观和教育观。

明确培养目标,创建人才培养新模式

根据高职医学影像技术专业人才的需求形势,我院分析了高职医学影像技术专业教育特点,认识到高职医学影像技术专业要以培养高等技术性医学影像人才为根本任务,以适应社会和医院需求为目标,以培养技术应用能力为主线,创建高职医学影像技术专业人才培养的新模式。将培养目标定位在德、智、体、美全面发展,具有现代医学影像理念,具有良好的职业素质和技术操作能力,能适应现代医学影像设备技术操作需要的高级技术应用型人才上。经过探索,我们将人才培养模式概括为“人文为先,知识宽实,技能熟练,就业多向”。“人文为先”,是指面向就业岗位对医学影像技术专业人才的要求,增设人文课程,加强人文素质教育,充分体现以人为本的医学理念,适应新的“生物—心理—社会”医学模式。“知识宽实”,就是给学生搭建较宽的专业基础知识平台,在专业课开设时,我们就考虑以就业为导向,开设与就业有关的基础课和专业课,充分体现对准岗位开设课程。强化“技能训练”,充分体现高职教育的特点,增强学生的实践动手能力,并改变课程结构。从第一学期开始就在全部教学过程中加大实践训练课比例,采取有效的保障 措施 ,实现课堂训练、业余训练、实习前集中训练、实习中技能操作应用训练相统一,全面提高实践技能操作。“就业多向”即在通用医学影像技术专业知识技能训练的基础上,按照就业岗位需求,寻求“大专业、小专门化”的课程组合模式,除通用放射专业外,还设置CT专业方向、MRI专业方向、超声专业方向、介入专业方向、放疗专业方向,以拓宽就业 渠道 ,提高就业率,实现以就业为导向的培养目的。

加强专业建设,深化教育教学改革

对于高职院校,培养人才是根本任务,教学工作是中心工作,教学改革是各项改革的核心,提高素质是永恒的主题。近几年来,我们围绕这个思路,结合医学影像技术专业的实际情况,以专业建设为本位,以实际、实用、实践、实效为原则,重点进行了以下三项改革:

改革教学内容,重建理论教学体系按照培养目标和毕业生知识、能力和素质的要求,以突出医学影像技术操作能力,注重临床教学,加强技能实践,适应基层需要为原则,设置了医学影像技术专业的三大模块课程体系,即基本素质模块课程、专业素质模块课程、岗位素质模块课程。根据专业能力要素的具体要求及教学内容的逻辑关系,通过适当的精简、融合、重组、增设等途径,打破原有课程设计界限,优化课程和教学内容体系。如精简了医用物理学、医用化学、医学病原学等非主干课程的内容和教学时数;将原来的X线机结构与维修和X线摄影技术学在增加相关新内容后,分别重组为医学影像设备学、医学影像检查技术学;增设了医学影像新技术课程,如断层解剖学、介入放射学等;增开选修课,如放射治疗学、核医学、医学文献检索等。

改革实验实训环节,完善实践教学体系实践教学是培养学生实际工作能力和创新能力的重要环节。加强实践教学,就必须改革过去实践教学大纲包含于理论教学大纲之中的粗化设置,建立一个目标明确、自成体系、相对独立的实践教学体系。这个体系与理论教学体系相互联系,相辅相成。经过三年来的研究、探索与实践,我院高职医学影像技术专业已基本形成了一个完整、相对独立的“一个强化、四种训练、三个衔接”的实践教学体系。“一个强化”是指强化学生专业技能操作训练。“四种训练”是指基本技能操作训练、校内实训基地仿真演练、医院课间见习带练、毕业临床实习综合应用能力实练。“三个衔接”是指技能训练在校期间与考取技能证书相衔接、毕业后与考取职业资格证书相衔接、就业时与临床相衔接。

改革 教学 方法 和教学手段,激发学生学习积极性在教学方法上,一是在课堂教学中注重启发式和讨论式教学,采取灵活多样的教学方式,以培养学生主动学习和学会学习。二是对于部分实践性较强的教学内容,诸如医学影像设备学、医学影像检查技术学、人体断面解剖学、医学影像诊断学、超声诊断学等专业课的教学,采取边讲、边练、边做、边学的方式,做到理论与实践教学一体化,以收到良好的效果。在教学手段上,充分利用挂图、投影、幻灯、录像,教学片、多媒体等教学设备进行教学,增加直观效果和学生感性知识,极大地激发了学生的学习兴趣。在专业课实践教学中,有时候将病人带到实验室,让学生进行X线透视、摄片、消化道造影及B超检查等,既可进行实际操作,又可培养学生与病人之间的人际沟通能力,使学生适应医院工作的能力得到加强。

医学影像论文文献

[1]朱梅初,唐陶富.与时俱进创建高职影像专业人才培育模式[J].中国高等医学教育,2005,(1)

