首页

> 学术发表知识库

首页 学术发表知识库 问题

研究生论文实证常用模型

发布时间:

研究生论文实证常用模型

写论文常用理论模型有:1、杜威“做中学”。2、斯金纳“强化理论”。3、皮亚杰“认识发展理论”。4、维果斯基“最近发展区理论”。

1、杜威“做中学”杜威(John Dewey)提出“做中学”这个基本原则主要思想是“人的经验如何影响学习”。由于人们最初的知识和最牢固地保持的知识,是关于怎样做(how to do)的知识。因此,教学过程应该就是“做”的过程。

在他看来,如果儿童没有“做”的机会,那必然会阻碍儿童的自然发展。儿童生来就有一种要做事和要工作的愿望,对活动具有强烈的兴趣,对此要给予特别的重视。

杜威认为,“从做中学”也就是“从活动中学”、从经验中学入它使得学校里知识的获得与生活过程中的活动联系了起来。由于儿童能从那些真正有教育意义和有兴趣的活动中进行学习,那就有助于儿童的生长和发展。在开展学生动手实践、探究式教学等相关教学研究比较常用。

2、斯金纳“强化理论”

强调强化在学习中的作用。斯金纳把强化分成积极强化和消极强化两种。教学中的积极强化是教师的赞许等,消极强化是教师不再皱眉等。这两种强化都增加了反应再发生的可能性。斯金纳认为不能把消极强化与惩罚混为一谈。

他通过系统的实验观察得出了一条重要结论:惩罚就是企图呈现消极强化物或排除积极强化物去刺激某个反应,仅是一种治标的方法,它对被惩罚者和惩罚者都是不利的。他的实验证明,惩罚只能暂时降低反应率,而不能减少消退过程中反应的总次数。斯金纳对惩罚的科学研究,对改变当时美国和欧洲盛行的体罚教育起了一定作用。

文 实证模型一般有哪几种肯定知道分析结果

研究生论文实证分析用什么模型

模型一般是根据具体的案例来的,建议你首先读一些统计学的基础知识,具有了基础知识之后,掌握其他模型就很简单了。常用的涉及到回归分析的模型主要有:多元回归分析,logistic回归分析等;涉及到加权问题的有:层次分析法;分析多因素影响的参数方法:单因素、多因素方差分析,对应非参数的方法:列联表应该用于中位数的检验等等。另外,非参数中的平衡不完全区组设计,也是非常有意思的

实证论文必须有数据出路分析不一定有实证模型你百度一下,这相关的论文多的是

我最近写论文也碰上这个问题,你的问题是不用一定。我那个题目就是有个现成的公式,然后找近些年的数据进去进行对比分析,这个也算是实证分析了。建模那个太高级了,太难了。

模型有三个层次:

第一个层次,简单的图表和指标,一般的问卷调查结果的展示都会采取这种方式,生动形象。

第二个层次,描述性统计,分析数据分布特征。

第三个层次,计量分析,建立模型。而计量分析又可以分为几个层次,第一层次是简单回归,包括双变量、多元回归,基本计量问题(共线性、异方差、自相关)的处理。

第二层次更专业点儿,包括模型设定误差检验与模型修正、特殊数据类型(时间序列、虚拟变量、面板数据等)的模型选择和处理、联立方程、VEC模型、VAR模型、条件异方差模型等;第三层次包括有序因变量、面板VAR、神经网络、分位数模型、季节调整模型等等。模型,建立一套研究范式,然后按此模型进行研究。

选题与预估计

问题1:暂定一个题目(包括研究对象、研究问题、拟使用的理论或方法等方面,可使用副标题,副标题一般指向研究方法或研究角度)。

问题2:给出研究目标与研究问题,并初步进行回答(研究之前必须要有预设的初步结论。所谓“实证分析”,可以将其看作是对所提出的初步结论的检验)。

问题3:给出文献综述(要求:①文献综述的内容必须与你的研究紧密相关,即根据自己研究的问题或内容梳理、概括相关文献(要注意相关性);②文献综述要能构成你研究的基础,可将其视为你的研究的理论知识平台或背景;③文献综述必须能够引出你所研究的问题,即根据自己的边际贡献或研究特点评述已有文献(要注意针对性))。

问题4:论证你所研究的问题以及其重要性(先列出“重要性”的论点,然后给出相应的论据)。

问题5:尝试运用计量软件(如:Eviews、SPSS、STATA或R)导入数据,对数据进行初步描述性分析与预估计。

实证研究论文研究模型

实证论文就是实证研究论文,是指研究者亲自收集观察资料,为提出理论假设或检验理论假设而展开的研究。具有鲜明的直接经验特征。其实证研究方法包括数理实证研究和案例实证研究。

