首页

> 学术发表知识库

首页 学术发表知识库 问题

三端稳压电源模块论文参考文献

发布时间:

三端稳压电源模块论文参考文献

<电子技术课程设计>直流稳压电源课程设计任务书一:设计任务及要求:1. 设计任务设计一集成直流稳压电源,满足:(1)当输入电压在220V交流时,输出直流电压为6V。(2)输出纹波电压小于5mv,稳压系数<=0.01;(3)具有短路保护功能。(4) 最大输出电流为:Imax=1.0A;2.通过集成直流稳压电源的设计,要求学会:(1)选择变压器、整流二极管、滤波电容及集成稳压器来设计直流稳压电源。(2)掌握直流稳压电源的调试及主要技术指标的测试方法。3.设计要求(1) 电源变压器只做选择性设计;(2) 合理选择集成稳压器;(3) 完成全电路理论设计、绘制电路图;(4)撰写设计报告。 目录一.设计任务及要求:二.基本原理与分析三.三端集成稳压器四.稳压电源的技术指标及对稳压电源的要求五.集成电路选用时应注意的问题六.参数性能指标及测试方法七.心得体会八.参考文献附:部分二、原理与分析1.直流稳压电源的基本原理直流稳压电源一般由电源变压器T、整流滤波电路及稳压电路所组成,基本框图如下。各部分的作用: (1)电源变压器T的作用是将电网220V的交流电压变换成整流滤波电路所需要的交流电压Ui。变压器副边与原边的功率比为P2/ P1=η,式中η是变压器的效率。(2)整流滤波电路:整流电路将交流电压Ui变换成脉动的直流电压。再经滤波电路滤除较大的纹波成分,输出纹波较小的直流电压U1。常用的整流滤波电路有全波整流滤波、桥式整流滤波等。 各滤波电容C满足RL-C=(3~5)T/2,或中T为输入交流信号周期,RL为整流滤波电路的等效负载电阻。 (3)三端集成稳压器:常用的集成稳压器有固定式三端稳压器与可调式三端稳压器。常用可调式正压集成稳压器有CW317(LM317)系列,它们的输出电压从1.25V-37伏可调,最简的电路外接元件只需一个固定电阻和一只电位器。其芯片内有过渡、过热和安全工作区保护,最大输出电流为1.5A。其典型电路如图2,其中电阻R1与电位器R2组成输出电压调节器,输出电压Uo的表达式为:Uo=1.25(1+R2/R1)式中R1一般取120-240欧姆,输出端与调整端的压差为稳压器的基准电压(典型值为1.25V)。 2.稳压电流的性能指标及测试方法 稳压电源的技术指标分为两种:一种是特性指标,包括允许输入电压、输出电压、输出电流及输出电压调节范围等;另一种是质量指标,用来衡量输出直流电压的稳定程度,包括稳压系数(或电压调整率)、输出电阻(或电流调整率)、纹波电压(纹波系数)及温度系数。测试电路如图3。 图3 稳压电源性能指标测试电路(1) 纹波电压:叠加在输出电压上的交流电压分量。用示波器观测其峰峰值一般为毫伏量级。也可用交流毫伏表测量其有效值,但因纹波不是正弦波,所以有一定的误差。(2)稳压系数:在负载电流、环境温度不变的情况下,输入电压的相对变化引起输出电压的相对变化,即:(3) 电压调整率:输入电压相对变化为±10%时的输出电压相对变化量,稳压系数和电压调整率均说明输入电压变化对输出电压的影响,因此只需测试其中之一即可。(4) 输出电阻及电流调整率输出电阻与放大器的输出电阻相同,其值为当输入电压不变时,输出电压变化量与输出电流变化量之比的绝对值.电流调整率:输出电流从0变到最大值时所产生的输出电压相对变化值。输出电阻和电流调整率均说明负载电流变化对输出电压的影响,因此也只需测试其中之一即可。直流稳压电源设计 (未经整理仅供参考) 直流稳压电源设计 一. 设计任务与设计的基本要求: (1).直流稳压电源的任务: 利用所学的知识设计并制作交流变换为直流的稳压电源. (2)直流稳压电源的基本要求: A.稳压电源 在输入电压为220V.50HZ. 电压变化范围为+10%~-10%条件下: a. 输出电压可调范围为:+9V~+12V; b. 最大输出电流为:Imax=1.5A; c. 电压调整率≤0.2%(输入电压220V变化范围+10%~-10%下,满载); d. 负载调整率≤2%(最低输入电压下,空载到满载); e. 纹波电压(峰-峰值) ≤5mV(最低输入电压下,满载); f. 效率≥40%(输出电压为+9V,输入电压为220V下,满载); g. 具有过流保护及短路保护功能; B. 稳流电源 在输入电压固定为直流+12V的条件下; a. 输出电流为:4~20mA可调; b. 负载调整率≤2%(输入电压+12V,负载电阻由200Ω~300Ω变化时,输出电流为20mA时的相对变化率); C. DC-DC变换器 在输入电压为+9V~+12V条件下: a. 输出电压为+100V,输出电流为10mA; b. 电压调整率≤2%(输入电压变化范围+9V~+12V); c. 负载调整率≤2%(输入电压+12V下,空载到满载); d. 纹波电压(峰-峰值) ≤100mA(输入电压+9V下,满载); 注:以下是本电路的发挥部分: (1)扩充功能: a. 排除短路故障后,自动恢复为正常状态; b. 过热保护; c. 防止开, 关机时产生的”过冲”; (2)提高稳压电源的技术指标; a. 提高稳压调整率和负载调整率; b. 扩大输出电压调节范围和提高最大输出电流值. (3)改善DC-DC变换器的性能; a. 提高效率(在100V, 100mA下测试); b. 提高输出电压. (4)用数字显示输出电压和输出电流. 摘 要 本系统稳压电源部分采用电压调整器uA723外加调整管2SC3280实现此功能,再通过单片机MCS-51(89C51)来起控制电路,实现了扩充多种功能.稳流部分采用了三端稳压调整器LM317T实现.DC-DC变换器采用了两片PFM控制芯片MAX770来实现,使输出电压提高到+100V,输出电流最大可以达到100mA.电压调整,负载调整率及纹波电压均优于指标要求.可以说本系统比其它同类产品要好的多. 二.方案论证与比较 1.稳压电源部分 方案一:简单的并联型稳压电源; 并联型稳压电源的调整元件与负载并联,因而具有极低的输出电阻,动态特性好,电路简单,并具有自动保护功能;负载短路时调整管截止,可靠性高,但效率低,尤其是在小电流时调整管需承受很大的电流,损耗过大,因而不能采用此方案. 方案二:输出可调的开关电源; 开关电源的功能元件工作在开关状态,因而效率高,输出功率大;且容易实现短路保护与过流保护,但是电路比较复杂,设计繁琐,在低输出电压时开关频率低,纹波大,稳定度极差,因而也不能采用此方案. 方案三:由uA723组成的零伏起调电源; uA723内部设有高精度基准电压源和高增益的放大器,外围电路比较简单,电压稳定度也比较高,其典型电压调整率为0.01%,负载调整率为0.03%,且热稳定性好,输出噪声也很小,还内设有过电流控制电路,使用安全可靠,具有较高的性价比,为首选方案,所以此方案为必选题. 2.稳流电源部分 方案一: 采用7805三端稳压器电源; 固定式三端稳压电源(7805)是由输出脚Vo,输入脚Vi和接地脚GND组成,它的稳压值为+5V,它属于CW78xx系列的稳压器,输入端接电容可以进一步的滤波,输出端也要接电容可以改善负载的瞬间影响,此电路的稳定性也比较好,只是采用的电容必须要漏电流要小的钽电容,如果采用电解电容,则电容量要比其它的数值要增加10倍,但是它不可以调整输出的直流电源;所以此方案不易采用. 方案二:采用LM317可调式三端稳压器电源; LM317可调式三端稳压器电源能够连续输出可调的直流电压. 不过它只能连续可调的正电压,稳压器内部含有过流,过热保护电路;由一个电阻(R)和一个可变电位器(RP)组成电压输出调节电路,输出电压为:Vo=1.25(1+RP/R).由此可见此稳压器的性能和稳压稳定都比上一个三端稳压电源要好,所以此此方案可选,此电源就选用了LM317三端稳压电源,也就是方案二. 3.DC-DC变换部分; 方案一:用正弦信号(几十赫兹以下)驱动硅钢型互感耦合变压器,经整流滤波后输出.由于硅钢的磁滞特性,这种电源的开关频率不算高,易出现磁饱和,因而不利于制作高效率的开关电源. 方案二:采用高频磁芯和开关特性好的VMOS管的PFM或PWM型开关电源,负载调整特性好,效率高,性能优良,但制作调试复杂,所以此方案也不于采纳, 方案三:采用充电泵型变换器,该类电源以电容代替电感作贮能元件,为一个或多个电容供电.该类电源的最大特点是元件易得,体积小,电路比较简单,无电感;但由于对充电泵的要求严格,不适合于工作在大负载条件下,因而在大多数电源中没有被广泛使用. 