首页

> 期刊投稿知识库

首页 期刊投稿知识库 问题

酒精灯燃烧过程的光谱研究论文

发布时间:

酒精灯燃烧过程的光谱研究论文

正常使用的酒精灯火焰应分为焰心、内焰和外焰三部分。加热时应用外焰加热。近年来的研究表明:酒精灯火焰温度的高低理论上一般认为酒精灯的外焰温度最高,由于外焰与外界大气充分接触,燃烧时与环境的能量交换最容易,热量释放最多,致使外焰温度高于内焰。

酒精灯的灯芯是棉线,作为酒精的载体,因为要燃烧酒精,所以用棉线来吸取酒精达到燃烧的目的。2,因为酒精灯燃烧的是酒精而不是棉线。3酒精灯燃烧发生化学变化。4生成物时二氧化碳和水

将酒精灯点燃,可以看出酒精灯的火焰分为三层,最内的叫焰心,温度最低;中间的叫内焰,最外面的叫外焰,由于和空气接触,燃烧最旺,温度最高。

火焰组成:

一般分为三个部分。

1、内层。深蓝色火焰,因供氧不足,燃烧不完全,温度最低,有还原作用。称焰心或还原焰。

2、中层。深红或浅黄色火焰,明亮。温度比内层高。称内焰。

3、外层。无色,因供氧充足,燃烧完全,温度最高,有氧化作用。称外焰或氧化焰。

扩展资料:

一、酒精灯使用注意事项

1、酒精灯的灯芯要平整,如以烧焦或不平整,要用剪刀修正。

2、添加酒精时,不超过酒精灯容积的2/3;酒精不少于1/3。

3、绝对禁止向燃着的酒精灯里添加酒精,以免失火。

4、绝对禁止用酒精灯引燃另一只酒精灯,要用火柴点燃。

5、用完酒精灯,必须用灯帽盖灭,不可用嘴去吹。

6、不要碰倒酒精灯,万一洒出的酒精在桌上燃烧起来,应立即用湿布或沙子扑盖。

7、请勿将酒精灯的外焰受到侧风,一旦外焰进入灯内,将会爆炸。

二、火焰本质分析

火焰的本质是放热反应中反应区周边空气分子加热而高速运动,从而发光的现象。

化学反应中当反应物总能量大于生成物总能量时,一部分能量以热能形式向外扩散,称为放热反应。向外释放的热能在反应区周围积聚,加热周边的空气,使周边空气分子做高速运动,运动速度越快,温度越高。火焰按照距反应区距离由近至远分为:

