聚碳酸酯是非结晶性聚合物,但是非结晶性性聚合物局部也会有取向结晶。
全国高分子材料学术论文报告篇二 浅析高分子材料成型加工技术 【摘要】高分子材料成型加工技术在工业上取得的飞速发展,介绍高分子材料成型加工技术的发展情况,探讨其创新研究,并详细阐述高分子材料成型加工技术的发展趋势。 【关键词】高分子材料;成型加工;技术 近年来,某些特殊领域如航空工业、国防尖端工业等领域的发展对聚合物材料的效能提出了更高的要求,如高强度、高模量、轻质等,各种特定要求的高强度聚合物的开发研制越来越显迫切。 一、高分子材料成型加工技术发展概况 近50年来,高分子合成工业取得了很大的进展。例如,造粒用挤出机的结构有了很大的改进,产量有了极大的提高。20世纪60年代主要采用单螺杆挤出机造粒,产量约为3t/h;70年代至80年代中期,采用连续混炼机+单螺杆挤出机造粒,产量约为10t/h;80年代中期以来。采用双螺杆挤出机+齿轮泵造粒,产量可以达到40-45t/h,今后的发展方向是产量可高达60t/h。在l950年,全世界塑料的年产量为200万t。20世纪90年代。塑料产量的年均增长率为5.8%,2000年增加至1.8亿t至2010年,全世界塑料产量将达3亿t,此外。合成工业的新近避震使得易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要.汽车规模的不断扩大和效能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。 据悉,目前汽车上100kg的塑料件可取代原先需要100-300kg的传统汽车材料***如钢铁等***。因此,汽车中越来越多的金属件由塑料件代替。此外,汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。目前,高分子材料加工的主要目标是高生产率、高效能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。 二、现今高分子材料成型加工技术的创新研究 ***一***聚合物动态反应加工技术及装置 聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的Berstart公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机***包括双螺杆和四螺杆挤出机***作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸酯***PC***连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出装置,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及装置。 目前国内外使用的反应加工装置从原理上看都是传统混合、混炼装置的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题.另外装置投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工装置的缺陷。聚合物动态反应加工技术及装置与传统技术无论是在反应加工原理还是装置的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学效能的目的。该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了装置结构整合化问题。新装置具有体积重量小、能耗低、噪音低、制品效能可控、适应性好、可靠性高等优点,这些优点是传统技术与装置无法比拟或是根本没有的。该项新技术使我国聚合物反应加工技术直接切人世界技术前沿,并在该领域处于技术领先地位。 ***二***以动态反应加工装置为基础的新材料制备新技术 1.资讯储存光碟盘基直接合成反应成型技术。此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光碟级PC树脂生产、中间储运和光碟盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酯交换连续化生产技术,研制开发精密光碟注射成型装备,达到节能降耗、有效控制产品质量的目的。 2.聚合物/无机物复合材料物理场强化制备新技术。此技术在强振动剪下力场作用下对无机粒子表面特性及其功能设计***粒子设计***,在设计好的连续加工环境和不加或少加其它化学改性剂的情况下,利用聚合物使无机粒子进行原位表面改性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料。 3.热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直程序,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主智慧财产权的热塑性弹性体动态硫化技术与装置,提高我国TPV技术水平。 三、高分子材料成型加工技术的发展趋势 近年来,各个新型成型装备国家工程研究中心在出色完成了国家级火炬计划预备专案和国家“八五”、“九五”重点科技计划***攻关***等专案同时,非常注重科技成果转化与产业化,完成产业化工程配套专案20多项,创办了广州华新科机械有限公司和北京华新科塑料机械有限公司,使其有自主智慧财产权的新技术与装备在国内外推广应用。塑料电磁动态塑化挤出装置已形成了7个规格系列,近两年在国内20多个省、市、自治区推广应用近800台***套***。销售额超过1.5亿元,还有部分新装置销往荷兰、泰国、孟加拉等国家.产生了良好的经济效益和社会效益。例如PE电磁动态发泡片材生产线2000年和2001年仅在广东即为国家节约外汇近1600万美元,每条生产线一年可为制品厂节约21万k的电费。塑料电磁动态注塑机已开发完善5个规格系列,投入批量生产并推向市场;塑料电磁动态混炼挤出机的中试及产业化工作已完成,目前开发完善的4个规格正在生产试用。并逐步推向市场目前新装置的市场需求情况很好,聚合物新型成型装备国家工程研究中心正在对广州华新科机械有限公司进行重组。将技术与资本结合,引入新的管理、市场等机制,争取在两三年内实现新装置年销售额超亿。我国已加入WTO,各个行业都将面临严峻挑战。 综上所述,我国必须走具有中国特色的发展高分子材料成型加工技技术与装备的道路,打破国外的技术封锁,实现由跟踪向跨越的转变;把握技术前沿,培育自主智慧财产权。促进科学研究与产业界的结合,加快成果转化为生产力的程序,加快我国高分子材料成型加工高新技术及其产业的发展是必由之路。 参考文献: [1]Chris Rauwendaal,Polymer Extrusion,Carl Hanser Verlag,Munich/FkG,l999. [2]瞿金平,聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2005 427435. [3]瞿金平,聚合物电磁动态塑化挤出方法及装置[J].中国专利9O101034.0,I990;美国专利5217302,1993.
现在民用的已经开始使用聚羧酸减水剂了。他的减水效果,混凝土的和易性等都要比萘系的好,成本并不比萘系高。但他对材料的要求较严格。粉煤灰等级,砂石料的含泥量等都回影响减水性能及和易性。应用前景还是比较不错的
聚羧酸高性能减水剂的制备、性能与应用1、聚羧酸高性能减水剂的现状 混凝土技术发展离不开化学外加剂,如泵送混凝土、自流平混凝土、水下不分散混凝土、喷射混凝土、聚合物混凝土、高强高性能混凝土等新材料的发展,高效减水剂都起到了关键作用。高效减水剂又称超塑化剂,用于混凝土拌合物中,主要起三个不同的作用[1]: ①在不改变混凝土强度的条件下,改善混凝土工作性; ②在给定工作性条件下,减少水灰比,提高混凝土的强度和耐久性; ③在保证混凝土浇注性能和强度的条件下,减少水和水泥用量, 减少徐变、干缩、水泥水化热等引起的混凝土初始缺陷的因素。 萘系高效减水剂的应用大约有20多年历史,是目前工程应用中的主要高效减水剂品种。研究表明,聚羧酸系高效减水剂是比萘系性能更好的新型减水剂,在相同用量下,聚羧酸系减水剂能获得更好的减水率和塌落度保持能力[2-5]。日本是研究和应用聚羧酸系减水剂最多也是最成功的国家,1998年以后聚羧酸系减水剂在日本的使用量超过了萘系减水剂[5]。近年来,北美和欧洲的一些研究者的论文中,也有许多关于研究开发具有优越性能的聚羧酸系的报道,研究重点也从磺酸系超塑化剂改性逐渐移向对聚羧酸系的研究。日本和欧美一些国家的学者发表的有关聚羧酸系减水剂的研究论文呈现大量增多趋势,大多数正在开发研究聚羧酸类减水剂,方向主要偏重于开发聚羧酸系减水剂及研究有关的新拌混凝土工作性能和硬化混凝土的力学性能及工程使用技术等。国内聚羧酸系减水剂几乎都未达到实用化阶段。合成聚羧酸系减水剂可供选择的原材料也极为有限,从减水剂原材料选择到生产工艺、降低成本、提高性能等许多方面都需要系统研究[4]。2、聚羧酸高性能减水剂的性能及作用机理聚羧酸高性能减水剂与其它高效减水剂相比,有许多突出的性能[6]: 低掺量(0.2%--0.5%)而发挥高的分散性能; 保坍性好,90分钟内坍落度基本无损失; 在相同流动度下比较时,延缓凝结时间较少; 分子结构上自由度大,外加剂制造上可控制的参数多,高性能化的潜力大; 由于合成中不使用甲醛,因而对环境不造成污染; 与水泥相容性好; 可用更多地利用矿渣或粉煤灰等混合材,从而整体上降低混凝土的成本。 