扫描版(部分文字乱码)分子生物学技术在动物营养学上的应用及其发展前景(上)摘要:本文从营养与基因表达调控、基因工程、转基因等三个方面综述了分子生物学技术在动物营养学中应用的最新进展,并对动物营养学的发展前景作了展望。自从发现双螺旋结构以来,分子生物学取得了飞跃性的发展,形成了以基因工程为主要内容的的现代分子生物学技术@在生物学、医学等研究中得到广泛的应用,几乎渗透到生命科学的每一个领域,成为研究和揭示生命现象本质和规律的一种重要工具。当前,世界各国都将分子生物学纳入本国科技发展的重点,可以预见,"21世纪将是生命科学的世纪,全世界所共同面临的许多重大问题,诸如饥饿与营养、疾病、能源与环境污染等问题的根本解决,在很大程度上将依赖于分子生物学技术的发展和应用。及时全面的了解和掌握分子生物学理论和技术的发展动态及研究热点,将具有重要的意义。就目前来看,我国动物营养学方面的研究工作基本尚处在机体水平:即在机体水平上研究各种营养素对机体的作用、在机体内的代谢与平衡、影响机体吸收营养素的因素等问题。分子水平方面的研究还刚刚起步,尚处于初级阶段。动物机体的生理病理变化,如生长发育、新陈代谢、遗传变异、免疫与疾病等,就本质而言,都是动物基因的表达调控发生了改变的结果,许多生理现象的彻底阐明,最终需要在基因水平上进行解释,所以动物营养学的各方面研究应与分子生物学技术,尤其是基因工程技术相结合,从分子水平上来解释各种营养素对机体的作用机制、动物机体的生理病理变化等问题,这也是动物营养学今后发展的必然趋势之一。*营养与基因的表达调控随着分子生物学技术不断发展,越来越多与代谢有关的动物基因被克隆和鉴定,人们对营养与基因调控的关系越来越感兴趣。营养与动物基因表达调控的研究已成为当今动物营养学研究的一个热点领域;如何通过改变日粮组成成分来调节体内相关基因的表达,从而使动物体处于最佳生长状况已成为现代动物营养学研究的重点;通过营养对动物基因表达的调控途径及其机制的研究,将为人们如何更加有效地对某些特定有益基因的表达提供理论依据。已有大量证据表明,主要的营养物质如糖、脂肪酸、氨基酸以及一些微量元素(如锌)对动物体内许多基因的表达都有影响。!"!营养对磷酸烯醇式丙酮酸激酶基因表达的调控PEPCK是动物肝和肾中糖元异生作用的关键酶,目前较为研究清楚的是日粮中糖含量对PEPCK基因表达的调控。糖类对PEPCK的调控主要是通过对其启动子的作用,当动物进食含有大量糖类的饲料时,PEPCK的启动了就会关闭,从而导致ABA8C水平大幅度下降,而当禁食或饲喂高蛋白质低糖的饲料时,PEPCK的启动子就会处于打开状态,从而PEPCK水平得到大幅度提高,其具体调控机制大致如下:?556D4(*0)#)等通过对大鼠ABA8C基因的分析表明,ABA8C基因启动子位于1 E+至F#,之间,其中包含了大多数激素调控基因转录所必需的组织特异性调控元件。日粮中糖的含量水平会影响胰岛素、;?GA等激素的相对水平,而胰岛素与;?GA等激素相对水平又会影响到特异性!"#!转录因子的活性,特异性转录因子与$%$&’启动子上的相应调控元件结合与否,又会影响$%$&’基因的表达(,)。现有大量证据表明,$%$&’基因一系列复杂的调控元件中,有包括胰岛素、甲状腺激素、糖皮质激素、视黄酸对$%$&’基因转录的正调控元件和胰岛素对$%$&’基因转录的负控调元件,在上述调控元件中,*+,$调控元件-&%/和$(-0/调控元件是最重要的两种,*+,$对$%$&’基因的诱导和胰岛素对$%$&’基因的抑制作用就是通过这两个调控元件来进行调控的。因此,当进食含大量糖类的饲料时,由于*+,$水平的急剧下降以及胰岛素水平的急剧上升,从而抑制$%$&’基因的表达,导致肝中$%$&’水平大幅度下降,当禁食或饲喂高蛋白低糖的饲料时,则情况恰好相反。!"#营养对脂肪酸合成酶($%&)基因表达的调控1+2是脂肪酸合成的主要限制酶,存在于脂肪、肝脏及肺等组织中,在动物体内起催化丙二酰&3+连续缩合成长链脂肪酸的反应,其活性高低将直接控制着体内脂肪合成的强弱,从而影响整个机体中脂肪的含量。有关营养与1+2基因的表达调控,2!4!&56789-:;;(/曾报道:糖类能诱导1+2基因的转录,而脂肪则抑制这种诱导的表达。&3<=9等(:;;>)试验研究也表明,当给禁食后的成年鼠饲喂含高糖低脂肪的饲料时,1+2基因的表达就增强,而且相应的?