综合考虑效率,输出功率,输入输出电压,负载调整率,纹波系数,本设计选用方案二.考虑到PWM对磁性元件,开关元件特性的要求较低,因而较易实现.对于效率和纹波的要求可以通过仔细调整磁性元件的参数(L,Q,M等)使其工作在最佳状态,所以我们在选择方案的时候考虑到电路要简单,元件要容易找,还有在电路设计的时候避免遇到某些不必要的问题,所以我们选择了上述的方案中的第二个方案;第二个方案就能够达到我们的要求,的所以方案二我们采用了,利用开关特性和负载调整特性好及效率高,性能优良,而采用了它.(方案二) 三.直流稳压电源电路的方框图如下: 220V电源部分---变压部分---整流滤波部分---稳压电源稳流电源部分---+9V^+12V直流稳压电源方框图 四.电路原理及各部的分离电路; 1.稳压电路部分; 采用精密电压调整器uA723,外加大功率调整管以提供大电流输出.uA723的特点如下: ①无外接调整管时最大输出电流为:I=150mA; ②外接调整管时,输出电流最大可达到12A以上; ③最大输入电压为:Vmax=40V; ④输出电压可调整范围为: +9V~+12V; 具体的电路图如下图所示: 电源变压器的效率如下所示:(小型变压器) 副边功率P2/vA <1010^30 30^80 80^200 效率 η 0.6 0.7 0.8 0.85由uA723的特性可知:要使电路实现零伏起调,uA723的7脚至少要获得-2V的附加电压,本方案不采用多抽头的变压器,该-2V电压可通过由电容C1,C2和二极管D1,D2组成的倍压电路获得.其输出电压由电阻R1和齐纳二极管Z1固定-5.6V ,使uA723中的差分放大器在输出电压为0时仍能工作,主要的正电压通过整流桥和滤波电容C3从变压器获得.uA723的供电电压由齐纳二极管Z2固定在33V,以防止超过其极限电压值(40V).由BG2,BG3组成的达林顿管将输出电流提高到超过1A的范围. 在12脚和3脚间加0.6V的电压可调节极限电流值,该电压是电阻R9和电位器VR3是压降的总和,VR3的压降是VR3的电阻值与晶体管三极管BG1的集电极电流值的乘积,极限电流值可以通过电位器VR3连续调节. 输出电压由电位器VR2进行线性调节,电位器VR1用于调节零输出电压. 本设计还通过单片来实现了短路过流保护,过热保护,具体的电路图如下:过热保护:温度开关KT一端通过一个上拉电阻接正电源,另一端接地,当温度过高时开关断开,产生一个零电平跳变送给单片来进行处理. 过流检测和短路保护原理:采用单片机MCS-51(89C51)对输出电流进行周期性的检测,可以方便地实现短路保护及短路故障排除后自恢复的所有功能.过流或短路时,检测电路向单片P1口发出报警信号,单片证实后启动它的保护电路,经过短时间延时后继续查询P1口上的内容,如无报警信号,则电路又恢复到正常状态. 过热保护,发声报警等功能也直接由单片机(89C51)来实现控制. 2.稳流电源部分; LM317是三端可调式正电压调整器,正常工作时在其调整端与输出端之间有一个高稳定度的1.25V电压,利用该电压即可以获得可调的电流输出.实际中, LM317输出端与电位器之间串接了一个10Ω/1W的电阻,使最大电流限制在125mA左右,以免发生过流现象. 具体的电路图如下所示: 3.DC-DC变换部分; DC-DC变换器的核心部件是两片升压开关调节器MAX770,MAX770结合了PFM低的吸取电流和PWM大功率应用下效率高的特点,能比以往的PWM器件提供更大的电流. MAX770有以下的特点: ①开关频率较高(300KHZ),减小了电感的尺寸; ②在较宽输出电流范围内可以达到87%的效率; ③功耗比较低; 用MAX770制成的升压器如下图所示;由于MAX770对VMOS管的驱动能力有限,使用了一片MAX770很难实现本电路的性能指标,因此本电路采用了两级MAX770. 五. 测试方法与调试过程; 1.稳压电源部分; (1) 输出电压范围测试 调节可调电位器,用数字型万用表测出电阻两端的输出电压,最小值为0.821V,最大值为:24.61V. (2) 最大输出电流测试 将输出电压调整至9V,输出端接通可调电阻,串入数字万用表,测得最大输出电流为:2.06A. (3) 电压调整率测试 将调压变压器输出端接稳压电源的输入端,将稳压电源输出电压调整至9V,调节调压变压器,使其输出从176V升至到253V,用数字万用表测量负载两端的电压,测得最大电压变化量为:10mV,计算得电压调整率为:(0.01/9)*100%=0.11%. (4)负载调整率测试 空载时将输出电压调整至9V,在负载端接入300Ω/120W的变阻器,将变阻器从6Ω调整至100Ω,用数字万用表监视输出电压的变化,测得最大电压变化量为:0.04V,因此负载调整率为:(0.04/9)*100%=0.44%. (5)纹波电压测试 将电压输出调整至9V,外接一个6Ω的电阻,将示波器置于AC/5mV输入挡,测得负载上的纹波电压为:1mV. (6)效率测试 将电压输出调整至9V,外接一个6Ω的电阻,其输出功率P0=81/6=13.5W.在负载不变的情况下,测出稳压电源的交流输入电压为:12V,交流电流为:2.05A.因此输入功率Pi=12*2.05=24.7W(设功率因数为1),电源效率为(P0/Pi)*100%=(13.5/24.7)*100%=40%,达到上述所要求的指标. (7)过流保护及短路保护功能测试 将电压输出调至为9V,外接一个6Ω的电阻,用万用表测得输出电流为:0.说明过流保护功能正常.再将输出短路,现象如同上,说明短路保护功能一切正常. (8)采用单片机(89C51)来实现保护,检测 短路故障排除自恢复,过热保护,防止关机时产生的”过冲”均测试通过;一切正常. 2.稳流电源部分; (1) 输出电流测试 输入电压为+12V,改变外接电阻的大小,记录最小电流值Imin与最大电流Imax.Imax=45.40mA, Imin=1.46mA. (2) 负载调整率的测量 输入电压+12V,负载电阻由220Ω至300Ω之间变化,设定输出电流20mA,每上升20Ω测输出电流,数据如下所示: 电阻/Ω 200 220 240 260 280 300 电流/mA 19.71 19.72 19.70 19.70 19.70 19.70 负载调整率≈0.02/20.00=0.1%. 3. DC-DC变换器部分; (1) 输出电压电流测试 输入电压由+9V至+12V变化,负载接3.6KΩ/10W电阻,测得输出电压为+100.11V,输出电流为:30.7mA. (2) 电压调整率的测试 空载,输入电压由+9V至+12V变化,测得最大电压变化为:0.1V. (3) 负载调整率的测试 输入电压+12V,空载,测得输出电压 +100.1V;10KΩ/5W电阻,测得输出电压为: +100.0V. (4) 纹波电压测试 输入电压 +9V,接3.6KΩ/10W的电阻,示波置于交流AC/250mV挡,测得纹波电压.Vpp≈80mV. (5) 效率的测试 输入电流为:5A,输入电压为:11.8V时,测得输出电压为100.08V(3.6KΩ的电阻,电流为:27.8mA),计算可得出: η=64.3%. 六. 电路的结果分析 1. 稳压电路部分; (1) 输出电压的可调范围 由于本电路中uA723的7脚接-2V,因此可以实现从零伏起调,这也是本电路的特色之一,本电路实现了0^20V可调,超过指标要求. (2)最大输出电流 它由uA723的3脚所接电阻R9决定,计算公式为:Imax=0.6/R9,由于本电路中R9为0.33Ω,因此Imax限制为2A左右. (3)电压和负载调整率及纹波电压 优于指标要求,这是由uA723优良特性与方案设计思路决定的. (4)效率的测试 输出为9V,而输入为17V左右,因此有一部分功率被调整管吸收,从而导致了效率并不是很高. 2. 稳流电路部分; (1) Rmin=10Ω, Rmax=1010Ω I’min=1.25/1010≈1.24mA > Imin 受输入电压+12V与LM317内部压降约为1.7V的影响,可能的最大电流为: I’max=(12-1.7)/220≈46.82mA > Imax Imin>I’min是由于LM317在小电流负载下稳压性能变差造成的. Imax>,华东师范大学物理系万嘉若,林康运等编著,高等教育出版社,1986年3月. ◆ <<电子技术基础>>,华中工学院电子学教研室编,康华光主编,高等教育出版社,1982年6月. ◆<<电子线路设计>>,(第二版)华中科技大学谢自美主编,华中科技大学出版社,2000年5月.