聚羧酸系列高效减水剂的作用机理,国内这方面的研究较少[7]。从聚羧酸系高效减水剂的红外谱图可见[8],有羧基、酯基、醚键,它们的波数分别是3433cm-1,1721cm-1,1110cm-1。 由于分子中同时有羧基和酯基,使其既可以亲水,又具有一定的疏水性,由于聚羧酸系列具有羧基,同萘系减水剂一样,DLVO[5]理论仍适用。羧基负离子的静电斥力对水泥粒子的分散有贡献。同样,相对分子质量的大小与羧基的含量对水泥粒子的分散效果有很大的影响。由于主链分子的疏水性和侧链的亲水性以及侧基—(OCH2CH2)—的存在,也提供了一定的立体稳定作用,即水泥粒子的表面被一种嵌段或接枝共聚物所稳定,以防发生无规则凝聚,从而有助于水泥粒子的分散。它的稳定机理是所谓的‘空间稳定理论’[9],‘空间稳定理论’是指由聚合物(减水剂)分子之间因占有空间或构象所引起的相互作用而产生的稳定能力,这种稳定作用同一般的静电稳定作用的差别在于:它不存在长程的排斥作用,而只有当聚合物构成的保护层外缘发生物理接触时,粒子之间才产生排斥力,导致粒子自动弹开,文献给出了两种不同厚度保护层的热能、距离曲线[16],如图2,3。 在介质中,聚合物的溶解热通常大于零,因此从焓的角度看,由粒子相互靠近造成的局部分散剂浓度上升是有利的,但是,这同时又引起了熵的减小,而体系中后者往往是占主要地位的,于是,立体稳定作用主要取决于体系的熵变,因而,也有人称之为‘熵稳定作用’。 从文献[16]的2种不同厚度保护层的势能 距离曲线可以看到,分散体系中任意2个粒子之间总的相互作用能VT,是由2部分构成的,一部分是范德华吸引位能VA,另一部分是立体作用位能VS,于是有: VT=VA+VS. 当2个粒子的分散剂层外缘发生物理接触,也就是2个粒子间的距离h小于分散剂层厚度δ的2倍,即h<2δ时,由于体积效应及界面层中的溶剂分子受到‘排斥’,就会导致溶解链段的构象扰动,从而使局部的自由能上升,这时,VS可以用下式表达: VS=2πakTV2τ22(0.5-x)Smix+2πakTτ2Se1, 式中,a为粒子半径,V2为溶解链段的摩尔体积,τ2为粒子表面上单位面积分散剂链的数目,x为Flory溶液理论中聚合物/溶剂的相互作用参数,Smix和Sel分别是由粒子表面链段浓度分布所决定的函数。上式中前一项是溶剂渗透产生的混合项,后一项是由于粒子受到压缩产生的弹性项。实际上,混合项总是远远大于弹性项,而且,当混合项趋近于零时,往往导致体系不稳定,发生凝聚。混合项为零的条件是:溶解链段与分散介质构成θ溶液,此时,x=0.5.所以,实际应用中,应选择合适的聚合物,使介质大大优于θ溶剂。由上式的混合项中还可以看出,粒子表面覆盖的溶解链越多,即τ2越大,体系越稳定,因此,减水剂中的溶解链段最好是牢牢地固定在粒子表面。当然,最好的方法是将减水剂做成接枝或嵌段共聚物,使其中的锚系链段不溶于介质,且与水泥粒子有良好的相容和结合,这样,即能保证体系有足够的稳定性而又不至于产生凝聚。同时,—(OCH2CH2)—中的氧 原子可以和水分子形成强的氢键,形成立体保护膜,据估计也具有高分散性和分散稳定性。以上分析表明,可以通过调节—COO-的量和带—(OCH2CH2)—的 酯的量,以及—(OCH2CH2)—中m的数目来调节相对分子质量,而取得良好的分散效果。 另外,温度,环境,PH值,离子等,都对聚羧酸高性能减水剂的性能有影响,文献[10]对此进行了详细研究。3、聚羧酸高效减水剂的制备 根据减水剂的作用机理,通过调节酸和酯的比例,可以调节分子的亲水亲油值(HLB),从分子设计的角度,来合成新型的聚羧酸高效减水剂。高性能减水剂的分子结构设计趋向是在分子主链或侧链上引入强极性基团羧基、磺酸基、聚氧化乙烯基等,使分子具有梳形结构。通过极性基与非极性基比例调节引气性,一般非极性基比例不超过30%;通过调节聚合物分子量增大减水性、质量稳定性;调节侧链分子量,增加立体位阻作用而提高分散性保持性能。从文献看目前合成聚羧酸系减水剂所选的单体主要有四种:(1) 不饱和酸———马来酸酐、马来酸和丙烯酸、甲基丙烯酸;(2) 聚链烯基物质———聚链烯基烃及其含不同官能团的衍生物;(3) 聚苯乙烯磺酸盐或酯;(4) (甲基)丙烯酸盐、酯或酰胺等。 常见的合成方法:(1) 首先,合成所需结构的单体的物质———反应性活性聚合物单体,如用壬基酚或月桂醇和烯丙醇缩水甘油醚反应制备烯丙基壬基酚或聚氧乙烯醚羧酸盐,或用环氧乙烷、聚乙二醇等合成聚链烯基物质———聚链烯基烃、醚、醇、磺酸,或合成聚苯乙烯磺酸盐、酯类物质;第二步,在油溶剂或水溶液体系引入具有负电荷的羧基、磺酸基和对水有良好亲和作用的聚合物侧链,反应最终获得所需性能的产品。实际的聚羧酸系减水剂可以是二元、三元或四元共聚物[11]。(2) 原料:丙烯酸,甲基丙烯酸,马来酸酐,衣康酸,丙烯酸羟基酯,甲基丙烯酸羟基酯,乙烯基磺酸钠,丙烯基磺酸钠,2- 丙烯酰胺 2- 甲基丙基磺酸钠(AMPS),单羟基聚乙二醇醚(PEG 600,PEG 1000,PEG 1500),过硫酸钠,过硫酸铵,双氧水等,以上原料均为市售的工业级化工产品。合成方法:按照分子设计的要求配合各种单体的比例,分步加入反应瓶中,同时加入分子量调节剂和溶剂,用氮气置换反应瓶内的空气,并在氮气保护下升温到75~90℃,同时滴加含有引发剂的溶液和其它共聚单体组分1~2h,搅拌下进行聚合反应6~8h.聚合完成后得到粘稠状共聚羧酸溶液.用稀碱溶液调整pH值到中性,并调配溶液含固量在30%左右[12,13]。(3) 聚羧酸系减水剂的分子结构呈梳型,侧链也带有亲水性的活性基团,并且链较长,数量多。根据这种原理选择了三种不同的单体,不饱和酸为马来酸酐,链烃基物质为乙烯基磺酸盐,非离子单体选的是丙烯酸甲酯,以上原料经过必要的纯化手段,引发剂为K2SO4。共聚物合成在装有温度计,滴液漏斗,回流冷凝管的四颈烧瓶中加入蒸馏水,开动搅拌器开始加热,在回流条件下,按配方混合单体加入滴液漏斗中,反应4小时,得到产品,测净浆流动度。影响共聚反应的主要因素有乙烯基磺酸盐、丙烯酸甲酯、马来酸酐及引发剂K2SO4用量[14]。(4) 原料:顺丁烯二酸酐,酰胺类单体,过硫酸铵, 30%过氧化氢,氢氧化钠,化学纯。合成方法:本合成为自由基共聚合反应,采用过硫酸铵 30%双氧水复合引发体系,水溶液聚合法,在102~110℃反应约8小时,产品为浅黄色透明溶液[15]。4、结论 系统研究新型高性能减水剂仍存在很多困难,但研究新型高性能减水剂仍具有重要的理论意义和实用价值。对聚羧酸系减水剂的合成、作用机理和应用等方面的研究都存在一些尚待进一步深入的问题:第一,由于减水剂大多数在水体系中合成,难以了解不同单体间复杂的相互作用;第二,表征对减水剂分子的方法存在局限性,尚不能清楚解释减水剂化学结构与性能的关系,缺乏从微结构方面的研究;第三,虽然聚羧酸系减水剂与水泥的相容性比其它种类减水剂更好,但在混凝土流动性方面,当水泥和外加剂共同使用时,往往发生混凝土塌落度损失太快及快硬等现象,仍存在水泥和化学外加剂相容性问题,还未完全搞清减水剂是怎样工作的;第四,在使用高性能减水剂的混凝土中,当单位水量减少,塌落度增大时,常常发生混凝土粘性太大、出现离析泌水现象等问题。 高性能减水剂的研究已成为混凝土材料科学中的一个重要分支,并推动着整个混凝土材料从低技术向高技术发展。研究聚羧酸系减水剂将更多地从混凝土的强度、工作性、耐久性、价格等方面综合考虑。接枝共聚的聚羧酸类减水剂则主要通过不饱和单体在引发剂作用下共聚,将带活性基团的侧链接枝到聚合物的主链上,使其同时具有高效减水、控制塌落度损失和抗收缩、不影响水泥的凝结硬化等作用。展望未来,每一项混凝土技术的特殊要求都需要开发最优的外加剂,每一系列有很多不同的化学组成。随着合成与表征聚合物减水剂及其化学结构与性能关系的研究不断深入,聚羧酸系减水剂将进一步朝高性能多功能化、生态化、国际标准化的方向发展。聚羧酸系减水剂能获得更好的减水率和更小的塌落度损失,特别是在制备高流动性和低水灰比的混凝土方面具有其它传统的高效减水剂无可比拟的优点,聚羧酸系减水剂将是21世纪减水剂系列中的主要品种。