@+含量的增加幅度与碳水化合物的摄入量也成正比。糖类对1+2基因表达的影响。为区分活体中激素水平变化的协同作用,13?,葡萄糖的作用效果。最近H3I73J等-:;;G/试验研究也表明,在成年大鼠肝细胞培养物中G E磷酸E"E脱氧葡萄糖水平与1+2的?@+含量呈正相关。因此G E磷酸E"E脱氧葡萄糖极有可能是参与1+2基因表达的重要中间代谢物。脂肪对1+2基因表达的影响。&56789-:;;(/的研究表明,脂肪抑制1+2基因表达主要与脂肪抑制1+2基因转录的能力和脂肪中脂肪酸的碳链长度、双键位置和双键的数量有关,饱和脂肪酸和(J E;)族脂肪酸不能抑制1+2基因的表达,多不饱和脂肪酸($K1+)中的-J E G/和-J E(/族脂肪酸是1+2基因的有效抑制剂,研究表明,日粮中$K1+可使1+2?@+的水平降低D>C E;>C。蛋白质对1+2基因表达的影响。,I5LJ97-:;;:/研究表明,高蛋白饲粮将抑制猪脂肪组织中1+2基因的表达,脂肪组织中1+2基因的?M@+的含量会显著下降:用蛋白质含量分别为:)C、:#C、")C的日粮饲喂G>E::>8N的肥育猪,其脂肪组织中1+2?@+的含量分别下降了#!:)C、::!D(C和)#!"C。由此可见日粮蛋白质将会影响脂肪组织中1+2基因的表达,但这种调控具体发生在哪个水平及其作用机理目前还不清楚。!"’营养对()*+,*基因表达的影响长期以来,我国商品猪的瘦肉率较国际优良品种低,而目前常规的育种方法已很难使之有大幅度的提高。因此OP6JN等(:;;))小鼠3Q基因的克隆成功为这方面的研究提供了新的思路。由于R9=SIJ基因具有可以大大降低动物体脂含量这一特性,因此通过营养对R9=SIJ基因表达调控的研究,将有助于深入了解R9=SIJ对动物体重的调控机制。王方年等(:;;;)研究表明,浓度从B??35 TR到:>??35 T R葡萄糖可以显著地促进脂肪细胞中59=SIJ基因的表达。!"-营养与神经肽(/)基因表达的影响@$U是一种含(G个氨基酸残基的生物活性多肽,在体内具有收缩血管、影响激素分泌、调节生物节律及摄食行为等多种生物学功能,其中促进动物采食是@$U最主要的功能之一。试验研究表广东饲料第;卷第G期">>>年:"月综述广东饲料第#卷第$期"%%%年&"月综述明,限饲特别是限制能量采食将会显著提高’()在下丘脑中的表达量,*+,-等(#/)在限饲、低碳水化合物、低脂肪、低蛋白质日粮组成的试验条件下,发现下丘脑中’()0 1’2显著提高345。!"#微量元素对基因表达的调控&!4!&锌对基因表达的调控锌作为动物体的一种必需微量元素,具有增强机体免疫功能、促进细胞增值分化、参与核酸蛋白质代谢、维持细胞周期正常进行等生物学功能。上述作用以前曾被认为主要是由于含锌酶活性的改变以及对细胞信号传导系统产生影响的结果,但近年来的研究表明,事实并不如此,锌主要是通过对基因的转录和表达的影响而产生一系列的生物学效应。6,7+:;#<=认为,锌离子是>’2聚合酶的一个重要组成成分,锌对于维持>’2聚合酶的活性具有相当的重要性;另外锌通过影响1’2聚合酶活性及转录因子的作用,能够导致基因转录异常,从而使蛋白质表达也发生变化;还有饲料中锌的含量,可以通过影响金属调节蛋白的转录活性而影响金属硫蛋白(6?)基因的表达,@A88,BC:等(#3)认为可将6?基因的表达量作为体内锌状况的重要衡量指标。67’C88;#4=发现低锌日粮限制动物生长的直接原因是由于低锌抑制了体内DEF G D、EH受体、EH结合蛋白等基因的表达。&!4!"其他微量元素对基因表达的调控镉、铜、汞等元素的增加将显著提高6?基因的表达量。I+JA;#/=研究表明高铜将显著提高体内EH基因的表达水平。IC+K,:LK等(M$)认为铁可以通过控制01’2的稳定性和翻译过程,调节铁蛋白的水平。"基因工程技术所谓基因工程,就是按照人们的意愿在体外获得目的基因,再按预先的设计,在体外将目的基因进行酶切连接,构建成适当的表达裁体,然后导入细菌或动物细胞或机体内,以研究该目的基因的结构与功能、表达的调控机制、或者获得该基因的表达产物。分子生物学技术的核心就是基因工程,而基因克隆和表达是基因工程的核心技术。下面就抗菌肽、植酸酶,甜菜碱等,对基因工程技术在动物营养学领域中的应用作一简单阐述。