<电子技术课程设计>直流稳压电源课程设计任务书一:设计任务及要求:1. 设计任务设计一集成直流稳压电源,满足:(1)当输入电压在220V交流时,输出直流电压为6V。(2)输出纹波电压小于5mv,稳压系数<=0.01;(3)具有短路保护功能。(4) 最大输出电流为:Imax=1.0A;2.通过集成直流稳压电源的设计,要求学会:(1)选择变压器、整流二极管、滤波电容及集成稳压器来设计直流稳压电源。(2)掌握直流稳压电源的调试及主要技术指标的测试方法。3.设计要求(1) 电源变压器只做选择性设计;(2) 合理选择集成稳压器;(3) 完成全电路理论设计、绘制电路图;(4)撰写设计报告。目录一.设计任务及要求:二.基本原理与分析三.三端集成稳压器四.稳压电源的技术指标及对稳压电源的要求五.集成电路选用时应注意的问题六.参数性能指标及测试方法七.心得体会八.参考文献附:部分二、原理与分析1.直流稳压电源的基本原理直流稳压电源一般由电源变压器T、整流滤波电路及稳压电路所组成,基本框图如下。各部分的作用:(1)电源变压器T的作用是将电网220V的交流电压变换成整流滤波电路所需要的交流电压Ui。变压器副边与原边的功率比为P2/ P1=η,式中η是变压器的效率。(2)整流滤波电路:整流电路将交流电压Ui变换成脉动的直流电压。再经滤波电路滤除较大的纹波成分,输出纹波较小的直流电压U1。常用的整流滤波电路有全波整流滤波、桥式整流滤波等。各滤波电容C满足RL-C=(3~5)T/2,或中T为输入交流信号周期,RL为整流滤波电路的等效负载电阻。(3)三端集成稳压器:常用的集成稳压器有固定式三端稳压器与可调式三端稳压器。常用可调式正压集成稳压器有CW317(LM317)系列,它们的输出电压从1.25V-37伏可调,最简的电路外接元件只需一个固定电阻和一只电位器。其芯片内有过渡、过热和安全工作区保护,最大输出电流为1.5A。其典型电路如图2,其中电阻R1与电位器R2组成输出电压调节器,输出电压Uo的表达式为:Uo=1.25(1+R2/R1)式中R1一般取120-240欧姆,输出端与调整端的压差为稳压器的基准电压(典型值为1.25V)。2.稳压电流的性能指标及测试方法稳压电源的技术指标分为两种:一种是特性指标,包括允许输入电压、输出电压、输出电流及输出电压调节范围等;另一种是质量指标,用来衡量输出直流电压的稳定程度,包括稳压系数(或电压调整率)、输出电阻(或电流调整率)、纹波电压(纹波系数)及温度系数。测试电路如图3。图3 稳压电源性能指标测试电路(1) 纹波电压:叠加在输出电压上的交流电压分量。用示波器观测其峰峰值一般为毫伏量级。也可用交流毫伏表测量其有效值,但因纹波不是正弦波,所以有一定的误差。(2)稳压系数:在负载电流、环境温度不变的情况下,输入电压的相对变化引起输出电压的相对变化,即:(3) 电压调整率:输入电压相对变化为±10%时的输出电压相对变化量,稳压系数和电压调整率均说明输入电压变化对输出电压的影响,因此只需测试其中之一即可。(4) 输出电阻及电流调整率输出电阻与放大器的输出电阻相同,其值为当输入电压不变时,输出电压变化量与输出电流变化量之比的绝对值.电流调整率:输出电流从0变到最大值时所产生的输出电压相对变化值。输出电阻和电流调整率均说明负载电流变化对输出电压的影响,因此也只需测试其中之一即可。直流稳压电源设计 (未经整理仅供参考)直流稳压电源设计一. 设计任务与设计的基本要求:(1).直流稳压电源的任务:利用所学的知识设计并制作交流变换为直流的稳压电源.(2)直流稳压电源的基本要求:A.稳压电源 在输入电压为220V.50HZ. 电压变化范围为+10%~-10%条件下:a. 输出电压可调范围为:+9V~+12V;b. 最大输出电流为:Imax=1.5A;c. 电压调整率≤0.2%(输入电压220V变化范围+10%~-10%下,满载);d. 负载调整率≤2%(最低输入电压下,空载到满载);e. 纹波电压(峰-峰值) ≤5mV(最低输入电压下,满载);f. 效率≥40%(输出电压为+9V,输入电压为220V下,满载);g. 具有过流保护及短路保护功能;B. 稳流电源 在输入电压固定为直流+12V的条件下;a. 输出电流为:4~20mA可调;b. 负载调整率≤2%(输入电压+12V,负载电阻由200Ω~300Ω变化时,输出电流为20mA时的相对变化率);C. DC-DC变换器 在输入电压为+9V~+12V条件下:a. 输出电压为+100V,输出电流为10mA;b. 电压调整率≤2%(输入电压变化范围+9V~+12V);c. 负载调整率≤2%(输入电压+12V下,空载到满载);d. 纹波电压(峰-峰值) ≤100mA(输入电压+9V下,满载);注:以下是本电路的发挥部分:(1)扩充功能:a. 排除短路故障后,自动恢复为正常状态; b. 过热保护;c. 防止开, 关机时产生的”过冲”;(2)提高稳压电源的技术指标;a. 提高稳压调整率和负载调整率;b. 扩大输出电压调节范围和提高最大输出电流值.(3)改善DC-DC变换器的性能;a. 提高效率(在100V, 100mA下测试);b. 提高输出电压.(4)用数字显示输出电压和输出电流.摘 要本系统稳压电源部分采用电压调整器uA723外加调整管2SC3280实现此功能,再通过单片机MCS-51(89C51)来起控制电路,实现了扩充多种功能.稳流部分采用了三端稳压调整器LM317T实现.DC-DC变换器采用了两片PFM控制芯片MAX770来实现,使输出电压提高到+100V,输出电流最大可以达到100mA.电压调整,负载调整率及纹波电压均优于指标要求.可以说本系统比其它同类产品要好的多.二.方案论证与比较1.稳压电源部分方案一:简单的并联型稳压电源;并联型稳压电源的调整元件与负载并联,因而具有极低的输出电阻,动态特性好,电路简单,并具有自动保护功能;负载短路时调整管截止,可靠性高,但效率低,尤其是在小电流时调整管需承受很大的电流,损耗过大,因而不能采用此方案.方案二:输出可调的开关电源;开关电源的功能元件工作在开关状态,因而效率高,输出功率大;且容易实现短路保护与过流保护,但是电路比较复杂,设计繁琐,在低输出电压时开关频率低,纹波大,稳定度极差,因而也不能采用此方案.方案三:由uA723组成的零伏起调电源;uA723内部设有高精度基准电压源和高增益的放大器,外围电路比较简单,电压稳定度也比较高,其典型电压调整率为0.01%,负载调整率为0.03%,且热稳定性好,输出噪声也很小,还内设有过电流控制电路,使用安全可靠,具有较高的性价比,为首选方案,所以此方案为必选题.2.稳流电源部分方案一: 采用7805三端稳压器电源;固定式三端稳压电源(7805)是由输出脚Vo,输入脚Vi和接地脚GND组成,它的稳压值为+5V,它属于CW78xx系列的稳压器,输入端接电容可以进一步的滤波,输出端也要接电容可以改善负载的瞬间影响,此电路的稳定性也比较好,只是采用的电容必须要漏电流要小的钽电容,如果采用电解电容,则电容量要比其它的数值要增加10倍,但是它不可以调整输出的直流电源;所以此方案不易采用.方案二:采用LM317可调式三端稳压器电源;LM317可调式三端稳压器电源能够连续输出可调的直流电压.不过它只能连续可调的正电压,稳压器内部含有过流,过热保护电路;由一个电阻(R)和一个可变电位器(RP)组成电压输出调节电路,输出电压为:Vo=1.25(1+RP/R).由此可见此稳压器的性能和稳压稳定都比上一个三端稳压电源要好,所以此此方案可选,此电源就选用了LM317三端稳压电源,也就是方案二.3.DC-DC变换部分;方案一:用正弦信号(几十赫兹以下)驱动硅钢型互感耦合变压器,经整流滤波后输出.由于硅钢的磁滞特性,这种电源的开关频率不算高,易出现磁饱和,因而不利于制作高效率的开关电源.方案二:采用高频磁芯和开关特性好的VMOS管的PFM或PWM型开关电源,负载调整特性好,效率高,性能优良,但制作调试复杂,所以此方案也不于采纳,方案三:采用充电泵型变换器,该类电源以电容代替电感作贮能元件,为一个或多个电容供电.该类电源的最大特点是元件易得,体积小,电路比较简单,无电感;但由于对充电泵的要求严格,不适合于工作在大负载条件下,因而在大多数电源中没有被广泛使用.综合考虑效率,输出功率,输入输出电压,负载调整率,纹波系数,本设计选用方案二.考虑到PWM对磁性元件,开关元件特性的要求较低,因而较易实现.对于效率和纹波的要求可以通过仔细调整磁性元件的参数(L,Q,M等)使其工作在最佳状态,所以我们在选择方案的时候考虑到电路要简单,元件要容易找,还有在电路设计的时候避免遇到某些不必要的问题,所以我们选择了上述的方案中的第二个方案;第二个方案就能够达到我们的要求,的所以方案二我们采用了,利用开关特性和负载调整特性好及效率高,性能优良,而采用了它.(方案二)三.直流稳压电源电路的方框图如下:220V电源部分---变压部分---整流滤波部分---稳压电源稳流电源部分---+9V^+12V直流稳压电源方框图四.电路原理及各部的分离电路;1.稳压电路部分;采用精密电压调整器uA723,外加大功率调整管以提供大电流输出.uA723的特点如下:①无外接调整管时最大输出电流为:I=150mA;②外接调整管时,输出电流最大可达到12A以上;③最大输入电压为:Vmax=40V;④输出电压可调整范围为: +9V~+12V;具体的电路图如下图所示:电源变压器的效率如下所示:(小型变压器)副边功率P2/vA <1010^30 30^80 80^200效率 η 0.6 0.7 0.8 0.85由uA723的特性可知:要使电路实现零伏起调,uA723的7脚至少要获得-2V的附加电压,本方案不采用多抽头的变压器,该-2V电压可通过由电容C1,C2和二极管D1,D2组成的倍压电路获得.其输出电压由电阻R1和齐纳二极管Z1固定-5.6V,使uA723中的差分放大器在输出电压为0时仍能工作,主要的正电压通过整流桥和滤波电容C3从变压器获得.uA723的供电电压由齐纳二极管Z2固定在33V,以防止超过其极限电压值(40V).由BG2,BG3组成的达林顿管将输出电流提高到超过1A的范围.在12脚和3脚间加0.6V的电压可调节极限电流值,该电压是电阻R9和电位器VR3是压降的总和,VR3的压降是VR3的电阻值与晶体管三极管BG1的集电极电流值的乘积,极限电流值可以通过电位器VR3连续调节.输出电压由电位器VR2进行线性调节,电位器VR1用于调节零输出电压.本设计还通过单片来实现了短路过流保护,过热保护,具体的电路图如下:过热保护:温度开关KT一端通过一个上拉电阻接正电源,另一端接地,当温度过高时开关断开,产生一个零电平跳变送给单片来进行处理.过流检测和短路保护原理:采用单片机MCS-51(89C51)对输出电流进行周期性的检测,可以方便地实现短路保护及短路故障排除后自恢复的所有功能.过流或短路时,检测电路向单片P1口发出报警信号,单片证实后启动它的保护电路,经过短时间延时后继续查询P1口上的内容,如无报警信号,则电路又恢复到正常状态.过热保护,发声报警等功能也直接由单片机(89C51)来实现控制.2.稳流电源部分;LM317是三端可调式正电压调整器,正常工作时在其调整端与输出端之间有一个高稳定度的1.25V电压,利用该电压即可以获得可调的电流输出.实际中,LM317输出端与电位器之间串接了一个10Ω/1W的电阻,使最大电流限制在125mA左右,以免发生过流现象.具体的电路图如下所示:3.DC-DC变换部分;DC-DC变换器的核心部件是两片升压开关调节器MAX770,MAX770结合了PFM低的吸取电流和PWM大功率应用下效率高的特点,能比以往的PWM器件提供更大的电流.MAX770有以下的特点:①开关频率较高(300KHZ),减小了电感的尺寸;②在较宽输出电流范围内可以达到87%的效率;③功耗比较低;用MAX770制成的升压器如下图所示;由于MAX770对VMOS管的驱动能力有限,使用了一片MAX770很难实现本电路的性能指标,因此本电路采用了两级MAX770.五. 测试方法与调试过程;1.稳压电源部分;(1) 输出电压范围测试调节可调电位器,用数字型万用表测出电阻两端的输出电压,最小值为0.821V,最大值为:24.61V.(2) 最大输出电流测试 将输出电压调整至9V,输出端接通可调电阻,串入数字万用表,测得最大输出电流为:2.06A.(3) 电压调整率测试将调压变压器输出端接稳压电源的输入端,将稳压电源输出电压调整至9V,调节调压变压器,使其输出从176V升至到253V,用数字万用表测量负载两端的电压,测得最大电压变化量为:10mV,计算得电压调整率为:(0.01/9)*100%=0.11%.(4)负载调整率测试空载时将输出电压调整至9V,在负载端接入300Ω/120W的变阻器,将变阻器从6Ω调整至100Ω,用数字万用表监视输出电压的变化,测得最大电压变化量为:0.04V,因此负载调整率为:(0.04/9)*100%=0.44%.(5)纹波电压测试 将电压输出调整至9V,外接一个6Ω的电阻,将示波器置于AC/5mV输入挡,测得负载上的纹波电压为:1mV.(6)效率测试将电压输出调整至9V,外接一个6Ω的电阻,其输出功率P0=81/6=13.5W.在负载不变的情况下,测出稳压电源的交流输入电压为:12V,交流电流为:2.05A.因此输入功率Pi=12*2.05=24.7W(设功率因数为1),电源效率为(P0/Pi)*100%=(13.5/24.7)*100%=40%,达到上述所要求的指标.(7)过流保护及短路保护功能测试将电压输出调至为9V,外接一个6Ω的电阻,用万用表测得输出电流为:0.说明过流保护功能正常.再将输出短路,现象如同上,说明短路保护功能一切正常.(8)采用单片机(89C51)来实现保护,检测 短路故障排除自恢复,过热保护,防止关机时产生的”过冲”均测试通过;一切正常.2.稳流电源部分;(1) 输出电流测试 输入电压为+12V,改变外接电阻的大小,记录最小电流值Imin与最大电流Imax.Imax=45.40mA,Imin=1.46mA.(2) 负载调整率的测量输入电压+12V,负载电阻由220Ω至300Ω之间变化,设定输出电流20mA,每上升20Ω测输出电流,数据如下所示:电阻/Ω 200 220 240 260 280 300电流/mA 19.71 19.72 19.70 19.70 19.70 19.70负载调整率≈0.02/20.00=0.1%.3. DC-DC变换器部分;(1) 输出电压电流测试输入电压由+9V至+12V变化,负载接3.6KΩ/10W电阻,测得输出电压为+100.11V,输出电流为:30.7mA.(2) 电压调整率的测试 空载,输入电压由+9V至+12V变化,测得最大电压变化为:0.1V.(3) 负载调整率的测试 输入电压+12V,空载,测得输出电压 +100.1V;10KΩ/5W电阻,测得输出电压为:+100.0V.(4) 纹波电压测试 输入电压 +9V,接3.6KΩ/10W的电阻,示波置于交流AC/250mV挡,测得纹波电压.Vpp≈80mV.(5) 效率的测试输入电流为:5A,输入电压为:11.8V时,测得输出电压为100.08V(3.6KΩ的电阻,电流为:27.8mA),计算可得出:η=64.3%.六. 电路的结果分析1. 稳压电路部分;(1) 输出电压的可调范围由于本电路中uA723的7脚接-2V,因此可以实现从零伏起调,这也是本电路的特色之一,本电路实现了0^20V可调,超过指标要求.(2)最大输出电流它由uA723的3脚所接电阻R9决定,计算公式为:Imax=0.6/R9,由于本电路中R9为0.33Ω,因此Imax限制为2A左右.(3)电压和负载调整率及纹波电压 优于指标要求,这是由uA723优良特性与方案设计思路决定的.(4)效率的测试 输出为9V,而输入为17V左右,因此有一部分功率被调整管吸收,从而导致了效率并不是很高.2. 稳流电路部分;(1) Rmin=10Ω, Rmax=1010ΩI’min=1.25/1010≈1.24mA > Imin受输入电压+12V与LM317内部压降约为1.7V的影响,可能的最大电流为: I’max=(12-1.7)/220≈46.82mA >ImaxImin>I’min是由于LM317在小电流负载下稳压性能变差造成的.Imax>,华东师范大学物理系万嘉若,林康运等编著,高等教育出版社,1986年3月.◆ <<电子技术基础>>,华中工学院电子学教研室编,康华光主编,高等教育出版社,1982年6月.◆<<电子线路设计>>,(第二版)华中科技大学谢自美主编,华中科技大学出版社,2000年5月.