高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。下文是我为大家整理的有关高分子材料毕业论文的范文,欢迎大家阅读参考! 有关高分子材料毕业论文篇1 浅析高分子材料成型加工技术. 【摘要】高分子材料成型加工技术在工业上取得的飞速发展,介绍高分子材料成型加工技术的发展情况,探讨其创新研究,并详细阐述高分子材料成型加工技术的发展趋势。 【关键词】高分子材料;成型加工;技术 近年来,某些特殊领域如航空工业、国防尖端工业等领域的发展对聚合物材料的性能提出了更高的要求,如高强度、高模量、轻质等,各种特定要求的高强度聚合物的开发研制越来越显迫切。 一、高分子材料成型加工技术发展概况 近50年来,高分子合成工业取得了很大的进展。例如,造粒用挤出机的结构有了很大的改进,产量有了极大的提高。20世纪60年代主要采用单螺杆挤出机造粒,产量约为3t/h;70年代至80年代中期,采用连续混炼机+单螺杆挤出机造粒,产量约为10t/h;80年代中期以来。采用双螺杆挤出机+齿轮泵造粒,产量可以达到40-45t/h,今后的发展方向是产量可高达60t/h。 在l950年,全世界塑料的年产量为200万t。20世纪90年代。塑料产量的年均增长率为5.8%,2000年增加至1.8亿t至2010年,全世界塑料产量将达3亿t,此外。合成工业的新近避震使得易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要.汽车规模的不断扩大和性能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。 据悉,目前汽车上100kg的塑料件可取代原先需要100-300kg的传统汽车材料(如钢铁等)。因此,汽车中越来越多的金属件由塑料件代替。此外,汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。 目前,高分子材料加工的主要目标是高生产率、高性能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。 二、现今高分子材料成型加工技术的创新研究 (一)聚合物动态反应加工技术及设备 聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的Berstart公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机(包括双螺杆和四螺杆挤出机)作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸酯(PC)连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出设备,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及设备。 目前国内外使用的反应加工设备从原理上看都是传统混合、混炼设备的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题.另外设备投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工设备的缺陷。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。 该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了设备结构集成化问题。新设备具有体积重量小、能耗低、噪音低、制品性能可控、适应性好、可靠性高等优点,这些优点是传统技术与设备无法比拟或是根本没有的。该项新技术使我国聚合物反应加工技术直接切人世界技术前沿,并在该领域处于技术领先地位。 (二)以动态反应加工设备为基础的新材料制备新技术 1.信息存储光盘盘基直接合成反应成型技术。此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光盘级PC树脂生产、中间储运和光盘盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酯交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。 2.聚合物/无机物复合材料物理场强化制备新技术。此技术在强振动剪切力场作用下对无机粒子表面特性及其功能设计(粒子设计),在设计好的连续加工环境和不加或少加其它化学改性剂的情况下,利用聚合物使无机粒子进行原位表面改性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料。 3.热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直进程,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主知识产权的热塑性弹性体动态硫化技术与设备,提高我国TPV技术水平。 三、高分子材料成型加工技术的发展趋势 近年来,各个新型成型装备国家工程研究中心在出色完成了国家级火炬计划预备项目和国家“八五”、“九五”重点科技计划(攻关)等项目同时,非常注重科技成果转化与产业化,完成产业化工程配套项目20多项,创办了广州华新科机械有限公司和北京华新科塑料机械有限公司,使其有自主知识产权的新技术与装备在国内外推广应用。塑料电磁动态塑化挤出设备已形成了7个规格系列,近两年在国内20多个省、市、自治区推广应用近800台(套)。销售额超过1.5亿元,还有部分新设备销往荷兰、泰国、孟加拉等国家.产生了良好的经济效益和社会效益。 例如PE电磁动态发泡片材生产线2000年和2001年仅在广东即为国家节约外汇近1600万美元,每条生产线一年可为制品厂节约21万k的电费。塑料电磁动态注塑机已开发完善5个规格系列,投入批量生产并推向市场;塑料电磁动态混炼挤出机的中试及产业化工作已完成,目前开发完善的4个规格正在生产试用。并逐步推向市场目前新设备的市场需求情况很好,聚合物新型成型装备国家工程研究中心正在对广州华新科机械有限公司进行重组。将技术与资本结合,引入新的管理、市场等机制,争取在两三年内实现新设备年销售额超亿。我国已加入WTO,各个行业都将面临严峻挑战。 综上所述,我国必须走具有中国特色的发展高分子材料成型加工技技术与装备的道路,打破国外的技术封锁,实现由跟踪向跨越的转变;把握技术前沿,培育自主知识产权。促进科学研究与产业界的结合,加快成果转化为生产力的进程,加快我国高分子材料成型加工高新技术及其产业的发展是必由之路。 参考文献: [1]Chris Rauwendaal,Polymer Extrusion,Carl Hanser Verlag,Munich/FkG,l999. [2]瞿金平,聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2005 427435. [3]瞿金平,聚合物电磁动态塑化挤出方法及设备[J].中国专利9O101034.0,I990;美国专利5217302,1993. 有关高分子材料毕业论文篇2 浅论高分子材料的发展前景 摘要:随着生产和科技的发展,以及人们对知识的追求,对高分子材料的性能提出了各种各样新的要求。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。本文主要分析了高分子材料的发展前景和发展趋势。 关键词:高分子材料;发展;前景 一 高分子材料的发展现状与趋势 高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。从高分子材料与国民经济、高技术和现代生活密切相关的角度说, 人类已进人了高分子时代。高分子材料工业不仅要为工农业生产和人们的衣食住行用等不断提供许多量大面广、日新月异的新产品和新材料又要为发展高技术提供更多更有效的高性能结构材料和功能性材料。 鉴于此, 我国高分子材料应在进一步开发通用高分子材料品种、提高技术水平、扩大生产以满足市场需要的基础上重点发展五个方向:工程塑料,复合材料,液晶高分子材料,高分子分离材料,生物医用高分子材料。近年来,随着电气、电子、信息、汽车、航空、航天、海洋开发等尖端技术领域的发展和为了适应这一发展的需要并健进其进? 步的发展, 高分子材料在不断向高功能化高性能化转变方面日趋活跃,并取得了重大突破。 二 高分子材料各领域的应用 1高分子材料在机械工业中的应用 高分子材料在机械工业中的应用越来越广泛, “ 以塑代钢” ,“ 塑代铁” 成为目前材料科学研究的热门和重点。这类研究拓宽了材料选用范围,使机械产品从传统的安全笨重、高消耗向安全轻便、耐用和经济转变。如聚氨酉旨弹性体,聚氨醋弹性体的耐磨性尤为突出, 在某些有机溶剂 如煤油、砂浆混合液中, 其磨耗低于其它材料。聚氨醋弹性体可制成浮选机叶轮、盖板, 广泛使用在工况条件为磨粒磨损的浮选机械上。又如聚甲醛材料聚甲醛具有突出的耐磨性, 对金属的同比磨耗量比尼龙小, 用聚四氟乙烯、机油、二硫化钥、化学润滑等改性, 其摩擦系数和磨耗量更小, 由于其良好的机械性能和耐磨性, 聚甲醛大量用于制造各种齿轮、轴承、凸轮、螺母、各种泵体以及导轨等机械设备的结构零部件。在汽车行业大量代替锌、铜、铝等有色金属, 还能取代铸铁和钢冲压件。 2 高分子材料在燃料电池中的应用 高分子电解质膜的厚度会对电池性能产生很大的影响, 减薄膜的厚度可大幅度降低电池内阻, 获得大的功率输出。全氟磺酸质子交换 膜的大分子主链骨架结构有很好的机械强度和化学耐久性, 氟素化合物具有僧水特性, 水容易排出, 但是电池运转时保水率降低, 又要影响电解质膜的导电性, 所以要对反应气体进行增湿处理。高分子电解质膜的加湿技术, 保证了膜的优良导电性, 也带来电池尺寸变大增大左右、系统复杂化以及低温环境下水的管理等问题。现在一批新的高分子材料如增强型全氟磺酸型高分子质子交换膜耐高温芳杂环磺酸基高分子电解质膜纳米级碳纤维材料新的一导电高分子材料等等, 已经得到研究工作者的关注。 3 高分子材料在现代农业种子处理中的应用及发展 高分子材料在现代农业种子处理中的应用:新一代种子化学处理一般可分为物理包裹利用干型和湿形高分子成膜剂, 包裹种子。种子表面包膜利用高分子成膜剂将农用药物和其他成分涂膜在种子表面。种子物理造粒将种子和其他高分子材料混和造粒, 以改善种子外观和形状, 便于机械播种。高分子材料在现代农业种子处理中研究开发进展:种子处理用高分子材料已经从石油型高分子材料逐步向天然型以及功能型高分子材料的方向发展。