1、焰心,粒子运动速度低,光谱集中在红外区,温度低。

2、内焰,粒子运动速度中等,光谱集中在可见光部分,亮度最高,温度较高。

3、外焰,粒子运动速度最快,光谱集中在紫外区,温度最高,亮度较高。

反应区向外释放的能量从焰心至外焰逐渐升高,然后急剧下降,使火焰有较清晰的轮廓,火焰与周围空气的边界处即反应能量骤减处。

参考资料来源:百度百科-酒精灯

参考资料来源:百度百科-火焰

双梁窑燃烧研究论文

国内外常见气烧石灰窑的介绍一、回转窑生产能力大,原料适应性强,燃料灰分对产品污染小,质量稳定,可以煅烧5mm以上的矿石。设备重量大、结构复杂,占地面积大,基建投资大。原燃料消耗量高,产品成本高,不适合土地面积较紧张的单位。二、双膛窑(迈尔兹窑) 其采用的是环形双膛的结构形式,内设两个半环状窑膛,一个为煅烧膛,另一个是蓄热膛,中间由通道连接,每隔12分钟轮换煅烧一次。采用气流的并流和逆流原理,有效地解决了过、生烧问题,提高了石灰的活性。并流煅烧方式的优点是:物料在煅烧带上部开始煅烧时,燃料在此处于正好混合开始燃烧,温度较高,煅烧效率较高,而在煅烧带下部,石灰煅烧过程基本完成,石灰在此处不再需要太多热量,而燃料的燃烧产物也基本将热量传递给了物料,温度降低,因此石灰活性度较高1、环形双膛式气烧石灰竖窑的特点(1)采用并流加热系统,在物料煅烧尾期,物料与烟气温差小,石灰不会造成生、过烧,且活性度高。采用蓄热换热系统,排烟温度低,单位热耗低。(2)双膛窑为负压操作,生产环境较好。(3)由有较长的并流燃烧带,石灰活性度高。热耗较低。投资小,占地面积小。2、环形双膛式气烧石灰竖窑的缺陷(1)与其他竖窑相比,多一套换向系统。故比其它的窑型多很多设备,并且操作起来也比较复杂,且投资较大。(2)采用正压操作,故砌筑要求质量高。三、双梁窑(弗尔卡斯窑)双梁窑的煅烧原理是:采用双梁式结构,即采用上、下两层烧嘴梁,烧嘴分布在梁的两侧,将燃气均匀地分布在窑的断面上,保证了在整个竖窑断面上燃烧均匀。燃烧梁采用导热油冷却,导热油带出的热量用于预热燃烧用一次空气,使窑的热耗有所降低,提高了热交换率。因其特殊的结构形式,故可解决电石炉停气时粉尘进入中心喷嘴而引起的堵塞问题,但双梁经常烧坏,内套易磨损。且据其所投产的厂家来看,基本没有较为成功的先例。尤其在高热值尾气的使用中,无一成功。石灰的预热、煅烧、冷却均在同一个筒体内进行,尾气通过上、下两层布风梁直接进入窑内进行煅烧。煅烧石灰的火焰直接和石灰石接触,采用的是逆流煅烧。双梁窑的特点:(1)结构简单,操作简单,设备维护量小,生产调整较为灵活。窑为负压操作,生产环境较好。(2)产品质量较差。煅烧石灰的火焰直接和石灰石接触,故生、过烧较难控制。如用在电石等高热值煤气上,更容易产生生、过烧。再则,由于采用逆流煅烧,故产出的石灰活性度较低。四、矩型竖窑矩型竖窑的煅烧原理是:利用矩形窑两侧的上、下层烧嘴把尾气点燃,使其在各自的火箱内完全燃烧后,产生均匀的热量,再通过窑顶的负压把产生的热量通过喷火口抽入石灰石中进行煅烧石灰。由于其火焰是在火箱内进行混和后,再通过喷火口向石灰窑输热,故火焰没有直接和石灰石原料进行接触,这样能石灰石的受热就比较均匀,从而能有效地解决了过、生烧问题。再则,窑顶采用的是负压,故产出的石灰活性能满足电石生产需要。矩型竖窑的特点:(1)结构简单,操作简便,设备维护量小。由于窑为负压操作,故生产环境较好。且投资较少,占地面积小。(2)产品质量尚可。煅烧石灰的火焰没有直接和石灰石接触,故生、过烧较低。(3)由于没能有效地利用冷却空气冷却石灰的余热,故其热耗远高于其它窑型。五、双套筒窑双套筒窑采用了窑壳和内套筒的特殊结构,使并流煅烧过程在一个窑体内进行,且占地面积比双膛窑少,生产出来的石灰活性度较高,可达350ml以上,石灰中残余CO2含量小于1.5%,如原料条件好,石灰活性度还可提高,且产品的生烧和过烧现象较少。双套筒窑使用的燃料范围宽,可使用发热值在1100kCal/Nm3以上的低热值煤气,且煤气压力仅为15kPa左右的常规压力。整座窑采用循环气体、高温废气换热等方式循环利用热能,所以产品所需的热耗也较低,是一种节能型的石灰窑。煅烧采用则同时采用了气流的并流和逆流原理,有效地解决了生、过烧问题,提高了石灰的活性。并流煅烧方式的优点是:物料在煅烧带上部开始煅烧时,燃料在此处于正好混合开始燃烧,温度较高,煅烧效率较高,而在煅烧带下部,石灰煅烧过程基本完成,石灰在此处不再需要太多热量,而燃料的燃烧产物也基本将热量传递给了物料,温度降低,因此石灰活性度较高,可在350 ml以上,过、生烧率低于5%。1、双套筒窑的特点:(1)采用并流加热系统,在物料煅烧尾期,物料与烟气温差小,石灰不会造成生、过烧,且活性度高。采用良好的换热系统,排烟温度低,单位热耗低。(2)双套筒窑具有备工艺先进、烧成石灰品质好、能耗低、负压操作烟尘少、维护费用低和自动化程度高,窑体设备简单,操作方便。且投资少,占地面积小。(3)由于采用烟气回流喷射技术,有较长的并流燃烧带,产出石灰活性度高。热耗较低。

双梁石灰窑氧含量降低的原因主要有:一是烧制过程中,煤气中的氧含量较低;二是空气中的氧含量降低;三是熔炼过程中的熔剂使窑内的氧含量减少。此外,烧制时间过长,窑内空气流动不畅也会导致氧含量降低。

安装有除尘、脱硫设备的节能型石灰窑。目前设计较为先进的石灰窑均可达到环保、节能的要求。但是现在有一些石灰窑设计、生产厂,将设计落后的石灰窑加上简易的除尘设备再和当地环保部门联手推广一下就称为新型环保石灰窑,石灰生产厂使用后发现既不节能又不环保,生产难以为继,苦不堪言。 上这种所谓的新型环保石灰窑一定要小心!!!!

回转窑有多种,可分为石灰回转窑、水泥回转窑、冶金回转窑、金属镁回转窑等等,根据不同物料及运作方式可分为多个种类,回转窑确实给我们带来了生产和生活带来了众多的益处,不过任何设备在使用中由于操作不当或者历史太久、维修保养问题做的不够充分等都会使我们的回转窑设备出现问题,那么针对这种情况我们应该如何来应对呢?最好的是做好维修保养工作来预防回转窑故障的发生,故障发生了还需要会处理,亲爱的用户朋友们,这方面的工作,你做的如何呢?回转窑厂家永先机械来给大家出招吧,来看看怎样预防和解决回转窑出现的故障问题? 首先要制定相对合理、完善的考核制度,对操作员的操作给予正确导向,创造一种良性竞争、合作、学习的工作氛围;其次是密切关注现场系统状况和中控操作参数的变化,适时对中控操作做出宏观的、适量的调控,统一操作员的操作思路,稳定窑的热工制度;针对典型的故障停机做出事故操作预案,使操作员的操作有案可依;及时排查设备故障、系统运行缺陷,保证系统优化运行,尽可能避免不必要的大幅度波动调整和临时停机,争取做到有计划检修;计划检修时,将问题考虑周全、安排细致,避免跑生等恶性事件发生;发生事故后,及时分析事故原因,吸取经验教训,并备案,让全体操作员都能受到教育;定期安排操作员操作技术培训,让其多了解新工艺、新技术、交流操作经验体会最终不断提高业务素质。