$"!抗菌肽基因工程自从NJ0C:等(M&)首次从美国惜古比天蚕;HOC8JP+JKC 7KJP,:=中成功地分离到两种抗菌肽蚕素(7KJP,:)2和N后,国内外很多科学家对这一类抗菌肽进行了深入细致的研究,发现在许多昆虫、植物、哺乳动物中均有这样的多肽存在,它们由<%多个氨基酸残基组成,不同来源的多肽的氨基酸序列具有较强的保守性且共同具有如下特点:(&)’端由碱性氨基酸残基组成;(")Q端均酰胺化;(<)绝大多数多肽在第二位均为?KP,它对杀菌活性至关重要;(/)它们都有较广的杀菌谱。其抗菌机制大致如下:抗菌肽作用于细菌的细胞膜,破坏膜的完整性,造成离子通道,最终导致细胞内含物的泄漏。由于抗菌肽具有广谱杀菌作用、相对分子量较小、热稳定、水溶性好等优点,更为重要的是抗菌肽对真核细胞几乎没有作用,仅仅作用于原核细胞和发生病变的真核细胞,在目前不少病原菌对原有抗生素逐步产生耐药性,尤其是肉用动物长期使用抗生素受到严格检查和批评时,对畜禽体内自然产生的抗菌肽功能的了解以及设计一种方法来调节动物体内自然抗菌肽的功能便显得极为重要,其中通过抗菌肽基因的克隆与表达而大量生产抗菌肽是一种较为直接而有效的方法。目前昆虫和植物抗菌肽基因工程,在国内外已有不少成功的报道,但就畜禽抗菌肽基因工程国内外尚未见报道。因此,运用基因工程技术,通过对畜禽抗菌肽的研究,对提高畜禽的抗病能力、减少甚至替代抗生素的使用将起积极的促进作用。目前,猪抗菌肽((1 G<#)已被发现(等,M#),它是一个分子量为/3道尔顿的肽,从猪肠中分离,属于富含(KJ G 2KL的肽家族,不裂解野生型大肠杆菌,但对突变型R&"有作用,其作用机制是通过阻断蛋白质和>’2的合成,从而导致这些成分的降解。(1 G<#在一个单层囊泡中可以诱导钙的降低和电流的线性增加,此诱导与肽浓度和膜上甘油磷酸脂(带负电荷)有关。另外在猪小肠中,还发现另一种抗菌肽7KJP,:(&,它是以裂解细菌来完成杀菌作用的。2:SK99J:;#4=运用基因工程技术从猪骨髓1’2中克隆到一种新型的7>’2,其编码一个3M残基的抗菌肽’R G 8O9,:,有三个分子内二硫键,这种肽对’R G敏感型的肿瘤细胞株)2Q G&有裂解活性,但不裂解红血球细胞。;!"#!分子生物学技术在动物营养学上的应用及其发展前景$下%郑家茂赵国芬许梓荣!"!植酸酶的基因工程植酸酶的研究已有近’年的历史,植酸酶作为一种单胃动物的饲料添加剂,其饲喂效果已在世界范围内得到广泛的确证,随着饲料工业的发展和分子生物学的兴起,从(’年代开始的植酸酶的分子生物学研究,已成为世界性的研究热点之一。目前国内外研究的主要思路集中在通过基因工程这一手段解决饲用植酸酶的两个主要问题:一个是植酸酶在天然材料中表达水平太低,这造成植酸酶难以大量生产及生产成本过高的问题,通过基因工程技术,利用生物反应器则有望成百上千倍地提高它的表达量;另一个问题是天然植酸酶的一些酶学性质,如耐温性,/0适性、催化活性等不能完全适合饲料加工业和养殖业的要求,利用基因工程手段在分子水平上对植酸酶基因进行改造,从而提高其在饲料中使用的有效性。#!#!&在微生物中高效表达植酸酶基因目前,植酸酶基因表达的研究主要集中在来源于曲霉的植酸酶基因/123和/425上。06789:;<=>?4@8等$&(("%将来源于3!A:BCDDEFFG"&"-的/123基因导回原菌株,使/12基因的拷贝数增加到&-个以上,从而使植酸酶的表达量提高到,H’’C I D4。J174:B1等(&((-)在3!K72L6?中表达来源于酵母的植酸酶基因和来源于3!;:7,H#的/125基因,其结果也是使表达量分别提高到M’C I D4和,-’C I D4,将植酸酶基因/123置于来源于3!;:7的淀粉葡萄糖甘酶$3N%启动子之下,信号肽序列分别用3N信号肽的&M个氨基酸序列、3N信号肽的#个氨基酸序列及植酸酶原来的信号肽序列"种构建,将植酸酶基因重组到3;:7基因组中而获得植酸酶基因的阳性克隆子在这"种构建中其植酸酶在重组菌株中的表达量分别达到了&!&O’!-O#!M P&’-C I D4,比原植酸酶产生菌株的表达量高约&’’’Q"’’’倍左右。#!#!