其中较为常见和重要的高分子材料类型包括多糖类天然高分子材料, 具有在低温情况下维持较好膜性能的高分子材料, 高吸水性材料, 温敏材料, 以及综合利用天然生物资源开发的天然高分子材料等, 其中利用可持续生物资源并发的种衣剂尤为引人关注。 4 高分子材料在智能隐身技术中的应用 智能隐身材料是伴随着智能材料的发展和装备隐身需求而发展起来的一种功能材料,它是一种对外界信号具有感知功能、信息处理功能。自动调节自身电磁特性功能、自我指令并对信号作出最佳响应功能的材料/系统。区别于传统的外加式隐身和内在式雷达波隐身思路设计,为隐身材料的发展和设计提供了崭新的思路,是隐身技术发展的必然趋势 ,高分子聚合物材料以其可在微观体系即分子水平上对材料进行设计、通过化学键、氢键等组装而成具有多种智能特性而成为智能隐身领域的一个重要发展方向。 三 高分子材料的发展前景 1高性能化 进一步提高耐高温,耐磨性,耐老化,耐腐蚀性及高的机械强度等方面是高分子材料发展的重要方向,这对于航空、航天、电子信息技术、汽车工业、家用电器领域都有极其重要的作用。高分子材料高性能化的发展趋势主要有创造新的高分子聚合物,通过改变催化剂和催化体系,合成工艺及共聚,共混及交联等对高分子进行改性,通过新的加工方法改变聚合物的聚集态结构,通过微观复合方法,对高分子材料进行改性。 2高功能化 功能高分子材料是材料领域最具活力的新领域,目前已研究出了各种各样新功能的高分子材料,如可以像金属一样导热导电的高聚物,能吸收自重几千倍的高吸水性树脂,可以作为人造器官的医用高分子材料等。鉴于以上发展,高分子吸水性材料、光致抗蚀性材料、高分子分离膜、高分子催化剂等都是功能高分子的研究方向。 3复合化 复合材料可克服单一材料的缺点和不足,发挥不同材料的优点,扩大高分子材料的应用范围,提高经济效益。高性能的结构复合材料是新材料革命的一个重要方向,目前主要用于航空航天、造船、海洋工程等方面,今后复合材料的研究方向主要有高性能、高模量的纤维增强材料的研究与开发,合成具有高强度,优良成型加工性能和优良耐热性的基体树脂,界面性能,粘结性能的提高及评价技术的改进等方面。 4智能化 高分子材料的智能化是一项具有挑战性的重大课题,智能材料是使材料本身带有生物所具有的高级智能,例如预知预告性,自我诊断,自我修复,自我识别能力等特性,对环境的变化可以做出合乎要求的解答;根根据人体的状态,控制和调节药剂释放的微胶囊材料,根据生物体生长或愈合的情况或继续生长或发生分解的人造血管人工骨等医用材料。由功能材料到智能材料是材料科学的又一次飞跃,它是新材料,分子原子级工程技术、生物技术和人 工智能诸多学科相互融合的一个产物。 5绿色化 虽然高分子材料对我们的日常生活起了很大的促进作用,但是高分子材料带来的污染我们仍然不能小视。那些从生产到使用能节约能源与资源,废弃物排放少,对环境污染小,又能循环利用的高分子材料备受关注,即要求高分子材料生产的绿色化。主要有以下几个研究方向,开发原子经济的聚合反应,选用无毒无害的原料,利用可再生资源合成高分子材料,高分子材料的再循环利用。 四 结束语 高分子材料为我国的经济建设做出了重要的贡献,我国已建立了较完善的高分子材料的研究、开发和生产体系,我国虽然在高分在材料的开发和综合利用方面起步较晚,但目前来看也取得了不错的进步,我们应提高其整体技术水平,致力于创新的高分在聚合反应和方法,开发出多种绿色功能材料和智能材料,以提高人类的生活质量,并满足各项工业和新技术的需求。 参考文献: [1]金关泰.《高分子化学的理论和应用》,中国石化出版社,1997 [2]李善君 纪才圭等.《高分子光化学原理及应用》复旦大学出版社2003 6. [3]李克友, 张菊华, 向福如. 《高分子合成原理及工艺学》,科学出版社,1999 猜你喜欢: 1. 全国高分子材料学术论文报告 2. 全国高分子材料学术论文 3. 全国高分子材料学术论文 4. 全国高分子材料学术论文报告 5. 关于材料学方面论文
生物医药产业近年来引起世界各国的高度重视,我国也把生物医药产业作为重点发展的支柱性产业,从政策和规划上积极进行扶持。下面是我为大家整理的生物医药论文,供大家参考。
合成生物学在医药中的应用
生物医药论文摘要
摘 要:合成生物学是在项目学理论的带领下,对天然生物体系从头开展策划以及整改。并且策划同时制造新的生物部件、模式以及体系的全新科目。合成生物学是自然科目前进到一定程度形成的新学科,同时在医药方面已获取了明显的成就。 文章 综合讲述了在项目细胞使用合成生物科目方式研究出了能够抵抗疟病的治理药物的前身青蒿二烯,抵抗癌症的药物前身紫杉二烯,还有脂肪醇、酸以及高级醇的生成方式等探索进步。除此之外,有的关键的合成生物学有关 措施 ,在很大程度上加快了项目细胞的重新组合以及演化,为建筑运用于制造范畴的新效用细胞供应便利适用的东西。
生物医药论文内容
关键词:合成生物学;基因模块;医药
引言
最近几年,合成生物学发展的速度有了很大程度的提升,慢慢的造就了特征明显的探索实质以及运用范畴。其探索实施关键包含:(1)新生物原件、构件以及体系的策划和建筑。(2)对现在拥有的、自然的生物体系开展从新策划。二零零九年美国医学部门的带领下组建了一支由十二支社会各界学士构成的IDR小组,研究合成生物科目的前进朝向以及多科目交叉状况。认为合成生物科目是集电脑、物理、工程以及生物等科目一起进行研究交叉的科目,能够经过重组生物运用在环境、药物、民众健康、资源等部分。
合成生物科目是项目学以及生物科目一起前进到一定程度形成的。人类基因体和很多形式的生物基因体测定未知序列的完成,还有很多的后基因体作业,促进累计的生物学资料出现了天文级。但是,现在拥有的资料挖掘当时依旧限制于对生命特征的深层探索,很难对生命的内在工作样式开展探索分析。合成生物科目就在这种环境下形成,经过从下到上的建筑生命行为,按照其独具的角度解释生命,为理性策划以及革新生命供应了基础。最近几年,基因体测定未知序列以及合成单位已经在全球范畴内普遍建立,供应品质优、价格低的服务。优异的基因体测定未知序列以及合成措施推动合成生物科目策划新生命组合以及建筑功效细胞更简单。
最关键的是,人类身体健康情况、资源、条件等范畴的巨大需要也推动着合成生物科目的快速前进。把基因部件按照项目的需求,有机从新组建整合在一起,就出现了效用基因模式。在加上对现在已经拥有的生物网络的使用,并且引进新的效用基因模式,表明天然细胞不可以合成的物品,在合成部分已经有了很大程度的前进。现在我们解析一下在药物范畴内使用的合成生物科目
1 青蒿二烯的生物合成
杰伊?科斯林在项目细胞中制造出抵抗疟疾的前身青蒿二烯的探索作业实在经典。在产生青蒿二烯合成方式的重要新基因资料后,科斯林团队在二零零三年在大肠杆菌中胜利的研究出了制造青蒿二烯的另一种方式。这种合成方式划分为两种形式。第一种形式是在Acetyl-CoA为出发点,通过甲瓦龙酸来制造IPP。这就摆脱了大肠杆菌本来的G3P以及乙酰甲酸为前身制造的异戊二烯焦磷酸方式,能够使细胞代谢经过新方式形成异戊二烯焦磷酸分子,为下游制造方式供应足够多的底物分子。第二个形式就是从C5的异戊二烯焦磷酸为出发点,通过异戊二烯链拉长方式形成C15的FPP,最后在ADS酶的功用下制造青蒿二烯,最高形成量能够达到一百二十二毫克每升。上下游模式都是来源于真核生物中的代谢方式,把其密码改善同时从新构筑在原核生物大肠杆菌内,同时胜利制造想要得到的物品,开拓了制造生物的新方式。
2006年,Keasling小组又以酵母菌为宿主,通过对内源的乙酰辅酶A到FPP途径的关键基因进行上调或下调,同时引入基因优化过的外源模块,成功实现了产物青蒿二烯产量的稳步提高。对内源基因上调的方式有两种,其一是增加基因拷贝数,如tHMGR酶的基因,其二是通过转录因子来上调基因表达量,如ERG系列的基因。对内源基因的下调则是采用基因敲除的 方法 。通过对合成路径涉及基因的一系列微调,使产量达到153mg?L-1,是以往报道的二烯类分子产量的500倍。
在此基础上,研究小组又设计了人工蛋白支架(synthetic protein scaffolds),对大肠杆菌内已构建的上游模块:从乙酰辅酶A到甲羟戊酸的合成途径进行了优化。三个反应酶AtoB,HMGS,tHMGR通过蛋白支架以不同分子数比例捆绑在一起发挥作用,解决了中间代谢物积累造成的合成效率降低以及对宿主的毒副作用问题。具体机理是将高等动物细胞中的配体受体作用关系引入到大肠杆菌中,将配体分子的基因序列与模块中的反应酶基因融合表达,从而将受体分子以不同分子数连成一串,构成柔性支架。由于脚手架内各个受体分子间由一定长度的多肽连接,就避免了因多个配体受体结合造成的空间位阻问题。在反复实验与调试后,研究小组发现三个酶分子以1:2:2的比例连在一起作用效果最强,产量达初始值的77倍,约5mmol?I-1(740mg?L-1)。
随着后期工业化发酵,研究小组又发现来自酵母的外源基因HMGS和tHMGR表达的酶不足以平衡外源代谢流,成为瓶颈反应。他们以金黄葡萄菌中的相关酶基因进行替换后,青蒿二烯产量立刻增加一倍。通过与工业发酵过程优化的结合,作为工业产品的青蒿二烯最终产量高达27.4g?L-1。合成生物学成功用于重要药物的合成,引起了广泛关注。
2 紫杉二烯的生物合成
Gregory Stephanopoulos的科研组织在二零一零年时在大肠杆菌中胜利完成了抵抗癌症药物的前身紫杉二烯物质的合成。这是在这个科研小组在萜类生物代谢方法和大肠杆菌细胞细微调节的长时间探索中获取的成效。科学组织把内在的过氧化二碳酸二异丙酯合成方式定位上游模式,把之后合成紫杉二烯的方式定位成下游模式,其作业也关键聚合在怎样对上下游模式开展微调。因为假如只顾上游,肯定会导致中间代谢物的消耗,并且形成中间障碍;但是如果下游经过量太多就会浪费很多的酶分子,增加了细胞表述负荷。