铜和铁燃烧的比较研究论文

铁在氧气中燃烧的现象:火星四射,发出明亮的光,生产黑色小颗粒铜在氧气中不燃烧 现象:表面的亮红色逐渐变成黑色

1.铁 在纯氧里燃烧,火星四射.铜在纯氧里加热.绿色火焰如果是他们的化合物,在无色火焰上加热,称之为 焰色反应.每种金属都有自己的颜色.燃烧的颜色,和焰色反应产生的颜色一致. 2.(不知是否有用)铜和铁在氯气中燃烧火焰...

一点意见:铁在氧气中燃烧,生成致密的四氧化三铁,覆盖在铁的部分表面。铁继续燃烧,生成强热,使铁与四氧化三铁之间空气膨胀,将四氧化三铁崩开,因此铁燃烧的现象是火星四射。镁在氧气中燃烧,生成疏松或粉末状氧化镁,在燃烧时只会产生烟或直接掉在瓶底,不会火星四溅。铁的沸点是2750摄氏度,在氧气中燃烧时不易升华,形成等离子态(火焰)。 镁的沸电是1090摄氏度,在氧气中易升华,而形成等离子态(火焰)。另外,铁燃烧生成四氧化三铁,在一定程度上阻碍了铁的升华和与氧气的接触;蹦出的四氧化三铁带走了大量热量,也使铁无法达到较高温度而升华。因而铁燃烧无火焰。而镁却正相反,故有火焰。

铜和铁的区别 :1、铜 铜元素是一种金属化学元素,也是人体所必须的一种微量元素, 铜也是人类最早发现的金属,是人类广泛使用的一种金属,属于重金属。铜是人类最早使用的金属。早在史前时代,人们就开始采掘露天铜矿,并用获取的铜制造武器、式具和其他器皿,铜的使用对早期人类文明的进步影响深远。铜是一种存在于地壳和海洋中的金属。铜在地壳中的含量约为0.01%,在个别铜矿床中,铜的含量可以达到3%~5%。自然界中的铜,多数以化合物即铜矿物存在。铜矿物与其他矿物聚合成铜矿石,开采出来的铜矿石,经过选矿而成为含铜品位较高的铜精矿。是唯一的能大量天然产出的金属,也存在于各种矿石(例如黄铜矿、辉铜矿、斑铜矿、赤铜矿和孔雀石)中,能以单质金属状态及黄铜、青铜和其他合金的形态用于工业、工程技术和工艺上。2、铁 铁姓源自子姓,出自春秋时期卫国中商朝遗民居地铁丘,属于以居邑名称为氏。历史上的铁姓名人很多,比如:铁铉、铁保、铁瑛等等。铁姓宗祠通用对联"名扬蕊榜;忠著旃常"中上联典指宋代人铁南仲,下联则说明代河南邓州人铁铉。

