首页

> 期刊发表知识库

首页 期刊发表知识库 问题

论文中的t值和p值

发布时间:

论文中的t值和p值

1、t指的是T检验,亦称student t检验(Student's t test),主要用于样本含量较小(n<30),总体标准差σ未知的正态分布资料。2、P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。3、在相同自由度下,查t表所得t统计量值越大,其尾端概率p越小,两者是此消彼长的关系,但不是直线型负相关。拓展资料统计一词起源于国情调查,最早意为国情学。原始的统计工作即人们收集数据的原始形态已经有几千年的历史,而它作为一门科学,是从17世纪开始。一般来说,统计包括三个含义:统计工作、统计资料和统计科学。(1)统计工作。指利用科学的方法搜集、整理和分析和提供关于社会经济现象数量资料的工作的总称,是统计的基础。也称统计实践,或统计活动,是在一定统计理论指导下,采用科学的方法,搜集、整理、分析统计资料的一系列活动过程。(2)统计资料。指通过统计工作取得的、反映社会经济现象的数据资料的总称。统计工作所取得的各项数字资料及有关文字资料,一般反映在统计表、统计图、统计手册、统计年鉴、统计资料汇编和统计分析报告中。(3)统计科学。也称统计学,是统计工作经验的总结和理论概括,是系统化的知识体系。指研究如何搜集、整理和分析统计资料的理论与方法。统计工作的成果是统计资料,统计资料和统计科学的基础是统计工作,统计科学既是统计工作经验的理论概括,又是指导统计工作的原理、原则和方法。参考资料:百度百科  统计

最通俗的来讲,P值代表原假设成立的概率,所以P值越小代表原假设越不成立,所以可以拒绝原假设。一般P值小于等于5%就可以视为原假设大概率不成立了。

T值就是这些统计检定值,与它们相对应的概率分布,就是t分布。统计显著性(sig)就是出现目前样本这结果的机率。P值代表结果的可信程度,P越大,就越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=05提示样本中变量关联有5%的可能是由于偶然性造成的。一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。拓展资料R·A·Fisher(1890-1962)作为一代假设检验理论的创立者,在假设检验中首先提出P值的概念。他认为假设检验是一种程序,研究人员依照这一程序可以对某一总体参数形成一种判断。也就是说,他认为假设检验是数据分析的一种形式,是人们在研究中加入的主观信息。(当时这一观点遭到了Neyman-Pearson的反对,他们认为假设检验是一种方法,决策者在不确定的条件下进行运作,利用这一方法可以在两种可能中作出明确的选择,而同时又要控制错误发生的概率。这两种方法进行长期且痛苦的论战。虽然Fisher的这一观点同样也遭到了现代统计学家的反对,但是他对现代假设检验的发展作出了巨大的贡献。)Fisher的具体做法是:假定某一参数的取值。选择一个检验统计量(例如z 统计量或Z 统计量) ,该统计量的分布在假定的参数取值为真时应该是完全已知的。从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。如果P<01,说明是较强的判定结果,拒绝假定的参数取值。如果0105,说明结果更倾向于接受假定的参数取值。可是,那个年代,由于硬件的问题,计算P值并非易事,人们就采用了统计量检验方法,也就是我们最初学的t值和t临界值比较的方法。统计检验法是在检验之前确定显著性水平α,也就是说事先确定了拒绝域。但是,如果选中相同的,所有检验结论的可靠性都一样,无法给出观测数据与原假设之间不一致程度的精确度量。只要统计量落在拒绝域,假设的结果都是一样,即结果显著。但实际上,统计量落在拒绝域不同的地方,实际上的显著性有较大的差异。因此,随着计算机的发展,P值的计算不再是个难题,使得P值变成最常用的统计指标之一。参考资料来源:百度百科-t检验百度百科-P值

不是。在论文中,t值和P值都用来判断统计上是否显著的指标,两个值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较,并不是斜体的表示方法。