它与非实证论文的区别只有一个,就是两者基于的研究方式不同:实证研究依靠对研究对象的系统观察来获得研究本质;非实证研究则是基于思想(idea)、框架(framework)或者思索(speculation)。

实证研究包括两类:

1、数理实证研究

数理实证研究比较适合研究较为复杂的问题。社会经济制度之间存在着极为复杂的相互作用机制,而运用数学计量工具可以将有关影响因素予以固定,从而把握复杂现象之间的内在联系,消除变量内生性、异方差和多重共线性问题。

但数理实证研究对于数据质量相对要求较高,数据录入和操作错误往往会导致错误的分析结果。这就需要研究者在数据录入中保持高度警觉,有意识地避免操作失误。

2、案例实证研究

案例研究可以分为单个案研究和多个案研究。个案研究不仅有助于积累不同广泛而深入的个案资料,形成对于问题的实感,也可以为调查者获得第一手资料,从现实获取灵感源泉。

扩展资料:

实证论文的研究方法,实证研究法的基本步骤:

1、确定所要研究的对象,分析研究对象的构成因素、相互关系以及影响因素,搜集并分类相关的事实资料。

2、设定假设条件。在研究的过程中,研究对象的行为是有其特征所决定,试图把所有复杂因素都包括进去,显然是不现实也不可能的。为此,必须对某一理论所使用的条件进行设定。

当然,假设的条件有一些是不现实的,但没有假设条件则无法进行科学研究。运用实证研究法研究问题,必须正确设定假设条件。

3、提出理论假说。假说是对于现象进行客观研究所得出的暂时性结论,也就是未经过证明的结论。假说对研究对象现象的经验性概括和总结,但还不能说明它是否能成为具有普遍意义的理论。

4、验证。在不同条件和不同时间对假说进行检验,用事实检验其正确与否。检验包括应用假说对现象的运动发展进行预测。

参考资料来源:百度百科-实证研究

表示实证研究倡导“用数据资料说话”,实验研究是一种受控制的研究,通过一个或多个变量的变化来评估它对一个或多个变量产生的效应。实验研究的主要目的是建立变量之间的因果关系,通常的做法是研究者预先提出一种因果关系假设,然后通过实验操作来检验该假设是否成立。可见,对于实证模型的构建和分析非常重要。一个恰当的模型可以帮我们对数据分析整理,得出结论供我们进行理论分析。

数据模型(Data Model)是数据特征的抽象。数据(Data)是描述事物的符号记录,模型(Model)是现实世界的抽象。数据模型从抽象层次上描述了系统的静态特征、动态行为和约束条件,为数据库系统的信息表示与操作提供了一个抽象的框架。数据模型所描述的内容有三部分:数据结构、数据操作和数据约束。扩展资料:数据模型所描述的内容包括三个部分:数据结构、数据操作、数据约束。1、数据结构:数据模型中的数据结构主要描述数据的类型、内容、性质以及数据间的联系等。数据结构是数据模型的基础,数据操作和约束都建立在数据结构上。不同的数据结构具有不同的操作和约束。2、数据操作:数据模型中数据操作主要描述在相应的数据结构上的操作类型和操作方式。3、数据约束:数据模型中的数据约束主要描述数据结构内数据间的语法、词义联系、他们之间的制约和依存关系,以及数据动态变化的规则,以保证数据的正确、有效和相容。首先,先介绍一下,什么是数据模型?数据模型是现实世界数据特征的抽象,用于描述一组数据的概念和定义。数据模型是数据库中数据的存储方式,是数据库系统的基础。在数据库中,数据的物理结构又称数据的存储结构,就是数据元素在计算机存储器中的表示及其配置;数据的逻辑结构则是指数据元素之间的逻辑关系,它是数据在用户或程序员面前的表现形式,数据的存储结构不一定与逻辑结构一致。数据模型的分类有三种:第一种:层次模型 层次模型是数据库系统最早使用的一种模型,它的数据结构是一棵“有向树”。根结点在最上端,层次最高,子结点在下,逐层排列。第二种是:网状模型 网状模型以网状结构表示实体与实体之间的联系。网中的每一个结点代表一个记录类型,联系用链接指针来实现。网状模型可以表示多个从属关系的联系,也可以表示数据间的交叉关系,即数据间的横向关系与纵向关系,它是层次模型的扩展。第三种是:关系模型 系模型以二维表结构来表示实体与实体之间的联系,它是以关系数学理论为基础的。关系模型的数据结构是一个“二维表框架”组成的集合。每个二维表又可称为关系。在关系模型中,操作的对象和结果都是二维表。关系模型是目前最流行的数据库模型。为什么要建立数据模型?当今的商业决策对对数据依赖越来越强烈。然而,正确而连贯的数据流对商业用户做出快速、灵活的决策起到决定性的作用。建立正确的数据流和数据结构才能保证最好的结果。如何进行数据模型设计?1:首先是要了解业务然后建立概念模型,确定实体以及实体关系。2:在概念模型的基础上生成逻辑模型,确定实体属性,标准化数据(消除多值字段达到第一范式;消除部分依赖达到第二范式;消除传递依赖达到第三范式)。3:模型验证:通过具体的业务来验证模型是否能满足要求。4:在逻辑模型的基础上生产物理模型。在建立数据模型的时候需要注意:1.三少 整个模型中表应该尽量的少;在一个表中字段应该尽量的少同时复合主键字段应尽量的少2.如果在大数据量或者高并发的情况下,要充分考虑数据库的压力,事先要考虑哪些表可能是热表。要尽量的降低模块的耦合。如果使用的是oracle RAC 的话要考虑一下多实例竞争的问题,不同的模块访问不同的实例。3.一定要做压力测试、要做充分的压力测试,要不上线后会死的很惨,移动总部的一个web项目应为没有做充分的压力测试,导致上线后不的不挂维护页面,动用了n多的资源去解决问题。4.在做模型设计的时候要考虑项目的各个生命周期阶段对模型的要求,不能仅仅把眼光限制在功能的实现,例如要考虑模型对以后维护的支持,对于大表的数据如何进行清除、转历史,显然delete、insert是首先可以想到的但是不可行的方法,建议做分区转换。5.数据模型设计对系统可变性的支撑:业务系统的变化点通常是流程相关部分,这部分会随着不同的公司、公司的不同发展阶段而变化,因此最好将这部分单独建模,独立于系统核2021年6月4日数据模型是什么?2167阅读·0评论·0点赞2016年7月4日去首页看看更多热门内容