研究小组采用改变质粒拷贝数和启动子强度的方法对上下游通量的比例进行了微调。通过对已有文献的整合以及自己的测试工作,研究小组确定了三种质粒pSCl01,p15A,pBR322的拷贝数分别urNorphadicnc为5,10,20,而整合入基因组中的基因拷贝数相当于1。三种启动子Trc,T5,T7的相对强度分别为1,2,5。通过这几种质粒和启动子的组合,使上下游模块的通量比例发生变化,再检铡含有不同通量比例的细胞内的产物产量。在此过程中,模块内部基因是单顺反子还是多顺反子表达形式也影响产量变化,即多个基因是在一个启动子后表达还是在各自的启动子后表达。经过一系列微调与组合后,具有最优性状的菌株目标产物的产量高达(1020±80)mg?L-1,实现了对碳代谢流的高效利用和协调。同时,通过蛋白质工程的手段对细胞色素P450氧化还原酶进行改造,在工程菌中首次成功异源表达。
3 展望
合成生物科目根据项目学原理为指引,对现在拥有的、天然具备的生物体系从头策划以及整改,并且全力对策划合成出新的生物部件、模式以及体系努力。特别在使用部分,合成生物科目建筑的人工生物体系能够在制成关键生物品种、呵护人类身体等部分有主要的前进空间。现在合成生物科目的探索成就主要使用在医学方面,将来在别的行业范畴内也肯定会有引人注目的成就出现。总而言之,合成生物科目拥有普遍的运用前提以及强有力的措施撑持。
我国生物医药产业发展研究
生物医药论文摘要
【摘要】生物医药产业是由生物技术产业与医药产业共同组成。本文分析了当前国内外生物医药产业发展状况,分析医药产业发展中存在的问题,并且着重调查生物医药产业发展的基础及发展中存在的不足,寻找对策,在生物医药产业发展的过程中实现“四个化”,促进生物医药产业快速稳步地发展。
生物医药论文内容
【关键词】生物医药发展对策
一、国内生物医药产业发展现状
1986 年我国正式实施“863 计划”,生物技术被列为包括航空航天、信息技术等7 个高技术领域之首。政府在生物技术的研发和产业化发展的过程中给予了一定的优惠和扶持;国内各大企业为生物技术产业投入了大量资金;我国金融界也积极参与生物技术产业的发展,许多有实力的公司进行了生物技术开发,并且从金融市场融资从事生物技术研究和产业化。目前全球正处于生物医药技术大规模产业化的开始阶段,预计2020年后将进入快速发展期,并逐步成为世界经济的主导产业之一。
1、产业政策倾力扶持,高度重视生物医药产业发展
我国政府把生物医药产业作为21世纪优先发展的战略性产业,加大对生物医药产业的政策扶持与资金投入。“十五”规划明确提出“十五” 期间医药的发展重点在于生物制药、中药现代化等。国家对生物医药产品的开发、生产和销售制订了一系列扶持政策,包括对生物制药企业实行多方面税收优惠、延长产品保护期和提供研发资金支持等。同时, 国家为加强行业管理,对生物医药产品的研制和生产采取严格的审批程序,并针对重复建设严重这一情况,对部分生物医药产品的项目审批采取了限制家数的措施,以确保新药的市场独占权和合理的利润回报,鼓励新药的研制。2007年国家发改委公布了《生物产业发展“十一五” 规划》,该《规划》在组织领导、产业技术创新体系、人才队伍、投入、税收优惠政策、市场环境等方面制定了相关政策措施保障生物产业的快速发展, 因而对生物医药产业的发展意义重大。
2、生物医药产业化进程明显加快,投资规模与市场规模迅速扩张
自20世纪80年代中期以来,在国家以及地方各级政府政策的大力支持下,生物医药产业在我国蓬勃发展,国家经贸委的有关资料显示:1998年以前,我国对生物医药技术开发的总投资累计约为40亿元,自1999年开始,国家明显加大了对生物医药的投入力度,平均每年达20亿元左右,2003年这一投入达到60亿元,极大地促进了生物医药产业的发展。在生物医药产业相关优惠政策的作用下,国内一些生物医药企业通过自有资金和银行贷款两种 渠道 获得了大量的资金,用于研发新产品。目前我国从事生物技术产业和相关产品研发的公司、大学和科研院所达600余家,其中注册的生物医药公司有200余家,具备生产能力的有60余家(其中的48家已取得生产基因工程药物试产或生产批文)。
3、初步形成了以上海张江,北京中关村等为代表的医药产业集群
在生物技术产业迅猛发展的浪潮推动下,经过多年的发展和市场竞争,加上政府不失时机地加以引导,我国生物技术、人才、资金密集的区域,已逐步形成了生物医药产业聚集区,由此形成了比较完善的生物医药产业链和产业集群。如由罗氏、葛兰素一史克、先锋药业等40多个国内外一流药厂组成的侧重于基因研究,化合物筛选和新药开发的张江药谷产业集群;拥有诺和诺德制药公司和8个生物科技国家863项目的北京中关村生命科学园区;侧重于生物制药、特别是遗传工程药学的深圳生命科学园区等。这些产业集群聚集了包括生物公司、研究、技术转移中心、银行、投资、服务等在内的大量机构,初步形成了产业群体(药厂),研究开发、孵化创新、 教育 培训、专业服务、风险投资6个模块组成的良好的创新创业环境,对扩大生物医药产业规模、增强产业竞争力作出了重要贡献。
二、国内生物医药产业存在问题
1、投资模式不利于生物制药产业的发展
国际医药产业巨大的经济效益来源于创新,发达国家现代生物医药产业都拥有自己实力雄厚的研究机构,通常每年投入的经费占全部销售额的10%一20%,而美国每年用于研究开发生物药品的投人占总投资额的 60%~70%。每个大型医药公司都有自己“拳头产品”,单个产品的年销售额就可达十亿至几十亿多元。公司拥有这些产品的知识产权,国家给予专利保护,产占可以在10 年或更长时间内独占市场,一个产品就可赢得丰厚的利润,再从利润中拿出巨额资金投入研究开发新的具有知识产权的创新药物,周而复始形成良性循环。
从美国生物制药发展模式来看,技术力量雄厚的专家型小生物技术公司进行技术开发与创新,大制药公司通过战略联盟实现生物技术的产业化,风险投资为生物技术开发提供资金支持,这三种力量的有机结合是生物制药产业良性发展的关键。而从目前我国生物制药产业模式来看,主要通过购买技术实现生产,风险投资机制不足且资金太少,另外技术创新力量薄弱。因此,生物技术产业很难形成气候。
我国的医药企业规模小而分散,大多不具备技术开发与创新能力,生产的产品基本是引起仿制产品,重复开发投资现象也非常严重,恶性性竟争必然带来效益低下的状况。我国药品进口额呈逐年上升趋势,三资企业产品销售额也在逐年增长,一份国外研究 报告 中指出:“如果政府不干预,中国的医药市场将在5 年内完全被国际医药大公司操纵。”
2、低水平重复研究、重复建设严重,市场竞争非常激烈
生物技术产品的广阔前景和丰厚收益吸引了国内众多企业加人开发,但其中多数是仿制国外的,品种少,厂家多,在同一水平上重复建设投资。例如,研制rhuG—CSF 的就有18 家公司。据统计,仅1996-1998年,获卫生部新药批准文号的厂家,重组人白介素一2(l—2)的有10 家,重组人促红细胞生成素(EPO)的有10 多家。如此势必造成资源浪费、竟相压价、市场混乱的局面。更由于一些企业缺少产品 市场调查 分析,造成大量产品堆积,以致投资价格很高的成套流水线设备利用率很低,有的年使用率低于一个月。价格战反过来造成产品质量下降,假劣产品充斥市场。消费者对国产生物技术产品信任度低,而宁愿使用昂贵的国外进口制品。
3、科研和产业脱节现象仍较为严重
在我国科研单位研究目的是为跟进国际先进科技的发展,研究方向过多集中于对几个热门品种上游技术的开发,而能够实现产业化的项目很少,在国外,科研成果完成后,落到企业的研发中心进行进一步孵化,形成技术工艺后再规模化生产,在我国两者严重脱节。缺少有科学头脑的企业家和有技术开发能力的企业将研究成果转变为生产,大大阻碍了产业化发展。
4、开拓市场能力低
由于产品生产工艺水平和经营手段落后,国内市场将面临进口药品的冲击。具体表现为:一是对国外市场开拓不够,许多企业的市场定位不准;二是开发市场的投入量不足;三是生物药品良好的临床效果虽得到医务人员和患者的肯定,但其售价相对偏高,消费能力不足。因此,我国需要进一步加大对生物制药产业的资金与投术投人,并深化科研成果产业化的机制改革,在这一过程中,尤其要发挥资本市场和凤险投资公司的积极作用。
三、加快我国生物医药产业发展的对策建议
我国生物技术药物的研究和开发起步较晚,直到20世纪70年代初才开始将DNA重组技术应用到医学上,但国家高度重视生物产业发展把生物技术产业作为21世纪优先发展的战略性产业,加大对生物医药产业的政策扶持与资金投入。2006年国务院出台的《国家中长期科学和技术发展纲要(2006一2020年)》指出,未来15年,中国要在生物技术领域部署一批前沿技术,包括靶标发现技术、动植物品种与药物分子设计、基因操作和蛋白质工程、基于干细胞的人体组织工程和新一代工业生物技术等。这一部署无疑为中国生物制药的发展指明了方向。一位参与“十二五”医药产业专项规划的专家组成员透露:在正在制定的专项规划中,生物医药产业和产业升级将成为未来3年发展的重点方向。专项规划把生物医药产业发展和产业升级作为“十二五”医药产业的重点,要求追踪生物医药前沿技术,占领生物医药产业制高点。
有关生物医药论文推荐:
1. 生物制药专业论文范文
2. 生物化学论文精选范文
3. 医药公司实习论文
4. 生化制药毕业论文范文
5. 健康论文范文
6. 本科医学毕业论文范本
7. 公共卫生毕业论文精选范文