论文燃烧技术研究报告

下面是我找的,不知道对你有没有帮助 ,如果有的话请您给个红旗吧一、前言 众所周知,能源消费是造成当今环境恶化的一个主要原因,尤其是煤炭在直接作为能源燃烧过程中,存在着效率低、污染严重的问题。统计表明,我国每年排入大气的污染物中有80%的烟尘,87%的SO2,67%的NOx来源于煤的燃烧。我国的大气污染主要是锅炉、窑炉燃煤产生烟气形成的煤烟型污染。目前我国能源仍然以煤炭为主,改变能源结构,使用油气电等清洁能源,与我国的国情又不太相适应,未来相当长一段时间内,煤炭在我国一次能源结构中的主体地位不会改变,这已成为不争的现实。因此大力发展和应用洁净煤燃烧技术与装置,是解决和控制大气污染的一条重要措施。 近年来,人们已在洁净煤燃烧技术方面进行了大量的研究与实践,但综合效果还都有待于提高。多年来在总结、借鉴、完善、发展国内外相关技术的基础上,我们对原煤气化和分相燃烧技术进行了大量研究,通过几年来的大量实验和工作实践,解决了十多项技术难题,掌握了一种锅炉清洁燃烧技术——煤气化分相燃烧技术, 并利用该技术研制出一种煤转化成煤气燃烧的一体化锅炉,我们称之为煤气化分相燃烧锅炉。其突出特点是无需炉外除尘系统,经过炉内全新的燃烧、气固分离及换热机理,实现“炉内消烟、除尘”,使其排烟无色——俗称无烟。烟尘、SO2、NOX排放浓度符合国家环保标准的要求,而且热效率高达80~85%。这种锅炉根据气固分相燃烧理论,把互补控制技术、气固分相燃烧技术集于一炉,将煤炭气化、燃烧集于一体,组成煤气化分相燃烧锅炉,从而实现了原煤的连续燃烧与洁净燃烧。 二、煤气化分相燃烧技术 烟尘的主要污染物是碳黑,它是不完全燃烧的产物。形成黑烟的原因主要是煤在燃烧过程中,形成易燃的轻碳氢化合物和难燃的重碳氢化合物及游离碳粒。这些难燃的重碳氢化合物、游离碳粒随烟气排出,便可见到浓浓的黑烟。 一般情况下,煤的燃烧属于多相混合燃烧,煤在燃烧过程中析出挥发物,而挥发物的燃烧对煤焦的燃烧起到制约作用,使固体碳的燃烧过程繁杂化、困难化。固体燃料氧化反应过程中的次级反应,即一氧化碳和二氧化碳的产生以及一氧化碳的氧化反应和二氧化碳的还原反应,都不利于固体碳和天然矿物煤的燃烧,而气固分相燃烧就可以有效地解决上述问题。 气固分相燃烧就是使固体燃料在同一个装置内分解成气相态的燃料和固相态的燃料,并使其按照各自的燃烧特点和与此相适应的燃烧方式,在同一个装置内有联系地、互相依托地、相互促进地燃烧,从而达到完全燃烧或接近完全燃烧的目的。 煤气化分相燃烧技术是根据气固分相燃烧理论,将煤炭气化、气固分相燃烧集于一体,以煤炭为原料,采用空气和水蒸气为气化剂,先通过低温热解的温和气化,把煤易产生黑烟的可燃性挥发份中的碳氢化合物先转化为煤气,与脱去挥发份的煤焦一同在燃烧室进行燃烧。这样在同一个燃烧室内气态燃料与固态燃料有联系地、互相依托地、相互促进地按照各自的燃烧规律和特点分别燃烧,消除了黑烟,提高了燃烧效率,并且在整个燃烧过程中,有利于降低氮氧化物和二氧化硫的生成,进而达到洁净燃烧和提高锅炉热效率的双重功效。 煤气化分相燃烧技术在锅炉上的应用,使固体燃料的干燥、干馏、气化以及由此产生的气相态的煤气和固相态的煤焦在同一炉内同时燃烧。并使锅炉在结构上实现了两个一体化,即煤气发生炉和层燃锅炉一体化,层燃锅炉与除尘器一体化,因此无需另设煤气发生炉便实现了煤的气化燃烧;也无需炉外除尘器,就可实现炉内消烟除尘,锅炉排烟无色。其燃烧机理如图一所示,双点划线框内表示固相煤和煤焦的燃烧过程,单点划线框内表示气相煤气的燃烧过程,实线框内表示煤的干馏过程,虚线框内表示煤焦的气化过程。 原煤首先在气化室缺氧条件下燃烧和气化热解,煤料自上部加入,煤层从下部引燃,自下而上形成氧化层、还原层、干馏层和干燥层的分层结构。其中氧化层和还原层组成气化层,气化过程的主要反应在这里进行。以空气为主的气化剂从气化室底部进入,使底部煤层氧化燃烧,生成的吹风气中含有一定量的一氧化碳,此高温鼓风气流经干馏层,对煤料进行干燥、预热和干馏。煤料从气化室上部加入,随着煤料的下降和吸热,低温干馏过程缓慢进行,逐渐析出挥发份,形成干馏煤气。其成份主要是水份、轻油和煤中挥发物。 原煤经干馏后形成热煤焦进入到还原层,靠下层部分煤焦的氧化反应热进行气化反应。同时可注入适量的水蒸汽发生水煤气反应,这样以空气和水蒸汽的混合物为气化剂,在气化室内与灼热的碳作用生成气化煤气。其成份主要是一氧化碳和二氧化碳以及由固体燃料中的碳与水蒸碳与产物、产物与产物之间反应生成的氢气、甲烷,还有50%以上的氮气。这样干馏层生成的干馏煤气和进入干馏层的气化煤气混合,由煤气出口排出。气化室内各层的作用及主要化学反应见表一。 表一:气化室内各层的作用及主要化学反应 层区名 作用及工作过程 主要化学反应 灰层 分配气化剂,借灰渣显热预热气化剂 氧化层 碳与气化剂中氧进行氧化反应,放出热量,供还原层吸热反应所需 C+O2=CO2 放热 2C+O2=2CO 放热 还原层 CO2 还原成CO,水蒸汽与碳分解为氢气, CO2+C=2CO 放热 H2O+C=CO+H2 放热 CO+H2O=CO2+H2 吸热 干馏层 煤料与热煤气换热进行热分解,析出干馏煤气:水份、轻油和煤中挥发物。 