模型有三个层次:

第一个层次,简单的图表和指标,一般的问卷调查结果的展示都会采取这种方式,生动形象。

第二个层次,描述性统计,分析数据分布特征。

第三个层次,计量分析,建立模型。而计量分析又可以分为几个层次,第一层次是简单回归,包括双变量、多元回归,基本计量问题(共线性、异方差、自相关)的处理。

第二层次更专业点儿,包括模型设定误差检验与模型修正、特殊数据类型(时间序列、虚拟变量、面板数据等)的模型选择和处理、联立方程、VEC模型、VAR模型、条件异方差模型等;第三层次包括有序因变量、面板VAR、神经网络、分位数模型、季节调整模型等等。模型,建立一套研究范式,然后按此模型进行研究。

选题与预估计

问题1:暂定一个题目(包括研究对象、研究问题、拟使用的理论或方法等方面,可使用副标题,副标题一般指向研究方法或研究角度)。

问题2:给出研究目标与研究问题,并初步进行回答(研究之前必须要有预设的初步结论。所谓“实证分析”,可以将其看作是对所提出的初步结论的检验)。

问题3:给出文献综述(要求:①文献综述的内容必须与你的研究紧密相关,即根据自己研究的问题或内容梳理、概括相关文献(要注意相关性);②文献综述要能构成你研究的基础,可将其视为你的研究的理论知识平台或背景;③文献综述必须能够引出你所研究的问题,即根据自己的边际贡献或研究特点评述已有文献(要注意针对性))。

问题4:论证你所研究的问题以及其重要性(先列出“重要性”的论点,然后给出相应的论据)。

问题5:尝试运用计量软件(如:Eviews、SPSS、STATA或R)导入数据,对数据进行初步描述性分析与预估计。

实证研究论文常用句式

论文的研究方法有哪些

论文的研究方法有哪些,研究方法是在一个研究中发现新的现象、新的事物,或者提出新理论、观点,论文研究方法需要大量阅读法,找到不足和创新点,来完善自己的论文,下面一起来学习一下论文的研究方法有哪些。

一、思维方法

思维方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中最常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等,它对于一切科学研究都具有普遍的指导意义。

二、内容分析法

内容分析法是一种对于传播内容进行客观,系统和定量的描述的研究方法。其实质是对传播内容所含信息量及其变化的分析,即由表征的有意义的词句推断出准确意义的过程。内容分析的过程是层层推理的`过程。

三、文献分析法

文献分析法主要指搜集、鉴别、整理文献,并通过对文献的研究,形成对事实科学认识的方法。文献分析法是一项经济且有效的信息收集方法,它通过对与工作相关的现有文献进行系统性的分析来获取工作信息。一般用于收集工作的原始信息,编制任务清单初稿。