好深奥的学问....对化学头痛....
聚氨酯硬质泡沫塑料是一种性能优良的绝热材料和结构材料。在聚氨酯各类制品中 ,产量仅次于软质 泡沫塑料 。聚氨酯硬质泡沫塑料是一种高度交联的热固性材料。泡孔结构大部分是闭孔型 ,少量开孔结构硬泡用 于特殊场合。硬质聚氨酯泡沫塑料的主要特性是其硬 韧 ,另外 ,由于其起始剂、发泡剂、催化剂等助剂的用量 及品种的不同 ,也赋予了聚氨酯硬泡不同的性能。其可发泡性 、弹性 、耐磨性、耐低温性、耐溶剂性、耐生物 老化性等优良性能使其广泛应用于冷冻冷藏设备 、汽 车、火车、屋顶、硬泡空心砖、聚氨酯硬泡混凝土、贮罐 管道绝热 、包装 、办公用品等领域 。由于广泛的使用也 导致了大量废弃物的出现 ( 废料与边角料) ,污染了环境 ,因此对聚氨酯硬泡的回收和处理成为迫切需要解 决的问题 。一般说来 ,硬质聚氨酯泡沫塑料的回收处理有如 下几种方法 :粉碎法、物理回收、化学回收以及燃烧回收热能法[ 1 ] 。1 粉碎法处理聚氨酯边角料及旧废料在应用前首先切割或者粉 碎、筛分得到所需粒度的小块或者细粉 。一般说来硬质的聚氨酯泡沫粉碎比较容易 ,所以其粉碎技术也比较成熟 , 大多已经投入商品化 , 如 : 精密切割技术、 Flac h mat rit se n 挤压等技术。都能够将其粉碎为粒度 小于 1 mm 的颗粒。2 回收利用2 . 1 物理法回收利用 物理方法回收利用聚氨酯废旧料是指改变废旧料的物理形态后直接利用的方法 。物理回收利用方法有 热压成型 、粘合加压成型 、挤出成型和用作填料等 ,而以粘合加压成型为主[ 2 ] 。2 . 1 . 1 粘合加压成型 此法是废旧聚氨酯回收利用中最普遍的方法。其要点是 :先将废旧聚氨酯硬质泡沫粉碎成细片状 ,涂撒聚氨酯粘合剂等 ,再直接通入水蒸气等高温气体 ,使聚氨酯粘合剂熔融或溶解后对粉状的废旧聚氨酯粘接 ,然后加压固化成一定形状的泡沫[ 3 ] 。 硬质聚氨酯泡沫废料主要有两类 :一类是以冰箱、冷库为代表的聚氨酯废旧硬质泡沫 ,不含其他混杂物 ; 一类是绝热夹心板产生的废旧硬质聚氨酯泡沫 ,含有 较多的纤维或金属面材 ,是掺混物。他们的回收利用工艺有一定的差别。 冰箱等用的硬质聚氨酯泡沫废旧料是单一的聚氨酯 ,回收利用比较简单 ,常用多苯基多亚甲基多异氰酸 酯做胶粘剂。胶粘剂必须均匀分散于废旧泡沫碎片之 间 ,可在连续或者非连续的混合器中进行 ,最好用无空气喷雾法将胶粘剂喷雾到废旧泡沫碎片上 ,胶粘剂用 量约为废旧料质量的 5 %~10 % ,混合均匀后 ,预制成 疏松的坯垫 ,置入涂有脱模剂的模中 ,在高压和加热下 压制成泡沫碎料板或者制件 ,一般模温在 120~220 ℃ 之间 ,模内压力根据预制坯垫的密度及制成品要求的密度决定 ,一般在 01 5~5 M Pa 范围 ,模压时间与模温 和废旧料的导热因数有关。模温为 180 ℃时 , 每毫米 厚的硬质聚氨酯碎料板需模压约 0 . 5 mi n 。由于硬质 聚氨酯废料碎料板耐水性优良 ,常用来制作舰船用家 具。此外 ,聚氨酯碎料板有很好的回弹性 ,广泛用作体育馆地板 。废旧绝热夹芯板聚氨酯泡沫粉碎后约含 70 %聚 氨酯泡沫 ,25 %纤维 ( 如房顶绝热板面层) ,3 %铝箔和2 %玻璃纤维 ,难于筛分。若直接加到聚醚多元醇中用 作填充料 , 则多元醇的粘度急剧增大 , 添加量仅 4 %时 ,已变成膏状物 ,不能使用。采用胶粘工艺是可行的 方法。将硬质聚氨酯泡沫夹心板废旧物料粉碎为约121 7 mm 碎片后加入约 6 %的多苯基多次甲基多异氰 酸酯 ( PMD I) 胶粘剂 ,在转动式混合器中混合 ( 即将定 量的胶粘剂连续喷雾到碎泡沫片上) ,然后在约 176 ℃经约 6 mi n 模制成厚约 12 . 7 mm 板。板的内部粘接强 度、弯曲强度、硬度、拨螺纹强度优于木质碎料板 ,耐水 性及尺寸稳定性远超过所有木质板材。在密度相等的 情况下 ,硬质聚氨酯碎泡板的刚度比木质碎料板差 ,可 以添加价格低廉的木纤维、回收废纸碎片、木材碎片来 增加刚度 ,满足标准要求 。实例 : 白杨树碎片和 3 %的PMD I 胶粘剂混合制成芯 ,外层用硬质聚氨酯泡沫碎 片与 6 %的 PMD I 胶粘剂一步法制成板 ,完全可以符 合标准的要求。模塑板表面光滑 ,耐湿性很好 ,是室外 室内用家具所需的理想板材 ,有很好的潜在市场[ 4 ] 。这种方法最大的缺陷是再生后的泡沫制品性能下降 ,只适用于做家俱及汽车衬里等低档部件 , 应用面 窄 ,而且工艺繁琐、劳动量大、经济价值也不高[ 5 ] 。2 . 1 . 2 用作填充料废旧硬质聚氨酯泡沫塑料粉常用作聚氨酯建筑材 料的填料 ,如作屋顶的绝热层 ,将水泥、砂、水和废硬质 聚氨酯泡沫粉混合铺于房顶面的底层 ,材料的绝热性能优良 ,质量轻 (几乎是不加废硬质聚氨酯泡沫的水泥 层密度的 1/ 2) ,材料可以锭钉 。另外 ,据美中化学公司报导 ,废聚氨酯可作为填料 用于生产 R IM ( 反应注塑) 制品 , 吸能泡沫和隔音泡 沫。文献报导 ,如果将得到的废聚氨酯粉末投加到生产原部件的原料中 ,再次生产相同部件 ,则由于粉末具 有与原料相同的结构 ,用量可达 20 % ,而最终制品的 机械性能没有明显的削弱 。在日本 ,已将废硬质聚氨 酯泡沫塑料用作灰浆的轻质骨料 。2 . 1 . 3 挤出成型挤出成型是通过热力学作用把分子链变成中等长 度链 ,将 PU 材料转变成软塑性材料 ,这种材料适合作 强度高 、硬度高 ,但对断裂伸长率要求不高的塑料件。 对于软质微孔 PU 泡沫废料 ,可以将其粉碎成粉末 ,掺 混到热塑性聚氨酯中 ,在挤出成型机中造粒 ,采用注射成型方法制造鞋底等制品 ,德国 Bayer 公司曾做过这 方面的研究[ 7 ] 。2 . 2 化学方法的回收利用 由于聚氨酯的聚合反应是可逆的 ,控制一定的反应条件 ,聚合反应可以逆向进行 ,会被逐步解聚为原反应物或其它的物质 ,然后再通过蒸馏等设备 ,可以获得 纯净的原料单体多元醇、异氰酸酯、胺等。用化学方法 处理聚氨酯废旧料 ,回收多元醇等作为原料再制备聚 氨酯的工艺路线 ,已有多套装置投入试运行 ,是当前回 收利用废旧聚氨酯的主要努力方向之一。化学回收技术归纳起来有 6 种 : 醇解法、水解法、 碱解法 、氨解法 、热解法、加氢裂解法。各种方法所产 生的分解产物不同 。醇解法一般生成多元醇混合物 ; 水解法生成多元醇和多元胺 ;碱解法生成胺、醇和相应 碱的碳酸盐 ;氨解法生成多元醇、胺、脲 ;热解法生成气 态与液态馏分的混合物 ; 而加氢裂解法主要产物为油和气。在 20 世纪 70 年代 ,人们发现用热水蒸汽在一定 压力下可以将 PU 软泡降解成二胺和聚醚型多元 醇[ 8 ] 。直接水解是用水蒸气水解聚氨酯废旧料或水和二元醇混合物作混合水解剂回收二胺及多元醇 ,水解产物组成复杂 ,难于分离和醇化 ,所以在此不再赘叙。2 . 2 . 1 二元醇醇解法 在所有化学法回收利用聚氨酯废料的研究中醇解法研究得最多 ,技术比较成熟 ,且已形成了一定的工业 规模。以醇类化合物为分解剂 ,在加热的情况下 ,聚氨酯废料被分解为聚醚多元醇的方法 ,即为醇解法。 聚氨酯废旧料用乙二醇类二元醇为醇解剂 ,在中等温度或中等温度/ 催化剂和有惰性气体保护下反应 降解为低分子齐聚多元醇等 ,降解产物稳定 ,组成较简 单 ,易于分离和纯化。乙二醇醇解聚氨酯主要发生两种键断裂 ,即 C - N 键断裂和 C - O 键断裂 ,生成多元 醇或多元醇和端胺基2端羟基聚合物。对于硬质的聚氨酯泡沫塑料 ,比较适宜于用醇解 法工艺处理 ,其特点是醇解条件温和 ,反应速度比水解 法、热解法低 ,允许废旧料含其他杂质 ,如聚氨酯或聚酰胺纤维 、聚碳酸酯和聚甲醇等。 醇解反应与所用催化剂有关 。醇解反应用的催化剂有二月桂酸二丁基锡、四丁基钛、三乙烯二胺、氢氧 化钠、乙酸钾等碱性催化剂 ,其催化效力高 ,有利于氨 酯键解离生成胺和二氧化碳。醇解速度与废旧料的化学组成、催化剂 、反应温度、反应时间 、醇解剂的类型和 用量有关 。在相同条件下催化剂用量多醇解速度快。 醇解剂的用量多醇解速度快 ,但醇解剂用量与废料的 比达 1 ∶1 时再增加醇解剂反应速度增加不多 。醇解 剂用量增加 ,醇解产物的平均分子量下降。醇解反应也与醇解时间和反应温度有关 。 硬质聚氨酯泡沫塑料废旧料醇解时 ,氨酯键醚键断裂生成多元醇及少量的芳胺 TDA 或者 MDA 。其 中芳 胺 是 可 以 引 起 癌 症 的 有 害 物 质 , 特 别 是4 ,4′2MDA ,美国 O S H A ( 美国职业安全与健康管理局) 规定任何多元醇中 4 ,4′2MDA 的含量不允许超过01 1 % 。为了符合要求 ,回收多元醇需经过很多的分离 过程。Shi n 等将冰箱用硬质聚氨酯泡沫废旧料用 10 %~30 %丙二醇或乙二醇作醇解剂回收的多元醇同多元 醇混合时 ,泡沫的性能优良 ,热导率较不用回收多元醇制泡沫的小。2 . 2 . 2 碱降解法碱降解法是以 MO H ( M 为 L i 、K、Na 、Ca 之一或 多种混合物) 为降解剂 ,在 160 ~200 ℃左右下将聚氨酯硬泡降解成低聚物 。当在降解产物中加入非极性溶剂 (酯类或卤代烃) 和水时 ,降解产物分成两层 ,上层经 蒸馏得多元醇 ,可直接用于再次生产聚氨酯泡沫 ,下层 经浓缩 、结晶 、重结晶或真空蒸馏的二胺 ,加光气可生 成异氰酸酯。缺点是由于反应是在高温强碱条件下进行 ,对设 备要求高 ,生产成本高 ,工业化较为困难[ 9 、10 ] 。3 燃烧回收热能聚氨酯主要含碳、氢、氧、氮 ,与空气中氧燃烧时 , 产生大量的热能 ,每千克聚氨酯约产生 25~28 mJ 。聚 氨酯废旧料常与城市固体废料一起作燃料 ,可取代部 分煤 ,作锅炉的燃料 ,聚氨酯是洁净燃料 ,燃烧产生的 气体只含少量的 N O2 ,不含 SO2 ,远优于煤 、燃油等燃 料。但需要指出的是 ,如果在焚烧过程中燃烧不完全 将会产生有毒气体 ,对大气造成污染 ,所以人们对焚烧 法的反对呼声不断高涨[ 6 ] 。4 总结由于聚氨酯硬质泡沫塑料性能优良和用途广泛 , 其发展与日俱增 ,因此对其废旧制品的回收利用不仅 能有效地保护环境 ,减少污染 ,而且能节省资源 ,变废 为宝。对于聚氨酯硬质泡沫废料的利用 ,从产前投入 的经济角度看 ,以直接回收利用好 ,但是 ,制品的性能 较差 ,只能作低档用品使用。从最终产品的使用性能 看 ,还是化学回收法中的醇解、碱解和水解较好 ; 能量 回收法不适合 PU 废料的利用。与此同时 ,选择不同 的处理方法还要结合实际的情况 ,具体问题具体分析 , 以获得最好的投入产出比。