干燥层 使煤料进行干燥 在锅炉的气化室中,煤料自上而下加入,在气化过程中逐步下移,气化剂则由下部进入,通过炉栅自下而上,生成的煤气由燃料层上方引出。这一过程属逆流过程,它能充分利用煤气的显热预热气化剂,从而提高了锅炉的热效率,并且由于干馏煤气不经过高温区裂解,使气化煤气的热值有所提高。 原煤经温和气化低温热解产生的煤气,在经过上部干馏层后,通过气化室的煤气出口进入燃烧室,与充足的二次风充分混合,在燃烧室的高温条件下自行点燃,并与进入燃烧室炉排上煤焦向上的火焰相交,这样在燃烧室内煤气与煤焦分别按照气相和固相的燃烧特点和燃烧方式分别燃烧,又相互联系、相互促进,使一氧化碳和烟黑燃烬,达到或接近完全燃烧。 三、煤气化分相燃烧锅炉的结构特点及应用 锅炉在发展的过程中一直重视提高锅炉热效率和烟尘排放达标两大问题。传统的锅炉解决这两大问题的基本上是靠强化燃烧和传热提高锅炉热效率和设置炉外除尘器。强化燃烧往往会导致锅炉烟尘初始排放浓度的加大,增大除尘器的负担,在发达国家可使用除尘效率在99%以上的电除尘器或布袋除尘器,使烟尘排放浓度控制在50mg/Nm3以下,而在我国由于经济条件的原因,只能使用价格相对低廉的机械式或湿式除尘器,除尘效率一般低于95%,使烟尘排放浓度大于100-200 mg/Nm3,达不到国家的环保要求。这种依靠炉外除尘器解决除尘的办法,不仅增加锅炉房的占地面积和基建投资,而且增大引风机电耗,还造成二次污染。由于煤气化分相燃烧锅炉彻底改变了传统锅炉的燃烧原理,利用气固分相燃烧理论,使煤在燃烧过程中易产生黑烟的可燃性挥发份中的碳氢化合物先转化为可燃煤气,与脱去挥发份的煤焦一同在燃烧室进行燃烧。由于燃烧室温度高达1000℃以上,烟雾得以充分分解,解决了煤直接燃烧产生黑烟的难题。这种锅炉不仅使原煤尽可能地完全燃烧和高效利用,有较高的热效率,而且还尽可能地减少烟尘和有害气体SO2、NOX等的排放,达到消烟除尘的作用,使锅炉各项环保及节能指标大大优于国家标准。 煤气化分相燃烧技术在锅炉上的应用,打破了传统锅炉加除尘器的模式,创建了无需炉外除尘器的一体化模式。而这种一体化并不是机械式地将除尘器加入锅炉。煤气化分相燃烧锅炉与普通煤气锅炉和层燃锅炉相比,具有自己独特的结构,它将后两者有机结合,主要由前部的煤气化室,中部的燃烧室和尾部的对流受热面三大部分组成。(见图二:锅炉结构与燃烧示意图) 气化室是锅炉的技术核心部分,它看上去象是一个开放式的煤气发生炉,其主要功能,一是将煤中的可燃挥发份和煤的气化反应生成气,以煤气的形式排入到燃烧室进行燃烧;二是将释放出挥发份的半焦煤输送到燃烧室继续进行燃烧;三是控制气化室内的反应温度和煤焦层厚度。实现上述功能的关键:一是要保证一定的原煤层;二是要合理配置送风和气化剂,提高煤炭气化率和气化室的气化强度;三是要在煤气化室和燃烧室的连接部位,合理配置煤气出口和煤焦出口。气化室产要由炉体、进煤装置、炉栅、气化剂进口、煤气出口和煤焦出口等部分组成。 在气化室内以煤炭为原料,采用空气和水蒸汽为气化剂,在常压下进行煤的温和气化反应,将煤在低温热分解产生的挥发性物质从煤中赶出。当气化室内温度达到设定条件时,将气化室内脱挥发份的高温煤焦输送到燃烧室的炉排上进行强化燃烧。 燃烧室的主要功能:一是使煤气和煤焦燃烧完全,提高燃烧效率;二是降低烟尘初始排放量和烟气黑度。气化室内产生的煤气经煤气出口,喷入到燃烧室,在可控二次风的扰动下旋向下方,与由气化室进入到燃烧室的煤焦向上的火焰相交而混合燃烧。煤气与固定碳(煤焦)燃烧相结合,强化了燃烧,达到了充分燃烬,洁净燃烧的目的,提高了燃烧效率。并且因为在炉排上的燃烧是半焦化的煤焦,因此产生的飞灰量小,烟尘浓度、烟气黑度都比较低。同时,在燃烧室上方设置了防爆门,确保锅炉的安全运行。 对流受热面的主要功能就是完成与烟气的热量交换,达到锅炉额定出力,提高锅炉换热效率。其结构形式可有多种,与普通锅炉没有太大的区别,因此对大多数锅炉来说,都可以改造成煤气化分相燃烧锅炉。并且锅炉无需除尘器,大大节省锅炉房总投资和占地面积。 设计煤气化分相燃烧锅炉时,应注意的几点: 1、合理布置煤气出口和煤焦出口的位置和大小; 2、煤焦的温度控制; 3、气化剂进口和进煤口; 4、合理设置二次风和防爆门; 5、气化室与燃烧室的水循环要合理。 由上述可知,煤气化分相燃烧锅炉的结构并不复杂,只需在传统锅炉的基础上,在其前部加一个气化室,在原炉膛上设置二次风和防爆门,再结合一些控制技术。利用该原理可以设计出多种规格型号的锅炉,类型主要为0.2t/h~10t/h各参数的锅炉。现仅在东北地区已有几十台此类型的锅炉在运行,广泛用于洗浴、采暖、医药卫生等领域,并已经利用该技术,改造了很多工业锅炉,效果都非常好。 下面以一台DZL2t/h锅炉为例,改造前后对比见表二。 