那啥,这不是我强项。 找了点资料,自己凑合看看吧。希望对你有帮助:直流稳压电源的设计二、设计目的1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。2.学会直流稳压电源的设计方法和性能指标测试方法。3.培养实践技能,提高分析和解决实际问题的能力。三、设计任务及要求1.设计并制作一个连续可调直流稳压电源,主要技术指标要求:① 输出电压可调:Uo=+6V~+13V② 最大输出电流:Iomax=1A③ 输出电压变化量:ΔUo≤15mV④ 稳压系数:SV≤0.0032.设计电路结构,选择电路元件,计算确定元件参数,画出实用原理电路图。3.自拟实验方法、步骤及数据表格,提出测试所需仪器及元器件的规格、数量,交指导教师审核。4.批准后,进实验室进行组装、调试,并测试其主要性能参数。四、设计步骤1.电路图设计(1)确定目标:设计整个系统是由那些模块组成,各个模块之间的信号传输,并画出直流稳压电源方框图。(2)系统分析:根据系统功能,选择各模块所用电路形式。(3)参数选择:根据系统指标的要求,确定各模块电路中元件的参数。(4)总电路图:连接各模块电路。2.电路安装、调试(1)为提高学生的动手能力,学生自行设计印刷电路板,并焊接。(2)在每个模块电路的输入端加一信号,测试输出端信号,以验证每个模块能否达到所规定的指标。(3)重点测试稳压电路的稳压系数。(4)将各模块电路连起来,整机调试,并测量该系统的各项指标。五、总体设计思路1.直流稳压电源设计思路(1)电网供电电压交流220V(有效值)50Hz,要获得低压直流输出,首先必须采用电源变压器将电网电压降低获得所需要交流电压。(2)降压后的交流电压,通过整流电路变成单向直流电,但其幅度变化大(即脉动大)。(3)脉动大的直流电压须经过滤波电路变成平滑,脉动小的直流电,即将交流成份滤掉,保留其直流成份。(4)滤波后的直流电压,再通过稳压电路稳压,便可得到基本不受外界影响的稳定直流电压输出,供给负载RL。2.直流稳压电源原理直流稳压电源是一种将220V工频交流电转换成稳压输出的直流电压的装置,它需要变压、整流、滤波、稳压四个环节才能完成,见图1。 图1直流稳压电源方框图其中:(1)电源变压器:是降压变压器,它将电网220V交流电压变换成符合需要的交流电压,并送给整流电路,变压器的变比由变压器的副边电压确定。(2)整流电路:利用单向导电元件,把50Hz的正弦交流电变换成脉动的直流电(3)滤波电路:可以将整流电路输出电压中的交流成分大部分加以滤除,从而得到比较平滑的直流电压。(4)稳压电路:稳压电路的功能是使输出的直流电压稳定,不随交流电网电压和负载的变化而变化。整流电路常采用二极管单相全波整流电路,电路如图2所示。在u2的正半周内,二极管D1、D2导通,D3、D4截止;u2的负半周内,D3、D4导通,D1、D2截止。正负半周内部都有电流流过的负载电阻RL,且方向是一致的。电路的输出波形如图3所示。在桥式整流电路中,每个二极管都只在半个周期内导电,所以流过每个二极管的平均电流等于输出电流的平均值的一半,即 。电路中的每只二极管承受的最大反向电压为 (U2是变压器副边电压有效值)。在设计中,常利用电容器两端的电压不能突变和流过电感器的电流不能突变的特点,将电容器和负载电容并联或电容器与负载电阻串联,以达到使输出波形基本平滑的目的。选择电容滤波电路后,直流输出电压:Uo1=(1.1~1.2)U2,直流输出电流: (I2是变压器副边电流的有效值。),稳压电路可选集成三端稳压器电路。总体原理电路见图4。 3.设计方法简介(1)根据设计所要求的性能指标,选择集成三端稳压器。因为要求输出电压可调,所以选择三端可调式集成稳压器。可调式集成稳压器,常见主要有CW317、CW337。317系列稳压器输出连续可调的正电压,337系列稳压器输出连可调的负电压,可调范围为6V~13V,最大输出电流 为1.5A。稳压内部含有过流、过热保护电路,具有安全可靠,性能优良、不易损坏、使用方便等优点。其电压调整率和电流调整率均优于固定式集成稳压构成的可调电压稳压电源。电路系列的引脚功能相同,管脚图和典型电路如图5. 图5典型电路输出电压表达式为: 式中,1.25是集成稳压块输出端与调整端之间的固有参考电压 ,此电压加于给定电阻 两端,将产生一个恒定电流通过输出电压调节电位器 ,电阻 常取值 , 一般使用精密电位器,与其并联的电容器C可进一步减小输出电压的纹波。图中加入了二极管D,用于防止输出端短路时10µF大电容放电倒灌入三端稳压器而被损坏。输出电压可调范围:1.2V~37V输出负载电流:1.5A输入与输出工作压差ΔU=Ui-Uo:3~40V能满足设计要求,故选用稳压电路。(2)选择电源变压器1)确定副边电压U2:根据性能指标要求:Uomin=3V Uomax=9V又 ∵ Ui-Uomax≥(Ui-Uo)min Ui-Uoin≤(Ui-Uo)max其中:(Ui-Uoin)min=3V,(Ui-Uo)max=40V∴ 12V≤Ui≤43V此范围中可任选 :Ui=14V=Uo1根据 Uo1=(1.1~1.2)U2可得变压的副边电压: 2)确定变压器副边电流I2∵ Io1=Io又副边电流I2=(1.5~2)IO1 取IO=IOmax=800mA则I2=1.5*0.8A=1.2A3)选择变压器的功率变压器的输出功率:Po>I2U2=14.4W(3)选择整流电路中的二极管∵ 变压器的副边电压U2=12V∴ 桥式整流电路中的二极管承受的最高反向电压为: 桥式整流电路中二极管承受的最高平均电流为: 查手册选整流二极管IN4001,其参数为:反向击穿电压UBR=50V>17V最大整流电流IF=1A>0.4A(4)滤波电路中滤波电容的选择滤波电容的大小可用式 求得。1)求ΔUi:根据稳压电路的的稳压系数的定义:设计要求ΔUo≤15mV ,SV≤0.003 Uo=+3V~+9VUi=14V代入上式,则可求得ΔUi2)滤波电容C设定Io=Iomax=0.8A,t=0.01S则可求得C。电路中滤波电容承受的最高电压为 ,所以所选电容器的耐压应大于17V。注意: 因为大容量电解电容有一定的绕制电感分布电感,易引起自激振荡,形成高频干扰,所以稳压器的输入、输出端常 并入瓷介质小容量电容用来抵消电感效应,抑制高频干扰。六、实验设备及元器件1.万用表 2.示波器 3.交流毫伏表 4.三端可调的稳压器七、测试要求1.测试并记录电路中各环节的输出波形。2.测量稳压电源输出电压的调整范围及最大输出电流。3.测量输出电阻Ro。4.测量稳压系数。用改变输入交流电压的方法,模拟Ui的变化,测出对应的输出直流电压的变化,则可算出稳压系数SV. (注意: 用调压器使220V交流改变±10%。即ΔUi=44V)5.用毫伏表可测量输出直流电压中的交流纹波电压大小,并用示波器观察、记录其波形。6.分析测量结果,并讨论提出改进意见。八、设计报告要求1.设计目的。2.设计指标。3.总体设计框图,并说明每个模块所实现的功能。4.功能模块,可有多个方案,并进行方案论证与比较,要有详细的原理说明。5.总电路图设计,有原理说明。6.实现仪器,工具。7.分析测量结果,并讨论提出改进意见。8.总结:遇到的问题和解决办法、体会、意见、建议等。九、注意事项1.焊接时要对各个功能模块电路进行单个测试,需要时可设计一些临时电路用于调试。2.测试电路时,必须要保证焊接正确,才能打开电源,以防元器件烧坏。4. 按照原理图焊接时必须要保证可靠接地。十、此电路的误差分析综合分析可以知道在测试电路的过程中可能带来的误差因素有: ① 测得输出电流时接触点之间的微小电阻造成的误差; ② 电流表内阻串入回路造成的误差; ③ 测得纹波电压时示波器造成的误差; ④ 示波器, 万用表本身的准确度而造成的系统误差;可以通过以下的方法去改进此电路: ① 减小接触点的微小电阻; ② 根据电流表的内阻对测量结果可以进行修正; ③ 测得纹波时示波器采用手动同步; ④ 采用更高精确度的仪器去检测;十一、综合总结通过本次设计,让我们更进一步的了解到直流稳压电源的工作原理以及它的要求和性能指标.也让我们认识到在此次设计电路中所存在的问题;而通过不断的努力去解决这些问题.在解决设计问题的同时自己也在其中有所收获.我们这次设计的这个直流稳压电源电路;采用了电压调整管(uA723)外加调整管(2SC3280)来实现电压的调整部分;还通过单片机(89C51)来实现电路的控制,也实现了扩充多功能;而稳流部分可调式三端稳压电源管来实现。十二、参考文献资料◆<<电子线路基础>>,华东师范大学物理系万嘉若,林康运等编著,高等教育出版社.◆<<电子技术基础>>,华中工学院电子学教研室编,康华光主编,高等教育出版社。◆<<电子线路设计>>,(第二版)华中科技大学谢自美主编,华中科技大学出版社.