以下全部是PDF文件,请确定你有PDF阅读器,没有也安装一个吧,现在论文基本都这个格式的.1.Synergistic Effect of Polyurethane and Organophilic Montmorillonite on Toughening and Reinforcing Epoxy Resin(聚氨酯和蒙脱土协同增韧增强环氧树脂) of Polyurethane-acrylate Hybrid Emulsions (聚氨酯-丙烯酸酯复合乳液的制备方法)http://www.hxtb.org/col/2003/pdf/c03099.pdf3.硬质聚氨酯泡沫塑料本构关系的研究 of biodegradable aqueous polyurethane based on aliphatic polyester diol脂肪族聚酯基可生物降解水性聚氨酯的合成 AND DURABILITY OF ONE-PART POLYURETHANE ADHESIVE BONDS TO WOOD properties of microcracking in polyurethane foams under tensile test, influence of temperature and density EPOXY AND POLYURETHANE COMPOUNDS of Polyurethane Foams: IR of Molecularly Imprinted Polyurethane as anOptical Waveguide for PAH Sensing
绿色化学在石油化工中的研究进展和应用 2003 年5 月国际工程学会在美国Sandestin 主办了“绿色工程: 定义原则”( Green Engineering :Defining the Principle) 的会议,目的是确定一套绿色工程的原则以指导工程师在设计产品和工艺时,使其符合企业、政府和社会的需要,这包括了成本、安全、使用性能和对环境的影响. 最后发表了“工程师工作框架的Sandestin 原则”,提出了在工程项目中为全面实现绿色工程,工程师要遵循的9 条原则. 这9 条原则是: (1) 整体考虑工艺过程和产品,使用系统分析与集成的方法来评估对环境的影响; (2) 保障并改善自然生态系统,同时也要保护人类健康和生活安宁; (3) 在工程活动中考虑整个生态循环; (4) 尽可能保障所有的物质和能量安全并良性地输入和输出; (5) 尽可能减少对自然资源的消耗; (6) 努力减少废物产生; (7) 在对当地地理和人文认知的基础上,开发和实施工程解决方案; (8) 革新、创造和发明技术以实现可持续发展,在传统和主流工艺之上,创造性地提出工程解决方案; (9) 让股东和社会共同积极参与工程解决方案的开发[2 ] .20 世纪的化学工业是建立在煤、石油和天然气等矿物质资源基础上的, 尤其是到了60 年代前后, 石油化学工业获得了飞速发展, 与此同时, 也产生了日益严重的资源、环境等社会问题。1990年以来, 绿色化学的理念迅速崛起, 并成为包括石化工业在内的化学工业可持续发展的方向, 越来越受到各国政府、企业和学术界的普遍重视。在石油化工领域, 一批绿色化工技术不断被开发和应用,甚至逐渐成为一些新兴产业。本文作者介绍可持续发展的石油化工技术的一些新进展。1 以过氧化氢作氧化剂的烃类“原子经济”氧化反应反应的“原子经济”性是衡量在化学反应中究竟有多少原料的原子进入到产品之中, 这一标准既要求尽可能地节约原料资源, 又要求最大限度地减少废物排放。在石化工业中烃类的氧化反应是一类非常重要的反应过程, 由于具有含氧官能团的产物分子比原料烃类要活泼得多, 此类反应的选择性通常较低, 还有一些反应需要经多步骤才能完成, 过程往往产生很多废物。过氧化氢作为一种温和的氧化剂, 在某些材料的催化作用下, 可进行选择性很高的定向氧化反应, 而且其本身无毒并在反应后转化为无害的水, 使反应的“原子经济”性大大提高, 因而被看作是绿色的氧化剂[1 ] 。1.1 钛硅分子筛催化环己酮氨肟化制备环己酮肟实现工业应用环己酮肟的制备作为目前化纤单体ε- 己内酰胺主流生产技术的核心工艺, 需经环己酮与羟胺的盐进行反应而得, 而羟胺盐制备过程的“原子经济”性较差, 腐蚀和污染严重。20 世纪80 年代后期意大利EniChem 公司提出了一种全新的环己酮氨肟化工艺, 即在钛硅分子筛的催化作用下, 环己酮与氨、过氧化氢一步“原子经济”反应直接合成环己酮肟。中国石化石油化工科学研究院也开发成功具有自主知识产权的环己酮氨肟化新工艺, 并与中国石化巴陵分公司合作, 于2003 年8 月率先完成了70 kt/ a 的工业试验, 环己酮转化率和环己酮肟选择性均超过99.5 % , 氨的利用率达97 %以上。而传统的磷酸羟铵肟化法工艺(HPO) 氨的利用率不足60 %; 同时, 新工艺避免了NOx 、SOx(HPO) 等的生成和使用, 使环己酮肟的制备成为清洁生产过程。传统的以苯为原料的己内酰胺生产过程流程长、工艺复杂、投资大、成本高, 国外Du Pont 、BASF 和DSM 等公司已分别研究开发了以丁二烯为原料的己内酰胺生产新技术[2 , 3 ] , 可简化工艺流程和降低生产成本, 但由于新建装置巨大的投资和技术风险等原因, 至今尚未工业化。环己酮氨肟化新工艺适宜对现有装置的技术改造, 将使由苯生产己内酰胺的工艺路线更具竞争性。1.2 丙烯环氧化制备环氧丙烷新技术取得新进展自从钛硅分子筛( TS - 1) 诞生以来, 低温下利用过氧化氢作氧化剂的液相氧化反应工艺一直在不断地研究开发, 另一类取得突出进展的是烯烃与过氧化氢进行环氧化反应制取环氧化物, 其中最重要的过程是丙烯环氧化制备环氧丙烷。以TS - 1 为催化剂, 用过氧化氢环氧化丙烯制备环氧丙烷, 产物环氧丙烷的收率达97 %以上(以丙烯计) ,以过氧化氢计其收率为87 %[4 ] , 副产物主要为水和氧气。该过程原子的有效利用率达76 %。而传统的二步氯醇法生产工艺原子的有效利用率仅为31 % , 需要消耗大量的氯气和石灰, 并且设备腐蚀和环境污染严重。针对TS - 1 分子筛价格较高、与产物分离难度较大, 丙烯环氧化的其他催化剂体系也在不断研究之中, 以过氧化氢为氧化剂的新型氧化催化材料正在研究的有负载锡的β- 沸石[5 ] 、有机氮络合Fe2 系催化剂[6 , 7 ] 和含钨的金属簇相转移催化剂[8 ]等。最近, BASF 和Dow 化学公司合作, 在丙烯的过氧化氢环氧化反应工艺(HPPO) 的开发中取得了重大进展, 已完成各自的详细评估。据称, HPPO工艺由于不联产其他产品, 流程短, 投资低, 占地少, 尤其对较小规模生产装置投资回报率大幅度提高。双方计划近期完成中试放大, 开始建设第一套300 kt/ a 规模生产装置, 预计2007 年初建成投产[9 ] 。此外, Degussa 和Uhde 也拟在南非Sasol 建设60 kt/ a 环氧丙烷装置, 将采用HPPO 工艺。据报道[10 ]其开发了一种专用分子筛催化剂, 副产物生成量可降低到最低限度。丙烯环氧化新工艺虽然使用了价格较高的过氧化氢作氧化剂, 但只要采用适合的催化剂, 可使产物收率大幅提高, 同时由于工艺简化, 该工艺仍具有较好的技术经济性, 加之该技术的环保优势, 有望对环氧丙烷行业产生重要的影响。1.3 其他有机含氧化合物的制备技术以过氧化氢为氧化剂, 烯烃、醇和羰基化合物可高选择性地氧化生产环氧化物、醇和羧酸, 并可避免使用金属催化剂、含氯氧化剂和有机溶剂。文献[11 ]介绍Kazuhiko Sato 等开发了由烯烃氧化生成二醇类化合物的新工艺。采用普通的树脂负载的磺酸催化剂, 用不同的链烯烃和环烯烃与过量的30 %双氧水反应, 可高选择性和高收率地得到反-1 , 2 - 二醇, 带有端基羟基的链烯烃也可一步反应生成三羟基化合物。杜泽学等[12 ]以钛硅分子筛为催化剂, 开发了氯丙烯与过氧化氢环氧化制备环氧氯丙烷的悬浮催化蒸馏新工艺, 反应选择性达98 %以上, 有望取代现有的氯醇法生产工艺。2 取代有毒有害原材料的绿色化工技术光气、氢氰酸等是剧毒物质, 因它们的化学性质极为活泼, 至今仍作为化工原料广泛使用, 但这些化学品在制造和使用中一旦不慎泄漏, 就将造成难以估量的人身伤亡和环境灾难, 因此, 用无毒、无害的原料代替剧毒光气、氢氰酸等绿色化工技术的开发受到重视[13 ] 。