表二:DZL2t/h锅炉改造前后对比 改造前 改造后 比较 热效率 73% 78% 提高5% 耗煤量(AII) 380kg/h 356kg/h 节煤6.3% 适应煤种 AII AIII 褐煤 石煤AI AII AIII 无烟煤 煤种适应性广 锅炉外形体积 5.4×2×3.2m 5.9×2×3.2m 长度约增加一米 环保性能 冒黑烟,环保不达标 排烟无色,满足环保要求 该新型锅炉综合地应用当代高新技术和高效率传热技术,将煤气发生炉与层燃锅炉有机结合为一体,做到清洁燃烧,炉内自行消烟除尘,锅炉运行期间,在无需炉外除尘器的情况下,排烟无色,烟尘浓度≤100mg/Nm3,比传统锅炉减少30-50%,SO2浓度≤1200mg/Nm3,NOx<400mg/ Nm3,符合国家环保标准GB13271-2001中一类地区的要求,同时,热效率在82%以上。而成本仅比传统锅炉增加不到一万元,但却省了一台除尘器。每小时加煤次数少,仅2~3次,并可实现机械上煤和除渣,因而大大减轻了司炉工的劳动强度。 四、煤气化分相燃烧锅炉的特点 传统的煤炭燃烧方式在煤的燃烧过程中会产生大量的污染物,造成严重的环境污染。主要原因是: (1)煤炭不易与氧气充分接触而形成不完全燃烧,燃烧效率低,相对增加了污染排放; (2)燃烧过程不易控制,例如挥发份大量析出时往往供氧不足,造成烟尘析出与冒黑烟; (3)固体燃料燃烧时温度难以均匀,形成局部高温区,促使大量NOx形成; (4)原煤中的硫大多在燃烧过程中氧化成SO2; (5)未经处理的固态煤炭直接燃烧时,大量粉尘将随烟气一同排出,造成大量粉尘污染。 煤气化分相燃烧锅炉将煤炭气化、气固分相燃烧集于一体,有效地解决环境污染问题,与传统的燃煤锅炉相比,它有以下优点: 1、烟尘浓度、烟气黑度低,环保性能好。 在气化层生成的气化煤气和在干馏层生成的干馏煤气最终混合在一起,在燃烧室内与二次风充分混合,因是气态燃料,供氧充分,容易达到完全燃烧,使一氧化碳和烟黑燃烬。而从气化室进入到燃烧室的炽热煤焦,因大部分挥发份已被析出,避免了挥发物对固定碳燃烧的不良影响,剩余的挥发份在煤焦内部进一步得到氧化,生成的一氧化碳和烟黑等可燃物在通过煤焦层表面时被燃烬。另外煤焦在燃烧时产生的飞灰量小,同时在锅炉内采用除尘技术,因此从根本上消除了“炭黑”,高效率地清除了烟尘中的飞灰。 2、节约能源、热效率高。 煤料在气化室充分气化热解之后再燃烧,不仅避免了挥发物、一氧化碳、二氧化碳等对煤焦燃烧的不良影响,而且从气化室进入燃烧室的热煤气更容易燃烧,并对煤焦的燃烧有一定的促进作用。进入燃烧室的炽热煤焦已脱去大部分挥发份,不仅有较高的温度,而且具有内部孔隙,能增强内部和外部扩散氧化反应,起到强化煤焦燃烧的作用,从而在降低过量空气系数下,使一氧化碳和炭黑燃烬,燃烧更加充分,因而降低了化学和机械不完全燃烧热损失,提高了煤的燃烧热效率,与直接烧煤相比可节煤5-10%。 3、氮氧化物的排放低 在气化室内煤层从下部引燃,并在下部燃烧,总体上气化室内温度比较低,属低温燃烧。而且在气化室内过量空气系数很小,大约在0.7-1.0之间,属低氧燃烧。这为降低氮氧化物的排放提供了有利条件。煤中有机氮化学剂量小,并处在还原气氛中,只转变成不参与燃烧的无毒氮分子。煤中含有的氮氧化物,一部分在煤层半焦催化作用下反应生成氮气、水蒸汽和一氧化碳,还有一部分在穿过上部还原层时被还原成氮气。而气化室内脱去绝大部分挥发份的高温煤焦在进入燃烧室后,进行充足供氧强化燃烧,其中剩余的少量挥发份在半焦内部进一步热解氧化,氮氧化物在煤焦内部被进一步还原,生成的烟黑可燃物在经过焦层表面时被燃烬,从而控制和减少了氮氧化物的生成与排放。 4、有一定的脱硫作用 煤中的硫主要以无机硫(FeS2和硫酸盐)和有机硫的形式存在,而硫酸盐几乎全部存留在灰渣中,不会造成燃煤污染。在煤气化分相燃烧锅炉中,煤中的FeS2和有机硫在气化室内发生热分解反应,以及与煤气中的氢气发生还原反应,使煤中的硫以硫化氢气体的形式脱除释放出来。而且在气化室下部,温度一般在800℃左右,恰好是脱硫剂发挥作用的最佳反应温度。如燃用含硫量较高的煤,只需在碎煤粒中添加适量的石灰石或白云石,即可得到较好的脱硫效果,从而大大降低烟气中二氧化硫的含量。 5、操作和控制简单易行 煤气的发生和燃烧在同一设备的两个装置中进行,不用设置单独的煤气点火装置,煤气在燃烧室内由高温明火自行点燃,易于操作和控制,简化了运行管理,操作方便,减轻司炉工劳动强度,改善锅炉房卫生条件,实现文明生产。 6、燃烧稳定,煤种适应性强 煤在锅炉气化室的下部引燃,因而燃烧稳定。可燃劣质煤矿和燃点高的煤,其煤种适应性较强,在难熔区或中等结渣范围以内的煤种均适合。其中褐煤、长焰煤、不粘结或弱粘结烟煤、小球形型煤是比较理想的燃料。 五、结束语 实践证明,新的燃烧理论及多种专利组成的集成技术,保证了煤气化分相燃烧锅炉高效环保的稳定性及先进性,克服了旧技术无法解决的浪费及污染的难题,获得了明显的经济效益和环境效益,受到用户青睐。中国的煤炭资源十分丰富,随着能源政策和环境的要求越来越高,煤气化分相燃烧锅炉在我国市场前景十分广阔。