直流稳压电源论文参考文献

<电子技术课程设计>直流稳压电源课程设计任务书一:设计任务及要求:1. 设计任务设计一集成直流稳压电源,满足:(1)当输入电压在220V交流时,输出直流电压为6V。(2)输出纹波电压小于5mv,稳压系数<=0.01;(3)具有短路保护功能。(4) 最大输出电流为:Imax=1.0A;2.通过集成直流稳压电源的设计,要求学会:(1)选择变压器、整流二极管、滤波电容及集成稳压器来设计直流稳压电源。(2)掌握直流稳压电源的调试及主要技术指标的测试方法。3.设计要求(1) 电源变压器只做选择性设计;(2) 合理选择集成稳压器;(3) 完成全电路理论设计、绘制电路图;(4)撰写设计报告。 目录一.设计任务及要求:二.基本原理与分析三.三端集成稳压器四.稳压电源的技术指标及对稳压电源的要求五.集成电路选用时应注意的问题六.参数性能指标及测试方法七.心得体会八.参考文献附:部分二、原理与分析1.直流稳压电源的基本原理直流稳压电源一般由电源变压器T、整流滤波电路及稳压电路所组成,基本框图如下。各部分的作用: (1)电源变压器T的作用是将电网220V的交流电压变换成整流滤波电路所需要的交流电压Ui。变压器副边与原边的功率比为P2/ P1=η,式中η是变压器的效率。(2)整流滤波电路:整流电路将交流电压Ui变换成脉动的直流电压。再经滤波电路滤除较大的纹波成分,输出纹波较小的直流电压U1。常用的整流滤波电路有全波整流滤波、桥式整流滤波等。 各滤波电容C满足RL-C=(3~5)T/2,或中T为输入交流信号周期,RL为整流滤波电路的等效负载电阻。 (3)三端集成稳压器:常用的集成稳压器有固定式三端稳压器与可调式三端稳压器。常用可调式正压集成稳压器有CW317(LM317)系列,它们的输出电压从1.25V-37伏可调,最简的电路外接元件只需一个固定电阻和一只电位器。其芯片内有过渡、过热和安全工作区保护,最大输出电流为1.5A。其典型电路如图2,其中电阻R1与电位器R2组成输出电压调节器,输出电压Uo的表达式为:Uo=1.25(1+R2/R1)式中R1一般取120-240欧姆,输出端与调整端的压差为稳压器的基准电压(典型值为1.25V)。 2.稳压电流的性能指标及测试方法 稳压电源的技术指标分为两种:一种是特性指标,包括允许输入电压、输出电压、输出电流及输出电压调节范围等;另一种是质量指标,用来衡量输出直流电压的稳定程度,包括稳压系数(或电压调整率)、输出电阻(或电流调整率)、纹波电压(纹波系数)及温度系数。测试电路如图3。 图3 稳压电源性能指标测试电路(1) 纹波电压:叠加在输出电压上的交流电压分量。用示波器观测其峰峰值一般为毫伏量级。也可用交流毫伏表测量其有效值,但因纹波不是正弦波,所以有一定的误差。(2)稳压系数:在负载电流、环境温度不变的情况下,输入电压的相对变化引起输出电压的相对变化,即:(3) 电压调整率:输入电压相对变化为±10%时的输出电压相对变化量,稳压系数和电压调整率均说明输入电压变化对输出电压的影响,因此只需测试其中之一即可。(4) 输出电阻及电流调整率输出电阻与放大器的输出电阻相同,其值为当输入电压不变时,输出电压变化量与输出电流变化量之比的绝对值.电流调整率:输出电流从0变到最大值时所产生的输出电压相对变化值。输出电阻和电流调整率均说明负载电流变化对输出电压的影响,因此也只需测试其中之一即可。直流稳压电源设计 (未经整理仅供参考) 直流稳压电源设计 一. 设计任务与设计的基本要求: (1).直流稳压电源的任务: 利用所学的知识设计并制作交流变换为直流的稳压电源. (2)直流稳压电源的基本要求: A.稳压电源 在输入电压为220V.50HZ. 电压变化范围为+10%~-10%条件下: a. 输出电压可调范围为:+9V~+12V; b. 最大输出电流为:Imax=1.5A; c. 电压调整率≤0.2%(输入电压220V变化范围+10%~-10%下,满载); d. 负载调整率≤2%(最低输入电压下,空载到满载); e. 纹波电压(峰-峰值) ≤5mV(最低输入电压下,满载); f. 效率≥40%(输出电压为+9V,输入电压为220V下,满载); g. 具有过流保护及短路保护功能; B. 稳流电源 在输入电压固定为直流+12V的条件下; a. 输出电流为:4~20mA可调; b. 负载调整率≤2%(输入电压+12V,负载电阻由200Ω~300Ω变化时,输出电流为20mA时的相对变化率); C. DC-DC变换器 在输入电压为+9V~+12V条件下: a. 输出电压为+100V,输出电流为10mA; b. 电压调整率≤2%(输入电压变化范围+9V~+12V); c. 负载调整率≤2%(输入电压+12V下,空载到满载); d. 纹波电压(峰-峰值) ≤100mA(输入电压+9V下,满载); 注:以下是本电路的发挥部分: (1)扩充功能: a. 排除短路故障后,自动恢复为正常状态; b. 过热保护; c. 防止开, 关机时产生的”过冲”; (2)提高稳压电源的技术指标; a. 提高稳压调整率和负载调整率; b. 扩大输出电压调节范围和提高最大输出电流值. (3)改善DC-DC变换器的性能; a. 提高效率(在100V, 100mA下测试); b. 提高输出电压. (4)用数字显示输出电压和输出电流. 摘 要 本系统稳压电源部分采用电压调整器uA723外加调整管2SC3280实现此功能,再通过单片机MCS-51(89C51)来起控制电路,实现了扩充多种功能.稳流部分采用了三端稳压调整器LM317T实现.DC-DC变换器采用了两片PFM控制芯片MAX770来实现,使输出电压提高到+100V,输出电流最大可以达到100mA.电压调整,负载调整率及纹波电压均优于指标要求.可以说本系统比其它同类产品要好的多. 二.方案论证与比较 1.稳压电源部分 方案一:简单的并联型稳压电源; 并联型稳压电源的调整元件与负载并联,因而具有极低的输出电阻,动态特性好,电路简单,并具有自动保护功能;负载短路时调整管截止,可靠性高,但效率低,尤其是在小电流时调整管需承受很大的电流,损耗过大,因而不能采用此方案. 方案二:输出可调的开关电源; 开关电源的功能元件工作在开关状态,因而效率高,输出功率大;且容易实现短路保护与过流保护,但是电路比较复杂,设计繁琐,在低输出电压时开关频率低,纹波大,稳定度极差,因而也不能采用此方案. 方案三:由uA723组成的零伏起调电源; uA723内部设有高精度基准电压源和高增益的放大器,外围电路比较简单,电压稳定度也比较高,其典型电压调整率为0.01%,负载调整率为0.03%,且热稳定性好,输出噪声也很小,还内设有过电流控制电路,使用安全可靠,具有较高的性价比,为首选方案,所以此方案为必选题. 2.稳流电源部分 方案一: 采用7805三端稳压器电源; 固定式三端稳压电源(7805)是由输出脚Vo,输入脚Vi和接地脚GND组成,它的稳压值为+5V,它属于CW78xx系列的稳压器,输入端接电容可以进一步的滤波,输出端也要接电容可以改善负载的瞬间影响,此电路的稳定性也比较好,只是采用的电容必须要漏电流要小的钽电容,如果采用电解电容,则电容量要比其它的数值要增加10倍,但是它不可以调整输出的直流电源;所以此方案不易采用. 方案二:采用LM317可调式三端稳压器电源; LM317可调式三端稳压器电源能够连续输出可调的直流电压. 不过它只能连续可调的正电压,稳压器内部含有过流,过热保护电路;由一个电阻(R)和一个可变电位器(RP)组成电压输出调节电路,输出电压为:Vo=1.25(1+RP/R).由此可见此稳压器的性能和稳压稳定都比上一个三端稳压电源要好,所以此此方案可选,此电源就选用了LM317三端稳压电源,也就是方案二. 3.DC-DC变换部分; 方案一:用正弦信号(几十赫兹以下)驱动硅钢型互感耦合变压器,经整流滤波后输出.由于硅钢的磁滞特性,这种电源的开关频率不算高,易出现磁饱和,因而不利于制作高效率的开关电源. 方案二:采用高频磁芯和开关特性好的VMOS管的PFM或PWM型开关电源,负载调整特性好,效率高,性能优良,但制作调试复杂,所以此方案也不于采纳, 方案三:采用充电泵型变换器,该类电源以电容代替电感作贮能元件,为一个或多个电容供电.该类电源的最大特点是元件易得,体积小,电路比较简单,无电感;但由于对充电泵的要求严格,不适合于工作在大负载条件下,因而在大多数电源中没有被广泛使用. 综合考虑效率,输出功率,输入输出电压,负载调整率,纹波系数,本设计选用方案二.考虑到PWM对磁性元件,开关元件特性的要求较低,因而较易实现.对于效率和纹波的要求可以通过仔细调整磁性元件的参数(L,Q,M等)使其工作在最佳状态,所以我们在选择方案的时候考虑到电路要简单,元件要容易找,还有在电路设计的时候避免遇到某些不必要的问题,所以我们选择了上述的方案中的第二个方案;第二个方案就能够达到我们的要求,的所以方案二我们采用了,利用开关特性和负载调整特性好及效率高,性能优良,而采用了它.(方案二) 三.直流稳压电源电路的方框图如下: 220V电源部分---变压部分---整流滤波部分---稳压电源稳流电源部分---+9V^+12V直流稳压电源方框图 四.电路原理及各部的分离电路; 1.稳压电路部分; 采用精密电压调整器uA723,外加大功率调整管以提供大电流输出.uA723的特点如下: ①无外接调整管时最大输出电流为:I=150mA; ②外接调整管时,输出电流最大可达到12A以上; ③最大输入电压为:Vmax=40V; ④输出电压可调整范围为: +9V~+12V; 具体的电路图如下图所示: 电源变压器的效率如下所示:(小型变压器) 副边功率P2/vA <1010^30 30^80 80^200 效率 η 0.6 0.7 0.8 0.85由uA723的特性可知:要使电路实现零伏起调,uA723的7脚至少要获得-2V的附加电压,本方案不采用多抽头的变压器,该-2V电压可通过由电容C1,C2和二极管D1,D2组成的倍压电路获得.其输出电压由电阻R1和齐纳二极管Z1固定-5.6V ,使uA723中的差分放大器在输出电压为0时仍能工作,主要的正电压通过整流桥和滤波电容C3从变压器获得.uA723的供电电压由齐纳二极管Z2固定在33V,以防止超过其极限电压值(40V).由BG2,BG3组成的达林顿管将输出电流提高到超过1A的范围. 在12脚和3脚间加0.6V的电压可调节极限电流值,该电压是电阻R9和电位器VR3是压降的总和,VR3的压降是VR3的电阻值与晶体管三极管BG1的集电极电流值的乘积,极限电流值可以通过电位器VR3连续调节. 输出电压由电位器VR2进行线性调节,电位器VR1用于调节零输出电压. 本设计还通过单片来实现了短路过流保护,过热保护,具体的电路图如下:过热保护:温度开关KT一端通过一个上拉电阻接正电源,另一端接地,当温度过高时开关断开,产生一个零电平跳变送给单片来进行处理. 过流检测和短路保护原理:采用单片机MCS-51(89C51)对输出电流进行周期性的检测,可以方便地实现短路保护及短路故障排除后自恢复的所有功能.过流或短路时,检测电路向单片P1口发出报警信号,单片证实后启动它的保护电路,经过短时间延时后继续查询P1口上的内容,如无报警信号,则电路又恢复到正常状态. 过热保护,发声报警等功能也直接由单片机(89C51)来实现控制. 2.稳流电源部分; LM317是三端可调式正电压调整器,正常工作时在其调整端与输出端之间有一个高稳定度的1.25V电压,利用该电压即可以获得可调的电流输出.实际中, LM317输出端与电位器之间串接了一个10Ω/1W的电阻,使最大电流限制在125mA左右,以免发生过流现象. 具体的电路图如下所示: 3.DC-DC变换部分; DC-DC变换器的核心部件是两片升压开关调节器MAX770,MAX770结合了PFM低的吸取电流和PWM大功率应用下效率高的特点,能比以往的PWM器件提供更大的电流. MAX770有以下的特点: ①开关频率较高(300KHZ),减小了电感的尺寸; ②在较宽输出电流范围内可以达到87%的效率; ③功耗比较低; 用MAX770制成的升压器如下图所示;由于MAX770对VMOS管的驱动能力有限,使用了一片MAX770很难实现本电路的性能指标,因此本电路采用了两级MAX770. 五. 测试方法与调试过程; 1.稳压电源部分; (1) 输出电压范围测试 调节可调电位器,用数字型万用表测出电阻两端的输出电压,最小值为0.821V,最大值为:24.61V. (2) 最大输出电流测试 将输出电压调整至9V,输出端接通可调电阻,串入数字万用表,测得最大输出电流为:2.06A. (3) 电压调整率测试 将调压变压器输出端接稳压电源的输入端,将稳压电源输出电压调整至9V,调节调压变压器,使其输出从176V升至到253V,用数字万用表测量负载两端的电压,测得最大电压变化量为:10mV,计算得电压调整率为:(0.01/9)*100%=0.11%. (4)负载调整率测试 空载时将输出电压调整至9V,在负载端接入300Ω/120W的变阻器,将变阻器从6Ω调整至100Ω,用数字万用表监视输出电压的变化,测得最大电压变化量为:0.04V,因此负载调整率为:(0.04/9)*100%=0.44%. (5)纹波电压测试 将电压输出调整至9V,外接一个6Ω的电阻,将示波器置于AC/5mV输入挡,测得负载上的纹波电压为:1mV. (6)效率测试 将电压输出调整至9V,外接一个6Ω的电阻,其输出功率P0=81/6=13.5W.在负载不变的情况下,测出稳压电源的交流输入电压为:12V,交流电流为:2.05A.因此输入功率Pi=12*2.05=24.7W(设功率因数为1),电源效率为(P0/Pi)*100%=(13.5/24.7)*100%=40%,达到上述所要求的指标. (7)过流保护及短路保护功能测试 将电压输出调至为9V,外接一个6Ω的电阻,用万用表测得输出电流为:0.说明过流保护功能正常.再将输出短路,现象如同上,说明短路保护功能一切正常. (8)采用单片机(89C51)来实现保护,检测 短路故障排除自恢复,过热保护,防止关机时产生的”过冲”均测试通过;一切正常. 2.稳流电源部分; (1) 输出电流测试 输入电压为+12V,改变外接电阻的大小,记录最小电流值Imin与最大电流Imax.Imax=45.40mA, Imin=1.46mA. (2) 负载调整率的测量 输入电压+12V,负载电阻由220Ω至300Ω之间变化,设定输出电流20mA,每上升20Ω测输出电流,数据如下所示: 电阻/Ω 200 220 240 260 280 300 电流/mA 19.71 19.72 19.70 19.70 19.70 19.70 负载调整率≈0.02/20.00=0.1%. 3. DC-DC变换器部分; (1) 输出电压电流测试 输入电压由+9V至+12V变化,负载接3.6KΩ/10W电阻,测得输出电压为+100.11V,输出电流为:30.7mA. (2) 电压调整率的测试 空载,输入电压由+9V至+12V变化,测得最大电压变化为:0.1V. (3) 负载调整率的测试 输入电压+12V,空载,测得输出电压 +100.1V;10KΩ/5W电阻,测得输出电压为: +100.0V. (4) 纹波电压测试 输入电压 +9V,接3.6KΩ/10W的电阻,示波置于交流AC/250mV挡,测得纹波电压.Vpp≈80mV. (5) 效率的测试 输入电流为:5A,输入电压为:11.8V时,测得输出电压为100.08V(3.6KΩ的电阻,电流为:27.8mA),计算可得出: η=64.3%. 六. 电路的结果分析 1. 稳压电路部分; (1) 输出电压的可调范围 由于本电路中uA723的7脚接-2V,因此可以实现从零伏起调,这也是本电路的特色之一,本电路实现了0^20V可调,超过指标要求. (2)最大输出电流 它由uA723的3脚所接电阻R9决定,计算公式为:Imax=0.6/R9,由于本电路中R9为0.33Ω,因此Imax限制为2A左右. (3)电压和负载调整率及纹波电压 优于指标要求,这是由uA723优良特性与方案设计思路决定的. (4)效率的测试 输出为9V,而输入为17V左右,因此有一部分功率被调整管吸收,从而导致了效率并不是很高. 2. 稳流电路部分; (1) Rmin=10Ω, Rmax=1010Ω I’min=1.25/1010≈1.24mA > Imin 受输入电压+12V与LM317内部压降约为1.7V的影响,可能的最大电流为: I’max=(12-1.7)/220≈46.82mA > Imax Imin>I’min是由于LM317在小电流负载下稳压性能变差造成的. Imax>,华东师范大学物理系万嘉若,林康运等编著,高等教育出版社,1986年3月. ◆ <<电子技术基础>>,华中工学院电子学教研室编,康华光主编,高等教育出版社,1982年6月. ◆<<电子线路设计>>,(第二版)华中科技大学谢自美主编,华中科技大学出版社,2000年5月.