取代光气, 生产异氰酸酯、聚碳酸酯新工艺 目前替代光气制造异氰酸酯的工艺有: 由伯胺和二氧化碳或碳酸二甲酯制造异氰酸酯, 由伯胺和一氧化碳进行氧化羰化制异氰酸酯, 由硝基苯和一氧化碳羰基化制异氰酸酯。这些技术有的正在小试, 有的已进入中试阶段, 但是生产成本比原有的光气法高10 %左右, 不经济, 所以还需改进。代替光气生产聚碳酸酯, 已经开发成功以碳酸二甲酯为原料的工艺。首先由碳酸二甲酯与苯酚反应生成碳酸二苯酯, 再和双酚A 进行酯交换、缩聚生成高分子聚碳酸酯, 现正在建厂, 而且生产碳酸二甲酯采用甲醇氧化羰基化法, 取代了传统光气为原料的路线。韩国L G化学公司称独自开发了一种非光气的聚碳酸酯生产新工艺, 由于工艺简化,可减少投资70 % , 装置操作费用和生产成本明显降低。可见, 代替剧毒原料也可找到经济合理的绿色工艺路线。2.2 甲基丙烯酸甲酯生产新工艺继异丁烯氧化法、乙烯氢甲酰化法生产甲基丙烯酸甲酯(MMA) 技术工业化后, 人们仍在积极开发新工艺以取代传统氢氰酸为原料的丙酮氰醇法。异丁烷直接氧化法因资源更丰富、廉价而受到重视。这种方法包括异丁烷氧化制取甲基丙烯醛、甲基丙烯醛再氧化制取MMA 两步反应。由于异丁烷反应活性低于异丁烯, 通常选用具有强氧化性的杂多酸类催化剂。近年来研究发现, P - Mo 系杂多酸中引入V、Cu、Cs 等元素, 可促进甲基丙烯醛的氧化反应, 提高反应收率; 进一步将P - Mo - V- Cu - Cs 五元催化剂和Mo - V 的复合氧化物作为助剂, 添加到“MMA 高选择性催化剂”浆态杂多酸催化剂中, 可使MMA 的收率提高2 倍, 达到10 %以上, 表现出一定的工业应用前景。英国Lucite 国际公司开发成功其专有的α-MMA 技术, 并计划建设第一套100 kt/ a MMA 生产装置, 预计2007 年末建成投产。α- MMA 是两步法工艺。第一步由乙烯与甲醇、一氧化碳进行羰基化反应生成丙酸甲酯。据称, 所用的钯基催化剂活性很高, 选择性达9919 % , 且具有良好的稳定性, 反应温度和压力条件温和, 对装置的腐蚀性小; 第二步中丙酸甲酯与甲醛反应生成MMA 和水, 采用专有的多相催化剂, MMA 的选择性较高[14 ] 。该工艺大大改进了产品的经济性, 是三十年来开发的最重要的MMA 生产工艺。MMA 在中国是一个发展前景良好的有机化工原料, 随着国民经济的持续高速增长, 其需求还将不断增长, 中国应该慎选一条符合国情的绿色路线进行开发, 注意克服其不足之处。3 使用环境友好催化剂的化学反应石油化工生产技术的核心是催化剂, 催化剂的消耗虽不大, 但同样可能对环境产生很大的危害。硫酸、氢氟酸、三氯化铝等液态酸是广泛应用的酸性催化剂, 使用过程易腐蚀设备、危害人身健康和社区安全, 同时还产生废液、废渣污染环境。目前应大力开发环境友好的固体酸催化剂代替液体酸,已有一批工业化成果。在苯与烯烃烷基化过程中采用ZSM - 5 分子筛代替三氯化铝的气相法合成乙苯, 采用USY 或β- 沸石或MCM - 22 沸石代替三氯化铝的液相法合成异丙苯等; 此外, 还有采用固体酸替代氢氟酸的长链烷基苯合成的新工艺。采用上述分子筛固体酸取代三氯化铝、氢氟酸等催化剂, 虽然推出了新一代的烯烃烷基化绿色技术, 但是由于分子筛催化剂的酸强度不如氢氟酸、三氯化铝高, 分布也不够均匀, 而且酸中心数量较少, 于是采用这类固体酸催化剂时反应温度升高, 压力增加, 同时少量的副产物和杂质有所增高, 所以又出现了开发新固体酸催化剂的热点。负载型杂多酸催化剂可望克服上述缺点, 成为新一代的催化剂; 正在研究的还有一些新型催化材料, 如包裹型液体酸、纳米分子筛复合材料、离子液体等。这方面的研究, 中国已有一定基础, 应组织人力, 加速开发, 力争取得领先地位。
碳酸二甲酯是绿色化工基础原料,应用范围十分广泛,具有广阔的应用前景。 以碳酸丙烯酯和甲醇酯交换反应合成碳酸二甲酯的反应为一可逆反应,故采用反应精馏技术,以促进反应的进行,提高碳酸二甲酯收率。反应精馏集反应和精馏分离一体,及时移走反应产物,使平衡向产物方向移动,使原料转化率得到最大限度的提高。采用甲醇钠作为催化剂,具有较强的催化活性、选择性高。增加反应段中甲醇的含量,可使平衡向利于生成碳酸二甲酯的方向移动,提高转化率。并利用加压精馏技术分离碳酸二甲酯和甲醇共沸物,加压精馏是在精馏过程中,提高分离塔的压力,改变碳酸二甲酯和甲醇共沸物的共沸温度,成功的解决了该共沸物的分离问题。克服了传统工艺碳酸二甲酯收率低的弊端,提高了产品的产量,降低了能源消耗。通过对主要设备操作参数优化分析得到反应精馏塔最佳的操作条件为甲醇: 碳酸丙烯酯摩尔比为4:1,回流比为3~5,压力为1.6~1.8Kpa,温度为65~67℃。在此条件下进行酯交换反应,生成DMC和丙二醇的收率最高,甲醇和DMC则在精馏段形成共沸物。在加压精流塔中将甲醇与DMC由常压共沸组成变成高压共沸组成,改善二者的分离程度,提高DMC的收率。 用“绿色化学品”碳酸二甲酯代替光气合成2,4-甲苯二氨基甲酸甲酯, 进而分解生成甲苯二异氰酸酯具有反应条件温和,催化剂便宜,仅有副产物甲 醇生成等优点。若同甲醇氧化羰基化碳酸二甲酯反应相结合,可构成“零排放” 的绿色合成工艺过程,是洁净化工的重要发展方向。首先,通过重结晶制备了主产物2,4-甲苯二氨基甲酸甲酯的纯品,应用CHN 元素分析仪检验了其纯度,应用质谱、红外光谱、核磁共振波谱等先进测试手 段对其进行了定性分析;通过制备液相色谱制备了副产物2-甲基-5-氨基苯氨基 甲酸甲酯的纯品,并应用质谱、红外光谱等测试手段对其进行了定性分析;通 过液-质联用技术,对副产物聚脲进行了定性分析。从而实现了对碳酸二甲酯和 2,4-二氨基甲苯合成2,4-甲苯二氨基甲酸甲酯反应的主、副产物的全部定性。其次,建立了一套适宜的、高效的对反应物和主、副产物同时进行测试的 高效液相色谱分析系统。确立了色谱条件为:色谱柱RP C-18柱,流动相V (甲醇):V(水)=5:5,流速0.6ml/min,紫外检测,波长254nm。采用外标 法对主产物2,4-甲苯二氨基甲酸甲酯进行了定量分析,对实验结果进行了精 确度和回收率的检验,效果良好。第三,对催化剂进行了筛选,确定了其活性排序:乙酸锌>氧化铅>甲醇钠> 碱式碳酸锌>氧化锌=碱式碳酸铜。其中,乙酸锌、氧化铅、甲醇钠催化剂对碳 酸二甲酯和2,4-二氨基甲苯合成2,4-甲苯二氨基甲酸甲酯反应体系具有良好 的催化性能。第四,考察了以甲醇钠为催化剂,碳酸二甲酯和2,4-二氨基甲苯合成2, 4-甲苯二氨基甲酸甲酯反应。发现加入甲酸甲酯,可以显著提高2,4-甲苯二氨 基甲酸甲酯产率。通过气-质联用和红外光谱对中间产物2,4-甲苯二甲酰胺和 N-(2-甲基-5-氨基)苯基甲酰胺进行了定性,并以此为依据,初步推测了反应 机理。对影响反应进行的各因素进行了研究,获得了较适宜的反应条件,2,4- 甲苯二氨基甲酸甲酯的产率可达59.75%。第五,考察了以乙酸锌为催化剂,碳酸二甲酯和2,4-二氨基甲苯合成2, 河北工业大学硕士研究生学位论文 4.甲苯二氨基甲酸甲酯反应。通过对催化剂进行Xap表征和对反应液进行气- 质联用定性分析,确定了乙酸锌催化剂的失活是因为它和反应的副产物甲醇发 生进一步反应,生成乙酸甲酯、水和对2,4甲苯二氨基甲酸甲酯合成反应没 有催化活性的氧化锌。通过气相色谱分析,确定高压釜内余压是由二氧化碳引 起,碳酸二甲酯水解生成甲醇和二氧化碳。对影响反应进行的各因素进行了研 究,获得了较适宜的反应条件,*4甲苯二氨基甲酸甲酯的产率可达89.32%。第六,考察了以氧化铅为催化剂,碳酸二甲酯和2,个二氢基甲苯合成L 4甲苯二氨基甲酸甲酯反应。反应中有诱导期存在,诱导期的存在与氧化铅催 化剂的表面状态密切相关。经过碳酸二甲酯预处理的氧化铅催化剂转化为新相 P匕oO入闪m。,致使诱导期消失。化学反应在新相比*0。从0mz表面上进行, 其中oH官能团在反应中起到了重要作用。以此为基础,推测了反应机理。对 反应温度和反应时间对反应的影响进行了研究,获得了较适宜的反应条件,2, 4甲苯二氨基甲酸甲酯的产率可达 81.8%。 离子液体由于其独特的物理化学性质成为研究工作者关注的热点,已经被成功地应用于多种催化反应。 本论文是将碳酸二甲酯与离子液体的优点有效结合,研究了离子液体催化碳酸二甲酯参与的一些有机反应。主要包括两个部分:第一部分是离子液体催化碳酸二甲酯参与的甲氧羰基化反应;第二部分是离子液体催化碳酸二甲酯参与的甲基化反应。 在离子液体催化碳酸二甲酯和氮杂环化合物甲氧羰基化合成氮杂环酯中,使用离子液体代替强碱为催化剂,催化碳酸二甲酯与氮杂环化合物进行甲氧羰基化高效、绿色地合成氮杂环酯。在优化的反应条件下,吲哚-1-甲酸甲酯的选择性和收率分别可达到100%和96%。通过研究不同氮杂环化合物和碳酸二甲酯反应,发现吲哚2位的位阻效应是影响吲哚类化合物反应活性的重要因素。考察不同离子液体对反应活性的影响,表明咪唑阳离子2位是氢原子的离子液体催化活性明显好于咪唑阳离子2位是甲基的离子液体,咪唑阳离子的2位氢原子与碳酸二甲酯的羰基氧原子形成氢键,活化碳酸二甲酯分子,降低反应能垒,促进了反应进行。离子液体可以循环使用4次,反应活性没有降低。 在离子液体催化碳酸二甲酯和取代苯乙腈类化合物甲基化合成2-苯基丙腈类化合物时,使用离子液体代替催化活性低的无机盐或分子筛为催化剂。以苯乙腈为反应底物,考察了反应温度、时间、水含量以及催化剂用量的影响。