我看利不多,分空气污染物 ── 多数由矿物燃料燃烧后产生 污染物 来源 对人体健康和其他方面的影响 可吸入悬浮颗粒物 交通用油,尤其是柴油 建筑工地和道路粉尘 焚烧 引起肺和呼吸道炎症 置身于污染物中对健康危害最大 二氧化硫 工业燃烧矿物燃料 交通 – 只产生少量 刺激呼吸道,诱发呼吸道狭窄 氮氧化物 交通、供热和发电时使用的燃料 引起哮喘发作 臭氧 氮氧化物和活性碳氢化合物之间的光化学反应 引起眼部刺激和肺功能损害 有毒碳氧化合物 工业和交通燃烧矿物燃料 以及工业生产过程中使用溶剂 可致癌 温室气体,如二氧化碳 工业和交通燃烧矿物燃料 全球变暖

人民教育出版社高一化学 第一册 第一章 第三节 化学反应中能量的变化及课后阅读材料很详细哦~~~

燃料燃烧论文参考文献

家用生物质成型燃料炉具的设计与研究

【摘要】 随着我国经济的发展,农村生活用能结构发生较大变化。一方面秸秆消耗量减少,煤和液化气用量增加,但其价格较高且呈上涨趋势;另一方面,尽管部分生物质秸秆用于加工饲料、肥料等产品,但仍有大量剩余秸秆闲置。近几年很多地区收获季节要求农民把秸秆运到指定地点,但由于堆放的秸秆占用土地,最终还是被陆续焚烧而造成资源浪费。将废弃的生物质秸秆与农村生活用能结合,因地制宜合理利用生物质资源,是解决农村能源与环境问题的有效途径。 本课题将生物质成型燃料应用于家用炉具,在已有研究基础上进一步较全面研究生物质成型燃料燃烧特性。依据工业炉设计标准,结合省柴灶、型煤炉特点和传热计算设计出家用生物质成型燃料炉具,进行炉具试验并依据分析结果提出建议。本文主要内容和研究成果如下: (1) 生物质成型燃料的燃烧模式为挥发分先析出燃烧,而后是固定碳的燃烧;燃料密度是燃料点火性能最显著影响因素,燃料密度愈小点火愈容易;封火状态燃料燃烧特点与火灾的阴燃及从阴燃转变为有焰火类似;不同原料种类的生物质成型燃料灰熔点特征温度有微小差别。 (2) 依据炉具设计步骤,通过燃料燃烧计算、传热计算初步估算出炉具设计热效率,并在此基础上参考相关文献确定炉具燃料消耗量、炉膛、烟囱等主要设计参数,设计出专用炉具。 (3) 参照GB6412—86《家庭用煤及炉具试验方法》,结合本炉具及所用燃料特点,测定燃料和炉具综合性能,得出了相关指标数值;试验中发现燃料燃烧充分,没有结渣现象,但产生的火焰较难控制致使排烟温度较高。 (4) 性能测试结果与炉具设计指标相比,排烟温度较高,热效率偏低;与原有炉具相比,火力足、燃烧充分且上火速度快,有良好的环境效益和社会效益,但燃料燃烧产生的火焰未最大化利用,排烟热损失亦较大。 (5) 提高炉具热效率可以通过将原炉具改造和设计出其他炉型两种途径;深入全面研究燃料性能也是设计优质炉具的保证。 目前对生物质成型燃料专用炉具的研究才刚刚开始,存在较多问题还需要更加全面和深入的研究。

