P值来源于六西格玛管理,是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。 P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。
F值时F检验的统计量值,F=MSR/MSE,其中MSR=SSR/自由度,MSE=SST/自由度,一般大于给定阿尔法相对的F量时说明显著。P值是指(F检验或者T或者其余检验量)大于所求值时的概率,一般要小于于给定α就说明检验显著。p=P(|U|>=|u|)<=P(|U|>=|uα/2|)=αr值是拟合优度指数,用来评价模型的拟合好坏等,取值范围是【-1,1】,越接近正负1越好。R平方=SSR/SST。其中SSR是回归平方和,SST是总离差平方和
P>05 表示无显著性差异;01
P<05时,对比组之间的差异具有显著性意义;P<01时,对比组之间的差异具有非常显著性意义这是中华医学会的规范化。
,t值和P值都用来判断统计上是否显著的指标。p值就是拒绝原假设的最小alpha值嘛,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值啊,举个例子,比如说算出来的统计量的值为z,服从的是正态分布,如果是双边检验的话那么pvalue=2*(1-probnorm(abs(Z)));单边检验的话,应该是1-probnorm(z);具体问题具体分析,不同的检验方法求p值方法也不一样,统计的书上肯定都有;T值计算方法相似。
最通俗的来讲,P值代表原假设成立的概率,所以P值越小代表原假设越不成立,所以可以拒绝原假设。一般P值小于等于5%就可以视为原假设大概率不成立了。
1:T 这是数理统计中的一种统计量 T统计量2:而统计量指不含未知参数的样本函数。如样本x�1,x�2,…,x�n的算术平均数(样本均值)=1n(x�1+x�2+…+x�n)就是一个统计量。从样本构造统计量,实际上是对样本所含总体的信息提炼加工;根据不同的推断要求,可以构造不同的统计量。3:为什么要构造统计量,这个主要是为了参数估计与检验,具体就相当复杂了。。。4:最后P叫做P值是T、F等一些统计量在置信区间为α下的一种指标吧,5:总之呢,这个涉及到了描述统计学,数理统计学以及计量的很多知识6:希望你看看相关书籍 自己掌握吧
P<05时,对比组之间的差异具有显著性意义;P<01时,对比组之间的差异具有非常显著性意义这是中华医学会的规范化。
P>05 表示无显著性差异;01
F值表示整个拟合方程的显著性,F越大,表示方程越显著,拟合程度也就越好。P值表示不拒绝原假设的程度。简而言之,P<5表示假设更可能是正确的,反之则可能是错误的。r值是拟合优度指数,用来评价模型的拟合好坏等,取值范围是【-1,1】,越接近正负1越好。R平方=SSR/SST。其中SSR是回归平方和,SST是总离差平方和。P值是衡量控制组与实验组差异大小的指标,意思是P值小于05,表示两组存在显著差异,意思是P值小于01,表示两组的差异极其显著,可以用SPSS统计,根据自变量应该是果蝇的性别,因变量应该是寿命,自变量是名义变量,因变量是连续变量,所以用单因素方差分析就可以得出结果了。另外在统计解释时一般不看F值,只需要看P值就可以了,但是在写论文时还是要将F值写出来,并把P值放在后面用括号括起来。扩展资料:F检验对于数据的正态性非常敏感,因此在检验方差齐性的时候,Levene检验, Bartlett检验或者Brown–Forsythe检验的稳健性都要优于F检验。 F检验还可以用于三组或者多组之间的均值比较,但是如果被检验的数据无法满足均是正态分布的条件时,该数据的稳健型会大打折扣,特别是当显著性水平比较低时。但是,如果数据符合正态分布,而且alpha值至少为05,该检验的稳健型还是相当可靠的。参考资料来源:百度百科-F检验
t值和P值都用来判断统计上是否显著的指标。 p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值啊,举个例子,比如说算出来的统计量的值为z,服从的是正态分布,如果是双边检验的话那么pvalue=2*(1-probnorm(abs(Z)));单边检验的话,应该是1-probnorm(z)。
你应该说的是假设检验的p值法吧p值用来确定是否拒绝原假设H0,p<05 拒绝H0,否则接受。05是显著性水平
P值来源于六西格玛管理,是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。 P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。
统计中t值和p值的区别为:1、t值,指的是T检验,主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。2、P值,就是当原假设为真时,所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。p值代表的是不接受原假设的最小的显著性水平,可以与选定的显著性水平直接比较。例如取5%的显著性水平,如果P值大于5%,就接受原假设,否则不接受原假设。这样不用计算t值,不用查表。3、P值能直接跟显著性水平比较;而t值想要跟显著性水平比较,就得换算成P值,或者将显著性水平换算成t值。在相同自由度下,查t表所得t统计量值越大,其尾端概率P越小,两者是此消彼长的关系,但不是直线型负相关。
专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=05提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)
1、t值T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。 T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。t检验是戈斯特为了观测酿酒质量而发明的,并于1908年在Biometrika上公布 。2、P值P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。扩展资料实用举例1、t检验可用于比较男女身高是否存在差别为了进行独立样本t检验,需要一个自(分组)变量(如性别:男、女)与一个因变量(如身高测量值)。根据自变量的特定值,比较各组中因变量的均值。用t检验比较下列男、女儿童身高的均值 。假设H0:男平均身高 = 女平均身高H1:男平均身高 ≠ 女平均身高选用双侧检验:选用α=05的统计显著水平2、P值从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。如果P<01,说明是较强的判定结果,拒绝假定的参数取值。如果01
05,说明结果更倾向于接受假定的参数取值。参考资料来源:百度百科-t值参考资料来源:百度百科-p值
1:T 这是数理统计中的一种统计量 T统计量2:而统计量指不含未知参数的样本函数。如样本x�1,x�2,…,x�n的算术平均数(样本均值)=1n(x�1+x�2+…+x�n)就是一个统计量。从样本构造统计量,实际上是对样本所含总体的信息提炼加工;根据不同的推断要求,可以构造不同的统计量。3:为什么要构造统计量,这个主要是为了参数估计与检验,具体就相当复杂了。。。4:最后P叫做P值是T、F等一些统计量在置信区间为α下的一种指标吧,5:总之呢,这个涉及到了描述统计学,数理统计学以及计量的很多知识6:希望你看看相关书籍 自己掌握吧