#植酸酶热稳定性加工饲料都需要一个制粒工艺,在制粒过程中有一个短暂的高温过程,温度一般在,-("R,一般植酸酶在此高温下会大幅度地丧失活性,因此,能在饲料中真正推广利用的植酸酶必须具有良好的热稳定性;然而另一方面饲料中的植酸酶最终的作用场所却是动物正常体温(",R)的肠胃中,植酸酶同时又必须在常温下具有较高活性,因此,如何解决在制粒高温和在动物正常体温下同时具有较高酶活性这一对矛盾是目前饲用植酸酶应用的关键性技术环节,通过基因工程技术对植酸酶基因在分子水平上进行改造将是一个强有力的手段。近年来,已从嗜温微生物中发现多种高温植酸酶,对它们的结构与热稳定性的研究将为植酸酶基因的分子改造提供理论依据。#!#!"植酸酶基因工程的一个新突破点假设在一些植物性饲料$如玉米、大麦、大豆等%中本身就含有足量的植酸酶,如果在饲喂过程中,植酸酶在动物的肠胃中释放出来降解饲料中的植酸磷,这岂不是一举两得,即省去了植酸酶添加剂的生产,又省去了在饲料中植酸酶的添加,这无疑是植酸酶应用的最佳方法。随着分子生物学技术的发展,这一“天方夜谭”的假设将成为现实。目前,科学家们已经开始尝试这一方面的研究并取得了阶段性的进展,其主要思维路线如下:将植酸酶基因通过基因工程技术转化到用作饲料的玉米、大豆、大麦中,培养出高含植酸酶的大豆、玉米、大麦。目前国外许多研究机构都在尝试此项工)中图分类号*SM&H!")文献标识码*5)文章编号*&’’-!MH&"$#’’&%’&!’’"#!’#作,预计近期内会取得突破性进展。#!"甜菜碱基因工程甜菜碱$%&’()*&+是广泛存在于动植物体内的季铵型生物碱。近年的研究表明,甜菜碱是一种高效、安全的营养再分配剂,添加于饲料中,可以显著提高畜、禽胴体瘦肉率、减少脂肪沉积,并可改善肉质,在养殖工业上应用前景广阔。但就甜菜碱本身而言,目前国内的甜菜碱生产均是通过化工工艺合成,通过基因工程手段来获得甜菜碱方面还是空白,国外近年来已开始这方面的研究。许多细菌和植物中由胆碱经两步氧化而成甜菜碱,合成代谢途径已经阐明,催化两步反应的酶蛋白已经分离和纯化,已克隆其基因并测定了碱基顺序。,-’/01研究室已完成大肠杆菌的%&’操纵元全序列分析,发现%&’操纵元由四个基因组成,其中%&’,编码胆碱脱氢酶(23 4 567(),%&’%编码甜菜碱醛脱氢酯(8#4 567(),%&’9编码胆碱转移系统(:8 4;67(),%&’<编码%&’基因的调节中作为阻遏物的#3!;67(蛋白。目前已有一些报道认为细菌9&’操纵元和=&>操纵元能在烟草中表达,因此将’/01研究室得到的%&’操纵元;!:?@7A,片段导入烟草,探讨甜菜碱是否能表达是一个诱人的研究领域。"转基因技术转基因技术是指用实验手段,将外源基因导入动物细胞或动物受精卵中,由此稳定整合到动物基因组,并能遗传给子代。目前常用的转基因技术主要有:显微注射法;胚胎多能干细胞虫;精子裁体法;反转录病毒载体法以及电转移技术等等,其中显微注射法是最常用、最有效的基因导入技术。目前培育成功的转基因动物绝大部分是采用该方法获得的。最早的转基因动物是将疱疹病毒基因与BCDE早期启动子联在一起,用显微注射法导入小鼠受精卵获得的转基因小鼠。目前,在动物营养领域转基因技术的研究主要包括:"!3提高动物生长性能生长激素$FG+在动物生产中基本上采用注射方法,虽然有一定的促生长作用,但程序复杂繁琐,解决思路之一就是采用转基因技术。G(11&/等$35;8+人生长激素$HFG+转基猪研究成功,这种转基因猪的生长速度比对照组高出38I,日增重可达3#:"J,饲料利用率提高#3I,采食量减少#EI,陈永福$3553+用自己构建的融合基因KL9 M NFG获得了转基猪,其生长速度提高33!;I O 3D!#I,饲料利用率提高3EI。另外,转基因羊、转基因鸡、转基因兔、转基因牛、转基因鱼等研究也相继获得成功。"!#改变动物体内的代谢途径动物营养研究表明,有些生长发育和维持所必需的营养物质必须由外界供给,例如赖氨酸,但是否可以不必由外界供给呢?可行的方案不外乎这么两种:一种是重建动物体内某些丢失的代谢途径;另一种是导入目前在动物体内尚未发现的代谢途径。转基因技术的出现提供了通过改变动物代谢途径从而让动物自身合成赖氨酸的可能性。-&&等$355E+已经清楚大肠杆菌合成赖氨酸途径中的酶基因编码,运用基因转移技术也证明了在细胞中施行这些途径的可行性,因此-&&等提出设想:把赖氨酸在微生物中生物合成的途径导入动物体内,使动物自身就能合成赖氨酸。"