论文数据中t值和p值是什么

统计中t值和p值的区别为:1、t值,指的是T检验,主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。2、P值,就是当原假设为真时,所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。p值代表的是不接受原假设的最小的显著性水平,可以与选定的显著性水平直接比较。例如取5%的显著性水平,如果P值大于5%,就接受原假设,否则不接受原假设。这样不用计算t值,不用查表。3、P值能直接跟显著性水平比较;而t值想要跟显著性水平比较,就得换算成P值,或者将显著性水平换算成t值。在相同自由度下,查t表所得t统计量值越大,其尾端概率P越小,两者是此消彼长的关系,但不是直线型负相关。

专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=05提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)

1、t值T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。 T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。t检验是戈斯特为了观测酿酒质量而发明的,并于1908年在Biometrika上公布 。2、P值P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。扩展资料实用举例1、t检验可用于比较男女身高是否存在差别为了进行独立样本t检验,需要一个自(分组)变量(如性别:男、女)与一个因变量(如身高测量值)。根据自变量的特定值,比较各组中因变量的均值。用t检验比较下列男、女儿童身高的均值 。假设H0:男平均身高 = 女平均身高H1:男平均身高 ≠ 女平均身高选用双侧检验:选用α=05的统计显著水平2、P值从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。如果P<01,说明是较强的判定结果,拒绝假定的参数取值。如果0105,说明结果更倾向于接受假定的参数取值。参考资料来源:百度百科-t值参考资料来源:百度百科-p值

1:T 这是数理统计中的一种统计量 T统计量2:而统计量指不含未知参数的样本函数。如样本x�1,x�2,…,x�n的算术平均数(样本均值)=1n(x�1+x�2+…+x�n)就是一个统计量。从样本构造统计量,实际上是对样本所含总体的信息提炼加工;根据不同的推断要求,可以构造不同的统计量。3:为什么要构造统计量,这个主要是为了参数估计与检验,具体就相当复杂了。。。4:最后P叫做P值是T、F等一些统计量在置信区间为α下的一种指标吧,5:总之呢,这个涉及到了描述统计学,数理统计学以及计量的很多知识6:希望你看看相关书籍 自己掌握吧

论文p值t值是什么

,t值和P值都用来判断统计上是否显著的指标。p值就是拒绝原假设的最小alpha值嘛,把统计量写出来,带进去算出来之后,根据统计量的分布来算p值啊,举个例子,比如说算出来的统计量的值为z,服从的是正态分布,如果是双边检验的话那么pvalue=2*(1-probnorm(abs(Z)));单边检验的话,应该是1-probnorm(z);具体问题具体分析,不同的检验方法求p值方法也不一样,统计的书上肯定都有;T值计算方法相似。

最通俗的来讲,P值代表原假设成立的概率,所以P值越小代表原假设越不成立,所以可以拒绝原假设。一般P值小于等于5%就可以视为原假设大概率不成立了。

1:T 这是数理统计中的一种统计量 T统计量2:而统计量指不含未知参数的样本函数。如样本x�1,x�2,…,x�n的算术平均数(样本均值)=1n(x�1+x�2+…+x�n)就是一个统计量。从样本构造统计量,实际上是对样本所含总体的信息提炼加工;根据不同的推断要求,可以构造不同的统计量。3:为什么要构造统计量,这个主要是为了参数估计与检验,具体就相当复杂了。。。4:最后P叫做P值是T、F等一些统计量在置信区间为α下的一种指标吧,5:总之呢,这个涉及到了描述统计学,数理统计学以及计量的很多知识6:希望你看看相关书籍 自己掌握吧