数字化技术在医学影像学教学中的应用

医学影像论文内容

【关键词】 数字化技术;PACS系统;医学影像学;教学

医学影像学是一门重要的诊断学科,随着计算机技术数字化的发展而不断更新,并向网络化、智能化方面发展,对数字成像技术的了解和应用十分重要。医学影像技术的数字化使得各种影像设备需数字化技术,用数字化技术代替模拟技术,使影像设备的可靠性得到大大的提高。我科采用图像存储与传输系统(picture archiving and communicationssystem,PACS)以数字技术为手段,充分发挥影像技术数字化优势,开展多媒体辅助教学,对教学方法进行相关的改进,顺应影像设备数字化技术发展趋势,收到良好效果[1?2]。现 报告 如下。

1医学影像学的传统教学模式

医学影像学传统的教学模式采用理论讲授与小组阅片相结合的方式。目前多数影像教学教学手段却仍然停留在胶片、投影、幻灯的方法,不能逼真地反映出图像的特点及特征,学生也很难理解和记忆;同时,教学胶片经多次重复使用,损坏现象时有发生。而幻灯片教学则不够清晰和灵活,达不到最佳学习效果,其制作相对复杂,经过转拍影像图片后,其清晰度也很差。传统的教学模式结果是学生理论考试成绩很好,但阅片能力却不够理想,在进入临床实习后许多学生仍不能独立阅读X光片,导致理论与实践脱节现象。

2数字化技术在医学影像学教学中的优势

医学影像学在诊断疾病中起着至关重要的作用。传统的影像设备都采用模拟技术,其信息不便用计算机处理,从应用角度看,与传统的模拟图像相比,数字图像具有密度分辨率高、可进行后处理、可存储、调阅、传输或拷贝。数字图像可存储于磁盘、磁带、光盘及各种记忆卡中,并可随时进行调阅、传输,为PACS的建立和无胶片化的实现奠定了基础。PACS系统是应用于医院的数字医疗设备如CT、MR、US、DSA、CR等所产生的数字化医学图像信息的采集、存储、诊断、管理、信息处理的应用系统,为被检查的病人建立了影像学资料,克服了影像资料存储无法保存完全的困难。通过PACS系统,凭患者的某一个信息就能查找到病情的相关资料,在任何一个终端上提取后还可打印、复制,操作简单而有效[1?2]。

3PACS系统教学符合临床教学理念

影像学的临床教学以临床见习为主,教师讲授、实际操作为辅。PACS系统不能完全弥补动手少的不足,但丰富的图像与病例资料却为教师的讲授提供了广阔的空间,讲授的内容更丰富多彩,资料丰富,也引导学生以临床 思维方式 为主。对学生而言,除了见习与听课,还能通过PACS系统及时地复习相关临床资料、进行随访,按教师的引导模拟临床诊断工作,并能对感兴趣的病例进行归纳 总结 ,丰富了学习手段,锻炼了临床思维能力,关键是激发了学习兴趣,变被动学习为主动学习。这样也更利于教学重心从以教师为中心向以学生为中心转移,最终达到提高学生临床能力的目的。在学生独立的科学的思维习惯的培养中,我们要让学生改变传统的平面图像观念,使其观察图像的思维逐步走向多维立体观念[2?3]。教师在实习课上要注意引导学生分析这些征象,允许学生自由发挥,培养学生的创新性思维,提高学生的思维归纳能力。

医学影像学既是医学的桥梁学科,为临床诊断服务,又是临床学科,实施临床诊断和治疗。掌握了医学影像学理论知识,才能更好地为临床服务。考试方法采用选择题、填空题、问答题等习题与解析是理论的考核办法,结合临床的图像观察、分析、阅读和诊断,能够让学生“看图识病”是教学的最终目的和要求[2?3]。利用PACS系统和图像信息库资料,根据教学目的要求,制作不同层次的教学图像案例,网络发布进行考核,培养学生的临床技能、实践技能和创新能力。

医学影像学是一门实用性很强的学科,充分利用PACS系统及数字化技术在医学影像学教学中的优势和作用,教学质量不断提高,学生的在临床分析问题和解决问题的能力明显增强,使学生很快适应医学影像学诊断、技术、设备三方面的基础理论知识,满足医学影像学临床教学特点的需要。

医学影像论文文献

[1] 冯祥太.发挥数字化优势开展多媒体教学[J].医学教育探索,2006,5(11):1079-1081.

[2] 胡俊,丁仕义,黎海涛.PACS在影像学教学工作中的应用[J].局解手术学杂志,2007,16(1):56.

[3] 华兴,李锐.PACS系统在超声影像学临床教学中的应用[J].局解手术学杂志,2006,15(4):256.

有关医学影像论文推荐:

1. 医学影像本科毕业论文

2. 医学影像技术晋升职称报告范文

3. 关于医学影像的论文

4. 医学晋升职称论文范文

5. 医学影像实习心得体会

6. 超声医学论文范文精选

相关百科

热门百科

首页
发表服务