!"提高动物产毛性能由于胱氨酸在羊瘤胃中降解,所以饲料中加入胱氨酸并不能提高产毛量。因此能够得到一种自身合成胱氨酸的转基因羊,将会大大提高羊毛产量。P(/Q$3553+发现某些细菌能将硫固定并转化为胱氨酸,他们分别在大肠杆菌和沙门氏菌中分离到了丝氨酸乙酸转移酶基因和K 4乙酰丝氨硫化氢解酶基因,并且将这两种基因与金属硫蛋白$L9+基因启动子联接;并在"R端装上FG基因的序列,然后将这组调控序列通过转基因技术导入羊体内而得到高产羊毛转基因绵羊。D展望综上所述,以基因工程为核心的分子生物学技术应用于动物营养学研究领域,具有很大的潜力,它不仅为动物营养学研究提供了一套全新的技术和方法,而且可在基因水平上解决许多动物机体生理病理变化、营养素的代谢调节机制以及其与机体的相互关系等问题。我们可以设想,基因工程抗菌肽完全可以减少甚至替代抗生素的使用;随着转基因技术的日益完善,各种生长性能优越的动物新品种将层出不穷;用转基因动物来大量生产各种生理活性物质,也将成为现实。无可置疑,#3世纪是高新技术畜牧业应用大发展的时期,以基因工程为主导的分子生物学技术将会为我国的畜牧业的发展开辟广阔前景。
扫描版(部分文字乱码)分子生物学技术在动物营养学上的应用及其发展前景(上)摘要:本文从营养与基因表达调控、基因工程、转基因等三个方面综述了分子生物学技术在动物营养学中应用的最新进展,并对动物营养学的发展前景作了展望。自从发现双螺旋结构以来,分子生物学取得了飞跃性的发展,形成了以基因工程为主要内容的的现代分子生物学技术@在生物学、医学等研究中得到广泛的应用,几乎渗透到生命科学的每一个领域,成为研究和揭示生命现象本质和规律的一种重要工具。当前,世界各国都将分子生物学纳入本国科技发展的重点,可以预见,"21世纪将是生命科学的世纪,全世界所共同面临的许多重大问题,诸如饥饿与营养、疾病、能源与环境污染等问题的根本解决,在很大程度上将依赖于分子生物学技术的发展和应用。及时全面的了解和掌握分子生物学理论和技术的发展动态及研究热点,将具有重要的意义。就目前来看,我国动物营养学方面的研究工作基本尚处在机体水平:即在机体水平上研究各种营养素对机体的作用、在机体内的代谢与平衡、影响机体吸收营养素的因素等问题。分子水平方面的研究还刚刚起步,尚处于初级阶段。动物机体的生理病理变化,如生长发育、新陈代谢、遗传变异、免疫与疾病等,就本质而言,都是动物基因的表达调控发生了改变的结果,许多生理现象的彻底阐明,最终需要在基因水平上进行解释,所以动物营养学的各方面研究应与分子生物学技术,尤其是基因工程技术相结合,从分子水平上来解释各种营养素对机体的作用机制、动物机体的生理病理变化等问题,这也是动物营养学今后发展的必然趋势之一。*营养与基因的表达调控随着分子生物学技术不断发展,越来越多与代谢有关的动物基因被克隆和鉴定,人们对营养与基因调控的关系越来越感兴趣。营养与动物基因表达调控的研究已成为当今动物营养学研究的一个热点领域;如何通过改变日粮组成成分来调节体内相关基因的表达,从而使动物体处于最佳生长状况已成为现代动物营养学研究的重点;通过营养对动物基因表达的调控途径及其机制的研究,将为人们如何更加有效地对某些特定有益基因的表达提供理论依据。已有大量证据表明,主要的营养物质如糖、脂肪酸、氨基酸以及一些微量元素(如锌)对动物体内许多基因的表达都有影响。!"!营养对磷酸烯醇式丙酮酸激酶基因表达的调控PEPCK是动物肝和肾中糖元异生作用的关键酶,目前较为研究清楚的是日粮中糖含量对PEPCK基因表达的调控。糖类对PEPCK的调控主要是通过对其启动子的作用,当动物进食含有大量糖类的饲料时,PEPCK的启动了就会关闭,从而导致ABA8C水平大幅度下降,而当禁食或饲喂高蛋白质低糖的饲料时,PEPCK的启动子就会处于打开状态,从而PEPCK水平得到大幅度提高,其具体调控机制大致如下:?556D4(*0)#)等通过对大鼠ABA8C基因的分析表明,ABA8C基因启动子位于1 E+至F#,之间,其中包含了大多数激素调控基因转录所必需的组织特异性调控元件。日粮中糖的含量水平会影响胰岛素、;?GA等激素的相对水平,而胰岛素与;?GA等激素相对水平又会影响到特异性!"#!转录因子的活性,特异性转录因子与$%$&’启动子上的相应调控元件结合与否,又会影响$%$&’基因的表达(,)。