论文中的T值跟P值什么意思

T值就是这些统计检定值,与它们相对应的概率分布,就是t分布。统计显著性(sig)就是出现目前样本这结果的机率。P值代表结果的可信程度,P越大,就越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=05提示样本中变量关联有5%的可能是由于偶然性造成的。一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。拓展资料R·A·Fisher(1890-1962)作为一代假设检验理论的创立者,在假设检验中首先提出P值的概念。他认为假设检验是一种程序,研究人员依照这一程序可以对某一总体参数形成一种判断。也就是说,他认为假设检验是数据分析的一种形式,是人们在研究中加入的主观信息。(当时这一观点遭到了Neyman-Pearson的反对,他们认为假设检验是一种方法,决策者在不确定的条件下进行运作,利用这一方法可以在两种可能中作出明确的选择,而同时又要控制错误发生的概率。这两种方法进行长期且痛苦的论战。虽然Fisher的这一观点同样也遭到了现代统计学家的反对,但是他对现代假设检验的发展作出了巨大的贡献。)Fisher的具体做法是:假定某一参数的取值。选择一个检验统计量(例如z 统计量或Z 统计量) ,该统计量的分布在假定的参数取值为真时应该是完全已知的。从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。如果P<01,说明是较强的判定结果,拒绝假定的参数取值。如果0105,说明结果更倾向于接受假定的参数取值。可是,那个年代,由于硬件的问题,计算P值并非易事,人们就采用了统计量检验方法,也就是我们最初学的t值和t临界值比较的方法。统计检验法是在检验之前确定显著性水平α,也就是说事先确定了拒绝域。但是,如果选中相同的,所有检验结论的可靠性都一样,无法给出观测数据与原假设之间不一致程度的精确度量。只要统计量落在拒绝域,假设的结果都是一样,即结果显著。但实际上,统计量落在拒绝域不同的地方,实际上的显著性有较大的差异。因此,随着计算机的发展,P值的计算不再是个难题,使得P值变成最常用的统计指标之一。参考资料来源:百度百科-t检验百度百科-P值

1:T 这是数理统计中的一种统计量 T统计量2:而统计量指不含未知参数的样本函数。如样本x�1,x�2,…,x�n的算术平均数(样本均值)=1n(x�1+x�2+…+x�n)就是一个统计量。从样本构造统计量,实际上是对样本所含总体的信息提炼加工;根据不同的推断要求,可以构造不同的统计量。3:为什么要构造统计量,这个主要是为了参数估计与检验,具体就相当复杂了。。。4:最后P叫做P值是T、F等一些统计量在置信区间为α下的一种指标吧,5:总之呢,这个涉及到了描述统计学,数理统计学以及计量的很多知识6:希望你看看相关书籍 自己掌握吧

统计中t值和p值的区别为:1、t值,指的是T检验,主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。2、P值,就是当原假设为真时,所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。p值代表的是不接受原假设的最小的显著性水平,可以与选定的显著性水平直接比较。例如取5%的显著性水平,如果P值大于5%,就接受原假设,否则不接受原假设。这样不用计算t值,不用查表。3、P值能直接跟显著性水平比较;而t值想要跟显著性水平比较,就得换算成P值,或者将显著性水平换算成t值。在相同自由度下,查t表所得t统计量值越大,其尾端概率P越小,两者是此消彼长的关系,但不是直线型负相关。

1、t值T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。 T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。t检验是戈斯特为了观测酿酒质量而发明的,并于1908年在Biometrika上公布 。2、P值P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。扩展资料实用举例1、t检验可用于比较男女身高是否存在差别为了进行独立样本t检验,需要一个自(分组)变量(如性别:男、女)与一个因变量(如身高测量值)。根据自变量的特定值,比较各组中因变量的均值。用t检验比较下列男、女儿童身高的均值 。假设H0:男平均身高 = 女平均身高H1:男平均身高 ≠ 女平均身高选用双侧检验:选用α=05的统计显著水平2、P值从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。如果P<01,说明是较强的判定结果,拒绝假定的参数取值。如果0105,说明结果更倾向于接受假定的参数取值。参考资料来源:百度百科-t值参考资料来源:百度百科-p值

论文中t检验t值填绝对值

你好,不知你是指哪个T值。 如果是联通业务的,T即Text的首个字母,是文本内容的计价单位。如果是医疗方面的, T值是指睾酮同时也是检查睾丸的一种重要指标。在睾酮的指标上,正常值为7~81之间。如果T值的变化很大就很有可能是身体内的一些疾病发生。最常见的就是男性的睾丸炎。希望对你有帮助,谢谢!

相关百科

热门百科

首页
发表服务