【关键词】 农村生活用能; 生物质成型燃料; 燃烧特性; 炉具设计; 炉具性能试验

高中?大学?楼上的是大学的写法高中的话随便写点什么就好……

燃料的发展是人类赖以生存的基础和经济发展的动力.人类社会的巨大发展与进步,都与燃料消费的增长密切相关.燃料利用和消费的每一次重大突破,都伴随着科学技术的重大进步,促进社会生产力的大幅度提高,加速了经济的发展,使人类社会的面貌发生根本的变化.人类从远古的钻木取火之后,薪柴燃料作为主要燃料维持日常生活,并使用天然气、化学燃料等燃料促进生产方式的变化. 燃料先后经历了以薪柴为主、以煤为主和以石油为主的时代,现在正在向以天然气为主转变,同时,化石燃料、生物燃料、核能也正得到更广泛的利用.可持续发展、环境保护、燃料供应成本和可供应燃料的形态结构变化决定了全球能源多样化发展的格局.天然气消费量将稳步增加,在某些地区,燃气电站有取代燃煤电站的趋势.未来,在发展常规燃料的同时,新燃料将受到重视. 燃料的发展 柴是最早使用的燃料,透过燃烧成为加热的能源.烧柴在煮食和提供热力很重要,它可让人们在寒冷的环境下仍可生存. 煤是即柴以后的燃料,透过燃烧成为加热的能源.煮食和提供热力很重要. 石油是工业的主要燃料,提炼出来的煤气用于家庭和工业燃料. 天然气是现在大部分使用的燃料,在煮食和提供热力很重要. 煤、石油、天然气是重要的燃料 核能是核发电站的动力 燃烧按形态可以分成 固体燃料(如煤、炭、木材); 液体燃料(如汽油、煤油、石油); 气体燃料(如天然气、煤气、沼气); 按类型可以分成 化石燃料(如石油、煤、油页岩、甲烷、油砂等); 生物燃料(如乙醇【酒精】、生物柴油等); 核燃料(如铀235、铀233、铀238、钚239、钍232等) 指能产生核能的物质,如铀、钚等. 一、固体燃料 柴是最早使用的燃料,透过燃烧成为加热的能源.烧柴在煮食和提供热力很重要,它可让人们在寒冷的环境下仍可生存. 二、液体燃料 石油提炼出来的煤气用于家庭和工业燃料 三、气体燃料 沼气是农村主要燃料 四、生物质能 生物质能是指能够当做燃料或者工业原料,活着或刚死去的有机物.生物质能最常见于种植植物所制造的生质燃料,或者用来生产纤维、化学制品和热能的动物或植物.许多的植物都被用来生产生物质能,包括了芒草、柳枝稷、麻、玉米、杨属、柳树、甘蔗和棕榈树等. 燃料的发展史直接影响人类的发展史. 燃料利用的重大突破出现在18世纪后半叶,1785年蒸气机的问世,把热能转换为机械能,推动了产业革命.机械化大工业生产的迅猛发展,促使能源由薪材燃料转向了化石燃料,首先是煤炭消耗量的迅速增加.19世纪中叶以后,内燃机的发明和火力发电厂的发展,以及钻探技术的提高,石油和天然气得到广泛应用.目前,人类社会生产和生活进入了气体燃料时代,对气体燃料的需求量日益增长.由于产生气体燃料的一次能源主要是煤和石油,都是非再生能源,长期强行开采势必使之日渐枯竭,燃料的开发利用必须走多样化的道路.本世纪50年代,继原子能技术在军事上应用后,实现了核裂变技术在工业中的应用.核电站的建立和核燃料的使用是能源利用发展史上一次重大的技术革命,为人类社会稳定发展打下坚实的物质基础.随着科学技术水平的提高,天然气、化石燃料、生物燃料等新燃料必将得到充分的合理开发和利用,尤其是受控核聚变若能实现的话,将为人类提供无穷无尽的能量.人类离不开燃料.燃料是人类生存、生活与发展的主要基础.燃料的发展在人类社会进步中一直扮演着及其重要的角色.燃料的发展都伴随着人类生存与社会进步的巨大飞跃.几千年来,在人类的燃料利用史上,大致经历了这样四个里程碑式的发展阶段:原始社会火的使用,先祖们在火的照耀下迎来了文明社会的曙光进; 未来对燃料发展的要求 有足够满足人类生存和发展所需要的储量,并且不会造成影响人类生存的环境污染问题. 未来对燃料的需求 未来的人类社会依然要依赖于燃料,依赖于燃料的可持续发展.因此,我们须现在就很清楚地了解地球上的燃料储量,发展必须开发的新燃料利用技术,才能使人类的生存得于永久维持. 世界能源结构先后经历了以薪柴为主、以煤为主和以石油为主的时代,现在正在向以天然气为主转变,同时,核能也正得到更广泛的利用. 随着世界燃料新技术的进步及环保标准的日益严格,未来世界燃料将进一步向清洁化的方向发展,不仅燃料的生产过程要实现清洁化,而且燃料工业要不断生产出更多、更好的清洁燃料,清洁燃料在燃料总消费中的比例也将逐步增大. 世界燃料加工和消费的效率差别较大,燃料利用效率提高的潜力巨大.随着世界燃料新技术的进步,未来世界燃料利用效率将日趋提高,燃料强度将逐步降低.

相关百科

热门百科

首页
发表服务