现有大量证据表明,$%$&’基因一系列复杂的调控元件中,有包括胰岛素、甲状腺激素、糖皮质激素、视黄酸对$%$&’基因转录的正调控元件和胰岛素对$%$&’基因转录的负控调元件,在上述调控元件中,*+,$调控元件-&%/和$(-0/调控元件是最重要的两种,*+,$对$%$&’基因的诱导和胰岛素对$%$&’基因的抑制作用就是通过这两个调控元件来进行调控的。因此,当进食含大量糖类的饲料时,由于*+,$水平的急剧下降以及胰岛素水平的急剧上升,从而抑制$%$&’基因的表达,导致肝中$%$&’水平大幅度下降,当禁食或饲喂高蛋白低糖的饲料时,则情况恰好相反。!"#营养对脂肪酸合成酶($%&)基因表达的调控1+2是脂肪酸合成的主要限制酶,存在于脂肪、肝脏及肺等组织中,在动物体内起催化丙二酰&3+连续缩合成长链脂肪酸的反应,其活性高低将直接控制着体内脂肪合成的强弱,从而影响整个机体中脂肪的含量。有关营养与1+2基因的表达调控,2!4!&56789-:;;(/曾报道:糖类能诱导1+2基因的转录,而脂肪则抑制这种诱导的表达。&3<=9等(:;;>)试验研究也表明,当给禁食后的成年鼠饲喂含高糖低脂肪的饲料时,1+2基因的表达就增强,而且相应的?@+含量的增加幅度与碳水化合物的摄入量也成正比。糖类对1+2基因表达的影响。为区分活体中激素水平变化的协同作用,13?,葡萄糖的作用效果。最近H3I73J等-:;;G/试验研究也表明,在成年大鼠肝细胞培养物中G E磷酸E"E脱氧葡萄糖水平与1+2的?@+含量呈正相关。因此G E磷酸E"E脱氧葡萄糖极有可能是参与1+2基因表达的重要中间代谢物。脂肪对1+2基因表达的影响。&56789-:;;(/的研究表明,脂肪抑制1+2基因表达主要与脂肪抑制1+2基因转录的能力和脂肪中脂肪酸的碳链长度、双键位置和双键的数量有关,饱和脂肪酸和(J E;)族脂肪酸不能抑制1+2基因的表达,多不饱和脂肪酸($K1+)中的-J E G/和-J E(/族脂肪酸是1+2基因的有效抑制剂,研究表明,日粮中$K1+可使1+2?@+的水平降低D>C E;>C。蛋白质对1+2基因表达的影响。,I5LJ97-:;;:/研究表明,高蛋白饲粮将抑制猪脂肪组织中1+2基因的表达,脂肪组织中1+2基因的?M@+的含量会显著下降:用蛋白质含量分别为:)C、:#C、")C的日粮饲喂G>E::>8N的肥育猪,其脂肪组织中1+2?@+的含量分别下降了#!:)C、::!D(C和)#!"C。由此可见日粮蛋白质将会影响脂肪组织中1+2基因的表达,但这种调控具体发生在哪个水平及其作用机理目前还不清楚。!"’营养对()*+,*基因表达的影响长期以来,我国商品猪的瘦肉率较国际优良品种低,而目前常规的育种方法已很难使之有大幅度的提高。因此OP6JN等(:;;))小鼠3Q基因的克隆成功为这方面的研究提供了新的思路。由于R9=SIJ基因具有可以大大降低动物体脂含量这一特性,因此通过营养对R9=SIJ基因表达调控的研究,将有助于深入了解R9=SIJ对动物体重的调控机制。王方年等(:;;;)研究表明,浓度从B??35 TR到:>??35 T R葡萄糖可以显著地促进脂肪细胞中59=SIJ基因的表达。!"-营养与神经肽(/)基因表达的影响@$U是一种含(G个氨基酸残基的生物活性多肽,在体内具有收缩血管、影响激素分泌、调节生物节律及摄食行为等多种生物学功能,其中促进动物采食是@$U最主要的功能之一。试验研究表广东饲料第;卷第G期">>>年:"月综述广东饲料第#卷第$期"%%%年&"月综述明,限饲特别是限制能量采食将会显著提高’()在下丘脑中的表达量,*+,-等(#/)在限饲、低碳水化合物、低脂肪、低蛋白质日粮组成的试验条件下,发现下丘脑中’()0 1’2显著提高345。!"#微量元素对基因表达的调控&!4!&锌对基因表达的调控锌作为动物体的一种必需微量元素,具有增强机体免疫功能、促进细胞增值分化、参与核酸蛋白质代谢、维持细胞周期正常进行等生物学功能。上述作用以前曾被认为主要是由于含锌酶活性的改变以及对细胞信号传导系统产生影响的结果,但近年来的研究表明,事实并不如此,锌主要是通过对基因的转录和表达的影响而产生一系列的生物学效应。