[1]胡辉、《单片机原理及应用设计》、中国水利水电出版社、2005 [2]杨素行、《模拟电子技术基础简明教程》、高等教育出版社、2008 [3]余孟尝、《数字电子技术基础简明教程》、高等教育出版社、2007 [4]谭浩强、《C程序设计》、清华大学出版社、2007 [5]龚尚福、《微机原理与接口技术》、西安电子科技大学出版社、2006 [6]何希才 张明莉、《新型稳压电源及其应用实例》、电子工业出版社、2004 [7]裴云庆 杨旭 王兆安、《开关稳压电源的设计和应用》、机械工业出版社、2010[8]唐竞新.数字电子电路[M].第1版.北京:清华大学出版社,2003[9]康华光.电子技术基础[M].数字部分.第4版.北京:高等教育出版社,1998[10]电子工程手册编委会等.中外集成电路简明速查手册[M]---TTL,CMOS.北京电子工业出版社,1991[11]杨长春.论数字技术[J].《电子报》合订本.成都:四川科学技术出版社,2002.12[12]睢丙东编.《单片机实用技术》.北京: 清华大学出版社,2005.[13]胡汉才编.《单片机原理及其接口技术》.北京:清华大学出版社,2004年.

串联稳压电源设计论文参考文献

注意: 获取全套资源,请见文末说明…

设计要求 1、输出电压在1.25V~37V可调; 2、最大输出电流为1.5A; 3、电压调整精度达0.1%;

摘要 直流稳压电源由电源变换器、桥式整流滤波电路以及稳压电路构成。变压器将工频50Hz 220V的交流家用电源变为低压交流电源,再利用整流电路将交流电压变为单向的脉动直流电压,通过滤波电路滤除脉动直流中的交流成分。稳压电路使输出保持稳定的直流电压。本设计主要采用直流稳压构成集成稳压电路,通过变压,整流,滤波,稳压过程将220V交流电,变为稳定的直流电压,并实现电压可在1.25V-37V可调,整个设计由Multisim 仿真实现。

仿真结果分析 本设计内容详细,涵盖 稳压电路的介绍与分析、变压器参数的计算与设置、电阻的计算与选取、保护电路分析、仿真结果分析 等内容。让您对直流可调稳压电源设计过程一目了然。