四、数学方法

数学方法就是在撇开研究对象的其他一切特性的情况下,用数学工具对研究对象进行一系列量的处理,从而作出正确的说明和判断,得到以数字形式表述的成果。科学研究的对象是质和量的统一体,它们的质和量是紧密联系,质变和量变是互相制约的。要达到真正的科学认识,不仅要研究质的规定性,还必须重视对它们的量进行考察和分析,以便更准确地认识研究对象的本质特性。数学方法主要有统计处理和模糊数学分析方法。

一、规范研究法

会计理论研究的一般方法,它是根据一定的价值观念或经济理论对经济行为人的行为结果及产生这一结果的制度或政策进行评判,回答经济行为人的行为应该是什么的分析方法。

二、实证研究法

实证研究法是认识客观现象,向人们提供实在、有用、确定、精确的知识研究方法,其重点是研究现象本身“是什么”的问题。实证研究法试图超越或排斥价值判断,只揭示客观现象的内在构成因素及因素的普遍联系,归纳概括现象的本质及其运行规律。

三、案例分析法

案例分析法是指把实际工作中出现的问题作为案例,交给受训学员研究分析,培养学员们的分析能力、判断能力、解决问题及执行业务能力的培训方法,具体说来:

四、比较分析法

是通过实际数与基数的对比来提示实际数与基数之间的差异,借以了解经济活动的成绩和问题的一种分析方法。在科学探究活动中常常用到,他与等效替代法相似。

论文实证研究回归模型

一般情况下控制变量在各模型中是一样的。除非找到案例和佐证来支撑控制变量不一样的情况。基于楼主模型的表现,感觉control2有可能更适合当中介变量(在有理论支撑的情况下)。一般模型中两个变量的共线性不能太强。

如果不是都线性相关,而且因素又多的话,试试R型因子分析

在实证研究中「坏的控制」时常出现,当一个变量的加入使得回归结果与预期产生明显差异时,该变量可能是坏的控制在实证研究中,回归分析模型的建立除了需要关注因变量和自变量之外,我们还得重点关注一下控制变量对因变量的影响关系,有关控制变量的作用和设计思路的重要性。但是,在日常的学术工作中,不少学术同仁,尤其是那些处于学术初期阶段的学生,由于注重控制变量的重要性,他们十分关注和重视控制变量对因变量的显著性影响,即控制变量的系数显不显著的问题。由于控制变量作为模型设计中的重要参与者,我们期待控制变量的系数是通过显著性检验的,但如果他们的不显著,这类状况很容易让人揪心!或者,为什么在别人论文的模型中这个控制变量是显著的,而在我的研究回归模型中却不显著,这是为什么呢?如果显著的话,当然你会很高兴,但如果不显著,这个控制变量需不需要被剔除掉呢?类似地,近期就有粉丝朋友发帖问道:“请问控制变量不显著,需要把控制变量删除吗?”显然,这位粉丝朋友很重视自己的研究,关心自己设计是否有问题,这是非常谨慎的态度。但是,我们不得不承认一个现实情况:一个正常的实证分析模型不可能让所有的变量都能通过显著性检验的,如果要做到这种程度,你的研究设计可能会丢失一些重要的信息,譬如有些变量很重要,但不能因其不显著而将其剔除,否则审稿人会认为你没有做到位、设计的模型不够全面完美。为此,一般而言,一个实证回归分析模型中有两三个控制变量不显著,也是正常的现象,不要期待所有的变量都是显著的,也不要因为某个变量不显著而闹心,它只是数据处理过程中的一个常见现象,可能受到样本分布、模型设计等多重因素的影响导致的。当然,我们也想知道的是,如果控制变量不显著,会不会是什么原因造成的呢?我个人认为,控制变量不显著的原因可能是多样性的,有主观的也有客观,也包括你的操作方法是否正确。一般而言,控制变量不显著的可能性原因,主要体现在两个方面:一是客观原因,但需要保持目前模型设计的现状。首先,一个情况是在某个样本分布中,这个控制变量可能真没对因变量造成影响。也就是说,在确定的样本分布范围内,这两个变量之间的确没有显著的影响关系,控制变量并没有对因变量造成很显著的影响,所以在后续的回归分析中未能通过显著性检验。但是,在常规的情景下,考虑到这个变量的确是影响因变量的重要因素,所以这个控制变量即使不显著,也要被保留在模型中,可以说这是模型设计的基本原则。其次,控制变量不显著,可能是样本分布异质性造成的。换言之,在总样本分布下,由于不同样本(如行业、企业或地区)的异质性问题,控制变量在总样本中对因变量的影响可能被平滑掉了,如果通过分样本进行检验,也许就会发现在某类样本中控制变量的系数是显著的。当然,由此带来的这类分样本检验,也能为深入分析因果关系带来更为精彩的内容或成果。所以,在看待控制变量系数不显著的问题上,以上这点也是我们需要关注的地方。

相关百科

热门百科

首页
发表服务