6,7+:;#<=认为,锌离子是>’2聚合酶的一个重要组成成分,锌对于维持>’2聚合酶的活性具有相当的重要性;另外锌通过影响1’2聚合酶活性及转录因子的作用,能够导致基因转录异常,从而使蛋白质表达也发生变化;还有饲料中锌的含量,可以通过影响金属调节蛋白的转录活性而影响金属硫蛋白(6?)基因的表达,@A88,BC:等(#3)认为可将6?基因的表达量作为体内锌状况的重要衡量指标。67’C88;#4=发现低锌日粮限制动物生长的直接原因是由于低锌抑制了体内DEF G D、EH受体、EH结合蛋白等基因的表达。&!4!"其他微量元素对基因表达的调控镉、铜、汞等元素的增加将显著提高6?基因的表达量。I+JA;#/=研究表明高铜将显著提高体内EH基因的表达水平。IC+K,:LK等(M$)认为铁可以通过控制01’2的稳定性和翻译过程,调节铁蛋白的水平。"基因工程技术所谓基因工程,就是按照人们的意愿在体外获得目的基因,再按预先的设计,在体外将目的基因进行酶切连接,构建成适当的表达裁体,然后导入细菌或动物细胞或机体内,以研究该目的基因的结构与功能、表达的调控机制、或者获得该基因的表达产物。分子生物学技术的核心就是基因工程,而基因克隆和表达是基因工程的核心技术。下面就抗菌肽、植酸酶,甜菜碱等,对基因工程技术在动物营养学领域中的应用作一简单阐述。$"!抗菌肽基因工程自从NJ0C:等(M&)首次从美国惜古比天蚕;HOC8JP+JKC 7KJP,:=中成功地分离到两种抗菌肽蚕素(7KJP,:)2和N后,国内外很多科学家对这一类抗菌肽进行了深入细致的研究,发现在许多昆虫、植物、哺乳动物中均有这样的多肽存在,它们由<%多个氨基酸残基组成,不同来源的多肽的氨基酸序列具有较强的保守性且共同具有如下特点:(&)’端由碱性氨基酸残基组成;(")Q端均酰胺化;(<)绝大多数多肽在第二位均为?KP,它对杀菌活性至关重要;(/)它们都有较广的杀菌谱。其抗菌机制大致如下:抗菌肽作用于细菌的细胞膜,破坏膜的完整性,造成离子通道,最终导致细胞内含物的泄漏。由于抗菌肽具有广谱杀菌作用、相对分子量较小、热稳定、水溶性好等优点,更为重要的是抗菌肽对真核细胞几乎没有作用,仅仅作用于原核细胞和发生病变的真核细胞,在目前不少病原菌对原有抗生素逐步产生耐药性,尤其是肉用动物长期使用抗生素受到严格检查和批评时,对畜禽体内自然产生的抗菌肽功能的了解以及设计一种方法来调节动物体内自然抗菌肽的功能便显得极为重要,其中通过抗菌肽基因的克隆与表达而大量生产抗菌肽是一种较为直接而有效的方法。目前昆虫和植物抗菌肽基因工程,在国内外已有不少成功的报道,但就畜禽抗菌肽基因工程国内外尚未见报道。因此,运用基因工程技术,通过对畜禽抗菌肽的研究,对提高畜禽的抗病能力、减少甚至替代抗生素的使用将起积极的促进作用。目前,猪抗菌肽((1 G<#)已被发现(等,M#),它是一个分子量为/3道尔顿的肽,从猪肠中分离,属于富含(KJ G 2KL的肽家族,不裂解野生型大肠杆菌,但对突变型R&"有作用,其作用机制是通过阻断蛋白质和>’2的合成,从而导致这些成分的降解。(1 G<#在一个单层囊泡中可以诱导钙的降低和电流的线性增加,此诱导与肽浓度和膜上甘油磷酸脂(带负电荷)有关。另外在猪小肠中,还发现另一种抗菌肽7KJP,:(&,它是以裂解细菌来完成杀菌作用的。2:SK99J:;#4=运用基因工程技术从猪骨髓1’2中克隆到一种新型的7>’2,其编码一个3M残基的抗菌肽’R G 8O9,:,有三个分子内二硫键,这种肽对’R G敏感型的肿瘤细胞株)2Q G&有裂解活性,但不裂解红血球细胞。;!"#!分子生物学技术在动物营养学上的应用及其发展前景$下%郑家茂赵国芬许梓荣!"!植酸酶的基因工程植酸酶的研究已有近’年的历史,植酸酶作为一种单胃动物的饲料添加剂,其饲喂效果已在世界范围内得到广泛的确证,随着饲料工业的发展和分子生物学的兴起,从(’年代开始的植酸酶的分子生物学研究,已成为世界性的研究热点之一。目前国内外研究的主要思路集中在通过基因工程这一手段解决饲用植酸酶的两个主要问题:一个是植酸酶在天然材料中表达水平太低,这造成植酸酶难以大量生产及生产成本过高的问题,通过基因工程技术,利用生物反应器则有望成百上千倍地提高它的表达量;另一个问题是天然植酸酶的一些酶学性质,如耐温性,/0适性、催化活性等不能完全适合饲料加工业和养殖业的要求,利用基因工程手段在分子水平上对植酸酶基因进行改造,从而提高其在饲料中使用的有效性。