(1)220V、50Hz单相工频交流电经电源变压器降压后电压有效值的结果为:21.4V,如图所示。

(2)整流、滤波后进入稳压电路的电压为:39.1V ,仿真结果如下。

(3)可调直流稳压的电压调节范围为: 1.26V~37V,满足设计要求。

分享内容有 (1)直流可调稳压电源完整版文档【Multisim版】 (2)Multisim仿真文件 (3)相关参考资料

资源截图如下

1.概述1.1课题名称:串联型直流稳压电源1.2设计目的和要求:设计并制作用晶体管、集成运算放大器电阻、电阻器、电容组成的串联型直流稳压电源。指标:1、输入电压:220V,50Hz交流电;2、输出电压:9V以下直流电压;3、输出电流:最大电流为1A; 4、保护电路:过流保护、短路保护。2.系统总体方案 图1系统总体电路图3.各部分功能模块介绍(功能描述)3.1主要原器件介绍(1)变压器的设计和选择本次课程设计的要求是输出为3V-6V、6V-9V、9V-12V的稳压电源,输出电压较低,而一般的调整管的饱和管压降在2-3伏左右,由 , 为饱和管压降,而 =12V为输出最大电压, =3V为最小的输入电压,以饱和管压降 =3V计算,为了使调整管工作在放大区,输入电压最小不能小于15V,为保险起见,可以选择220V-15V的变压器,再由P=UI可知,变压器的功率应该为1A×15V=15w,所以变压器的功率绝对不能低于15w,由于串联稳压电源工作时产生的热量较大,效率不高,所以变压器功率需要选择相对大些的变压器。结合市场上常见的变压器的型号,可以选择常见的变压范围为220V-15V,额定功率20W,额定电流2A的变压器。(2)整流电路的设计及整流二极管的选择 由于输出电流最大只要求1A,电流比较低,所以整流电路的设计可以选择常见的单相桥式整流电路,由4个串并联的二极管组成,具体电路如图3所示。 图2单相桥式整流电路二极管的选择:当忽略二极管的开启电压与导通压降,且当负载为纯阻性负载时,我们可以得到二极管的平均电压为 : = = =0.9 其中 为变压器次级交流电压的有效值。我们可以求得 =17v。对于全波整流来说,如果两个次级线圈输出电压有效值为 ,则处于截止状态的二极管承受的最大反向电压将是 ,即为42.42v考虑电网波动(通常波动为10%,为保险起见取30%的波动)我们可以得到实际的 应该大于22.1V,最大反向电压应该大于55.2V。在输出电流最大为1A的情况下我们可以选择额定电流为2A,反向耐压为1000V的二极管IN4007.(3)滤波电容的选择当滤波电容 偏小时,滤波器输出电压脉动系数大;而 偏大时,整流二极管导通角θ偏小,整流管峰值电流增大。不仅对整流二极管参数要求高,另一方面,整流电流波形与正弦电压波形偏离大,谐波失真严重,功率因数低。所以电容的取值应当有一个范围,由前面的计算我们已经得出变压器的次级线圈电压为15V,当输出电流为1A时,我们可以求得电路的负载为18Ω时,我们可以根据滤波电容的计算公式:C=(3~5) 来求滤波电容的取值范围,其中在电路频率为50HZ的情况下, T为20ms则电容的取值范围为1667-2750uF,保险起见我们可以取标准值为2200uF额定电压为35V的铝点解电容。另外,由于实际电阻或电路中可能存在寄生电感和寄生电容等因素,电路中极有可能产生高频信号,所以需要一个小的陶瓷电容来滤去这些高频信号。我们可以选择一个50uF的陶瓷电容来作为高频滤波电容。(4)稳压电路的设计 稳压电路组要由四部分构成:调整管,基准稳压电路,比较放大电路,采样电路。当采样电路的输出端电压升高(降低)时采样电路将这一变化送到A的反相输入端,然后与同相输入端的电位进行比较放大,运放的输出电压,即调整管的基极电位降低(高);由于电路采用射极输出形式,所以输出电压必然降低(升高),从而使输出电压得到稳定。由于输出电流较大,达到1A,为防止电流过大烧坏调整管,需要选择功率中等或者较大的三极管,调整管的击穿电流必须大于1A,又由于三极管CE间的承受的最大管压降应该大于15-6=9V,考虑到30%的电网波动,我们的调整管所能承受的最大管压降应该大于13V,最小功率应该达到 =6.5W。我们可以选择适合这些参数最大功率为60W,最大电流超过6A,所能承受的最大管压降为100V。基准电路由3V的稳压管和10KΩ的保护电阻组成。由于输出电压要求为3V-6V、6V-9V和9V-12V,因此采样电路的采样电阻应该可调,则采样电路由一个电阻和三个可调电阻组成,根据公式: 求出。其中 为输入端的电阻, 为输出端与共地端之间的电阻 , 为稳压管的稳压值。.所以根据此公式可求的电路的输出电压为3V-12V。可以输出3V-12V的电压,运放选用工作电压在15V左右前对电压稳定性要求不是很高的运放,由于AD704JN的工作电压为正负12V-正负22V,范围较大,可以用其作为运放,因为整流后的电压波动不是很大,所以运放的工作电源可以利用整流后的电压来对其进行供电。为了使输出电压更稳定,输出纹波更小,需奥对输出端进行再次滤波,可在输出端接一个5uf电容,这样电源不容易受到负载的干扰。使得电源的性质更好,电压更稳定,3.2工作原理介绍一、电路原理:该电路由电源变压器、整流、滤波和稳压电路四部分组成,原理图如左。电网供给交流电压(220v,50Hz)经电源变压器降压后,得到符合电路需要的交流电压u2,然后由整流电路变换成方向不变、大小随时间变化的脉冲电压u3,再用滤波器滤去其交流分量,得到比较平直的直流电压ui。最后采用稳压电路,以保证输出稳定的直流电压。二、电路原理方框图: 三、原理说明:(1) 单相桥式整流电路可以将单相交流电变换为直流电;(2) 整流后的电压脉动较大,需要滤波后变为交流分量较小的直流电压用来供电;(3) 滤波后的输出电压容易随电网电压和负载的变化波动不利于设备的稳定运行;(4) 将输出电压经过稳压电路后输出电压不会随电网和负载的变化而变化从而提高设备的稳定性和可靠性,保障设备的正常使用;(5) 关于输出电压在不同档位之间的变换,可以将稳压电源的电压设置为标准电压再对其进行变换,电压在档位间的调节可以通过调节电位器来进行调节,从而实现对输出电压的调节。3.3稳压电路方案选择方案一:此方案以稳压管D1的电压作为三极管Q1的基准电压,电路引入电压负反馈,当电网电压波动引起R2两端电压的变化增大(减小)时,晶体管发射极电位将随着升高(降低),而稳压管端的电压基本不变,故基极电位不变,所以由 可知 将减小(升高)导致基极电流和发射极电流的减小(增大),使得R两端的电压降低(升高),从而达到稳压的效果。负电源部分与正电源相对称,原理一样。 图3 方案一稳压部分电路方案二:该方案稳压电路部分如图2所示,稳压部分由调整管(Q1、Q2组成的复合管),比较电路(集成运放U2A),基准电压电路(稳压管D1 BZV55-B3V0),采样电路组成(采样电路由R2、R3、R4、R5组成)。当采样电路的输出端电压升高(降低)时采样电路将这一变化送到A的反相输入端,然后与同相输入端的电位进行比较放大,运放的输出电压,即调整管的基极电位降低(升高);由于电路采用射极输出形式,所以输出电压必然降低(升高),从而使输出电压得到稳定。 图4对以上两个方案进行比较,可以发发现第一个方案为线性稳压电源,具备基本的稳压效果,但是只是基本的调整管电路,输出电压不可调,而且输出电流不大,而第二个方案使用了集成运放和调整管作为稳压电路,输出电压可以通过开关J1在3-6V、6-9V、9-12V之间调节,功率也较高,可以输出较大的电流。稳定效果也比第一个方案要好,所以选择第二个方案作为本次课程设计的方案。3.4元器件清单名称及标号 型号及大小 数量变压器 220V-9V 1个极性电容 200uF 1个普通电容 0.01uF 1个 0.33uF 1个电阻 30 1个 510 2个 620Ω 1个 1k 1个 1.5k 1个 2.7k 1个可变电阻 200 1个 1k 1个稳压管 IN4735 1个桥式整流二极管 2N4922 1 个保护三极管 3DG6 2个 3DG12 1个4.功能测试一、仿真图 二、仿真结果直流电压的输出波形如图8所示:(仿真结果一)Rpa=30℅,Rpb=30℅; (仿真结果二) Rpa=30℅,Rpb=65℅;参考文献: 《模拟电子技术基础》(第四版) 《电子技术实践教程》 翁飞兵、陈棣湘主编 《电子实验与电子实践》刘荣林主编5.心得体会通过两个星期的课程设计,我对电子工艺的理论有了更深的了解。其中包括焊普通元件与电路元件的技巧、印制电路板图的设计制作、稳压电源的工作原理等等。这些知识不仅在课堂上有效,在日常生活中更是有着现实意义,也对自己的动手能力是个很大的锻炼。在实习中,我锻炼了自己动手能力,提高了自己解决问题的能力。通过本次实践也培养了我理论联系实际的能力,提高了我分析问题和解决问题的能力,增强了独立工作的能力。最主要的是收获颇丰,我基本掌握手工电烙铁的焊接技术,能够独立的完成简单电子产品的安装与焊接基本熟悉了电子产品的安装工艺的生产流程,了解了电子产品的焊接、调试与维修方法;其次我更加熟悉了有关软件EWB、AD6的使用,能够熟练的使用普通万用表。最重要的,我熟悉了常用电子器件的类别、型号、规格、性能及其使用范围,能查找资料,查阅有关的电子器件图书等了。 另外在这次设计中,我也遇到了不少的问题,幸运的是,最终一一解决了遇到的问题。在我们遇到不懂的问题时,利用网上和图书馆的资源,搜索查找得到需要的信息及和队友之间相互讨论显得尤其重要了,我明白了团队合作的重要性。这次的制作也让我们感受到,我们在电子方面学到的只是很小的一部分知识,我们需要更多的时间来自主学习相关知识。最后,在此感谢我们的邓鹏和袁氢老师.,老师严谨细致、一丝不苟的作风一直是我学习的榜样;老师循循善诱的教导和不拘一格的思路给予我无尽的启迪;有了您的帮助我才顺利的完成了这次课程设计。

首先你得上图,别人才好根据你设计的图纸来描述.其次,不知道你的负载电流是多大,所以100uF不知道够不够用,感觉上是偏小.

用带有放大环节的串联型晶体管稳压电路就好了,电路图书上应该有,自己设计一下参数就好了

稳压电路论文参考文献

作为学生,这个作业是稍微看看书就轻松解决的问题。拿到网上征求答案,实在是不该啊。

直流稳压电源的毕业论文不算太难,去那个591论文网找几篇现成的拼凑一下就行。我论文就这么来的,然后还真就过了。。O(∩_∩)O~

在网上搜啊!搜着了你就幸运了 搜不着的话就自己做吧

去"幸福校园"网站看看,那的论文很多引言:直流稳压电源一般分为线性和开关电源两类。对于单片机数字控制的电路系统,通常采用基于PWM控制的开关电源。而对于放大器的模拟放大系统,采用线性稳压电源则更具有优势,线性直流稳压电源具有稳压和滤波的双重作用,产生的干扰很小,随着集成电路技术的发展,较高输出电流和数值可调的集成稳压器相继出现,由此而构成的线性直流稳压电源结构简单,维修方便,功率200W以下时,整机的体积也不大。一般来讲,线性直流稳压电源的纹波抑制比,电压调整率和噪声抑制等性能比开关直流稳压电源要好,更重要的是工作可靠,故障率低,更适合于放大器的模拟控制系统。因此,针对电荷放大器的需要,本文提出了一种基于集成稳压器的多输出线性直流稳压电源的设计。方案设计:一 (1)总体方案:直流稳压电源一般是由电源变压器T,整流滤波电路和稳压电路所组成,一般原理如下面的框图所示: 根据功能的要求,总体设计方案如下:

数字稳压电源毕业论文

在网上搜啊!搜着了你就幸运了 搜不着的话就自己做吧

你油箱多少, 我这里有一个,去年省电子设计大赛的,精度比你这个要高。

去"幸福校园"网站看看,那的论文很多引言:直流稳压电源一般分为线性和开关电源两类。对于单片机数字控制的电路系统,通常采用基于PWM控制的开关电源。而对于放大器的模拟放大系统,采用线性稳压电源则更具有优势,线性直流稳压电源具有稳压和滤波的双重作用,产生的干扰很小,随着集成电路技术的发展,较高输出电流和数值可调的集成稳压器相继出现,由此而构成的线性直流稳压电源结构简单,维修方便,功率200W以下时,整机的体积也不大。一般来讲,线性直流稳压电源的纹波抑制比,电压调整率和噪声抑制等性能比开关直流稳压电源要好,更重要的是工作可靠,故障率低,更适合于放大器的模拟控制系统。因此,针对电荷放大器的需要,本文提出了一种基于集成稳压器的多输出线性直流稳压电源的设计。方案设计:一 (1)总体方案:直流稳压电源一般是由电源变压器T,整流滤波电路和稳压电路所组成,一般原理如下面的框图所示: 根据功能的要求,总体设计方案如下:

以下均可参考,从参考网址进入,合适的话,给我加分!谢谢1.基于labVIEW虚拟滤波器的设计与实现 2.双闭环直流调速系统设计3.单片机脉搏测量仪 4.单片机控制的全自动洗衣机毕业设计论文5.FPGA电梯控制的设计与实现 6.恒温箱单片机控制7.基于单片机的数字电压表 8.单片机控制步进电机毕业设计论文9.函数信号发生器设计论文 10.110KV变电所一次系统设计11.报警门铃设计论文 12.51单片机交通灯控制13.单片机温度控制系统 14.CDMA通信系统中的接入信道部分进行仿真与分析15.仓库温湿度的监测系统 16.基于单片机的电子密码锁17.单片机控制交通灯系统设计 18.基于DSP的IIR数字低通滤波器的设计与实现19.智能抢答器设计 20.基于LabVIEW的PC机与单片机串口通信21.DSP设计的IIR数字高通滤波器 22.单片机数字钟设计23.自动起闭光控窗帘毕业设计论文 24.三容液位远程测控系统毕业论文25.基于Matlab的PWM波形仿真与分析 26.集成功率放大电路的设计27.波形发生器、频率计和数字电压表设计 28.水位遥测自控系统 毕业论文29.宽带视频放大电路的设计 毕业设计 30.简易数字存储示波器设计毕业论文31.球赛计时计分器 毕业设计论文 32.IIR数字滤波器的设计毕业论文33.PC机与单片机串行通信毕业论文 34.基于CPLD的低频信号发生器设计毕业论文35.110kV变电站电气主接线设计 36.m序列在扩频通信中的应用37.正弦信号发生器 38.红外报警器设计与实现39.开关稳压电源设计 40.基于MCS51单片机温度控制毕业设计论文41.步进电动机竹竿舞健身娱乐器材 42.单片机控制步进电机 毕业设计论文43.单片机汽车倒车测距仪 44.基于单片机的自行车测速系统设计45.水电站电气一次及发电机保护 46.基于单片机的数字显示温度系统毕业设计论文47.语音电子门锁设计与实现 48.工厂总降压变电所设计-毕业论文49.单片机无线抢答器设计 50.基于单片机控制直流电机调速系统毕业设计论文51.单片机串行通信发射部分毕业设计论文 52.基于VHDL语言PLD设计的出租车计费系统毕业设计论文53.超声波测距仪毕业设计论文 54.单片机控制的数控电流源毕业设计论文55.声控报警器毕业设计论文 56.基于单片机的锁相频率合成器毕业设计论文57.基于Multism/protel的数字抢答器 58.单片机智能火灾报警器毕业设计论59.无线多路遥控发射接收系统设计毕业论文 60.单片机对玩具小车的智能控制毕业设计论文61.数字频率计毕业设计论文 62.基于单片机控制的电机交流调速毕业设计论文63.楼宇自动化--毕业设计论文 64.车辆牌照图像识别算法的实现--毕业设计65.超声波测距仪--毕业设计 66.工厂变电所一次侧电气设计67.电子测频仪--毕业设计 68.点阵电子显示屏--毕业设计69.电子电路的电子仿真实验研究 70.基于51单片机的多路温度采集控制系统71.基于单片机的数字钟设计 72.小功率不间断电源(UPS)中变换器的原理与设计73.自动存包柜的设计 74.空调器微电脑控制系统75.全自动洗衣机控制器 76.电力线载波调制解调器毕业设计论文77.图书馆照明控制系统设计 78.基于AC3的虚拟环绕声实现79.电视伴音红外转发器的设计 80.多传感器障碍物检测系统的软件设计81.基于单片机的电器遥控器设计 82.基于单片机的数码录音与播放系统83.单片机控制的霓虹灯控制器 84.电阻炉温度控制系统85.智能温度巡检仪的研制 86.保险箱遥控密码锁 毕业设计87.10KV变电所的电气部分及继电保护 88.年产26000吨乙醇精馏装置设计89.卷扬机自动控制限位控制系统 90.铁矿综合自动化调度系统91.磁敏传感器水位控制系统 92.继电器控制两段传输带机电系统93.广告灯自动控制系统 94.基于CFA的二阶滤波器设计95.霍尔传感器水位控制系统 96.全自动车载饮水机97.浮球液位传感器水位控制系统 98.干簧继电器水位控制系统99.电接点压力表水位控制系统 100.低成本智能住宅监控系统的设计101.大型发电厂的继电保护配置 102.直流操作电源监控系统的研究103.悬挂运动控制系统 104.气体泄漏超声检测系统的设计105.电压无功补偿综合控制装置 106.FC-TCR型无功补偿装置控制器的设计107.DSP电机调速 108.150MHz频段窄带调频无线接收机109.电子体温计 110.基于单片机的病床呼叫控制系统111.红外测温仪 112.基于单片微型计算机的测距仪113.智能数字频率计 114.基于单片微型计算机的多路室内火灾报警器115.信号发生器 116.基于单片微型计算机的语音播出的作息时间控制器117.交通信号灯控制电路的设计 118.基于单片机步进电机控制系统设计119.多路数据采集系统的设计 120.电子万年历 121.遥控式数控电源设计 122.110kV降压变电所一次系统设计 123.220kv变电站一次系统设计 124.智能数字频率计 125.信号发生器126.基于虚拟仪器的电网主要电气参数测试设计 127.基于FPGA的电网基本电量数字测量系统的设计 128.风力发电电能变换装置的研究与设计 129.电流继电器设计 130.大功率电器智能识别与用电安全控制器的设计 131.交流电机型式试验及计算机软件的研究 132.单片机交通灯控制系统的设计 133.智能立体仓库系统的设计 134.智能火灾报警监测系统 135.基于单片机的多点温度检测系统 136.单片机定时闹钟设计 137.湿度传感器单片机检测电路制作 138.智能小车自动寻址设计--小车悬挂运动控制系统 139.探讨未来通信技术的发展趋势 140.音频多重混响设计 141.单片机呼叫系统的设计 142.基于FPGA和锁相环4046实现波形发生器 143.基于FPGA的数字通信系统 144.基于单片机的带智能自动化的红外遥控小车 145.基于单片机AT89C51的语音温度计的设计 146.智能楼宇设计 147.移动电话接收机功能电路 148.单片机演奏音乐歌曲装置的设计 149.单片机电铃系统设计 150.智能电子密码锁设计 151.八路智能抢答器设计 152.组态控制抢答器系统设计 153.组态控制皮带运输机系统设计 154..基于单片机控制音乐门铃 155.基于单片机控制文字的显示 156.基于单片机控制发生的数字音乐盒 157.基于单片机控制动态扫描文字显示系统的设计 158.基于LMS自适应滤波器的MATLAB实现 159.D功率放大器毕业论文 160.无线射频识别系统发射接收硬件电路的设计 161.基于单片机PIC16F877的环境监测系统的设计 162.基于ADE7758的电能监测系统的设计 163.智能电话报警器 164.数字频率计 课程设计 165.多功能数字钟电路设计 课程设计 166.基于VHDL数字频率计的设计与仿真 167.基于单片机控制的电子秤 168.基于单片机的智能电子负载系统设计 169.电压比较器的模拟与仿真 170.脉冲变压器设计 171.MATLAB仿真技术及应用 172.基于单片机的水温控制系统 173.基于FPGA和单片机的多功能等精度频率计 174.发电机-变压器组中微型机保护系统 175.基于单片机的鸡雏恒温孵化器的设计 176.数字温度计的设计 177.生产流水线产品产量统计显示系统 178.水位报警显时控制系统的设计 179.红外遥控电子密码锁的设计 180.基于MCU温控智能风扇控制系统的设计 181.数字电容测量仪的设计 182.基于单片机的遥控器的设计 183.200电话卡代拨器的设计 184.数字式心电信号发生器硬件设计及波形输出实现 185.电压稳定毕业设计论文 186.基于DSP的短波通信系统设计(IIR设计) 187.一氧化碳报警器 188.网络视频监控系统的设计 189.全氢罩式退火炉温度控制系统 190.通用串行总线数据采集卡的设计 191.单片机控制单闭环直流电动机的调速控制系统 192.单片机电加热炉温度控制系统 193.单片机大型建筑火灾监控系统 194.USB接口设备驱动程序的框架设计 195.基于Matlab的多频率FMICW的信号分离及时延信息提取 196.正弦信号发生器 197.小功率UPS系统设计 198.全数字控制SPWM单相变频器 199.点阵式汉字电子显示屏的设计与制作 200.基于AT89C51的路灯控制系统设计 200.基于AT89C51的路灯控制系统设计 201.基于AT89C51的宽范围高精度的电机转速测量系统 202.开关电源设计203.基于PDIUSBD12和K9F2808简易USB闪存设计 204.微型机控制一体化监控系统205.直流电机试验自动采集与控制系统的设计 206.新型自动装弹机控制系统的研究与开发 207.交流异步电机试验自动采集与控制系统的设计208.转速闭环控制的直流调速系统的仿真与设计209.基于单片机的数字直流调速系统设计210.多功能频率计的设计211.18信息移频信号的频谱分析和识别212.集散管理系统—终端设计213.基于MATLAB的数字滤波器优化设计214.基于AT89C51SND1C的MP3播放器215.基于光纤的汽车CAN总线研究216.汽车倒车雷达217.基于DSP的电机控制218.超媒体技术219.数字电子钟的设计与制作220.温度报警器的电路设计与制作221.数字电子钟的电路设计222.鸡舍电子智能补光器的设计223.高精度超声波传感器信号调理电路的设计224.电子密码锁的电路设计与制作225.单片机控制电梯系统的设计226.常用电器维修方法综述227.控制式智能计热表的设计228.电子指南针设计229.汽车防撞主控系统设计230.单片机的智能电源管理系统231.电力电子技术在绿色照明电路中的应用232.电气火灾自动保护型断路器的设计233.基于单片机的多功能智能小车设计234.对漏电保护器安全性能的剖析235.解析民用建筑的应急照明236.电力拖动控制系统设计237.低频功率放大器设计238.银行自动报警系统

相关百科

热门百科

首页
发表服务