#!#!&在微生物中高效表达植酸酶基因目前,植酸酶基因表达的研究主要集中在来源于曲霉的植酸酶基因/123和/425上。06789:;<=>?4@8等$&(("%将来源于3!A:BCDDEFFG"&"-的/123基因导回原菌株,使/12基因的拷贝数增加到&-个以上,从而使植酸酶的表达量提高到,H’’C I D4。J174:B1等(&((-)在3!K72L6?中表达来源于酵母的植酸酶基因和来源于3!;:7,H#的/125基因,其结果也是使表达量分别提高到M’C I D4和,-’C I D4,将植酸酶基因/123置于来源于3!;:7的淀粉葡萄糖甘酶$3N%启动子之下,信号肽序列分别用3N信号肽的&M个氨基酸序列、3N信号肽的#个氨基酸序列及植酸酶原来的信号肽序列"种构建,将植酸酶基因重组到3;:7基因组中而获得植酸酶基因的阳性克隆子在这"种构建中其植酸酶在重组菌株中的表达量分别达到了&!&O’!-O#!M P&’-C I D4,比原植酸酶产生菌株的表达量高约&’’’Q"’’’倍左右。#!#!#植酸酶热稳定性加工饲料都需要一个制粒工艺,在制粒过程中有一个短暂的高温过程,温度一般在,-("R,一般植酸酶在此高温下会大幅度地丧失活性,因此,能在饲料中真正推广利用的植酸酶必须具有良好的热稳定性;然而另一方面饲料中的植酸酶最终的作用场所却是动物正常体温(",R)的肠胃中,植酸酶同时又必须在常温下具有较高活性,因此,如何解决在制粒高温和在动物正常体温下同时具有较高酶活性这一对矛盾是目前饲用植酸酶应用的关键性技术环节,通过基因工程技术对植酸酶基因在分子水平上进行改造将是一个强有力的手段。近年来,已从嗜温微生物中发现多种高温植酸酶,对它们的结构与热稳定性的研究将为植酸酶基因的分子改造提供理论依据。#!#!"植酸酶基因工程的一个新突破点假设在一些植物性饲料$如玉米、大麦、大豆等%中本身就含有足量的植酸酶,如果在饲喂过程中,植酸酶在动物的肠胃中释放出来降解饲料中的植酸磷,这岂不是一举两得,即省去了植酸酶添加剂的生产,又省去了在饲料中植酸酶的添加,这无疑是植酸酶应用的最佳方法。随着分子生物学技术的发展,这一“天方夜谭”的假设将成为现实。目前,科学家们已经开始尝试这一方面的研究并取得了阶段性的进展,其主要思维路线如下:将植酸酶基因通过基因工程技术转化到用作饲料的玉米、大豆、大麦中,培养出高含植酸酶的大豆、玉米、大麦。目前国外许多研究机构都在尝试此项工)中图分类号*SM&H!")文献标识码*5)文章编号*&’’-!MH&"$#’’&%’&!’’"#!’#作,预计近期内会取得突破性进展。#!"甜菜碱基因工程甜菜碱$%&’()*&+是广泛存在于动植物体内的季铵型生物碱。近年的研究表明,甜菜碱是一种高效、安全的营养再分配剂,添加于饲料中,可以显著提高畜、禽胴体瘦肉率、减少脂肪沉积,并可改善肉质,在养殖工业上应用前景广阔。但就甜菜碱本身而言,目前国内的甜菜碱生产均是通过化工工艺合成,通过基因工程手段来获得甜菜碱方面还是空白,国外近年来已开始这方面的研究。许多细菌和植物中由胆碱经两步氧化而成甜菜碱,合成代谢途径已经阐明,催化两步反应的酶蛋白已经分离和纯化,已克隆其基因并测定了碱基顺序。,-’/01研究室已完成大肠杆菌的%&’操纵元全序列分析,发现%&’操纵元由四个基因组成,其中%&’,编码胆碱脱氢酶(23 4 567(),%&’%编码甜菜碱醛脱氢酯(8#4 567(),%&’9编码胆碱转移系统(:8 4;67(),%&’<编码%&’基因的调节中作为阻遏物的#3!;67(蛋白。目前已有一些报道认为细菌9&’操纵元和=&>操纵元能在烟草中表达,因此将’/01研究室得到的%&’操纵元;!:?@7A,片段导入烟草,探讨甜菜碱是否能表达是一个诱人的研究领域。"转基因技术转基因技术是指用实验手段,将外源基因导入动物细胞或动物受精卵中,由此稳定整合到动物基因组,并能遗传给子代。目前常用的转基因技术主要有:显微注射法;胚胎多能干细胞虫;精子裁体法;反转录病毒载体法以及电转移技术等等,其中显微注射法是最常用、最有效的基因导入技术。目前培育成功的转基因动物绝大部分是采用该方法获得的。最早的转基因动物是将疱疹病毒基因与BCDE早期启动子联在一起,用显微注射法导入小鼠受精卵获得的转基因小鼠。目前,在动物营养领域转基因技术的研究主要包括:"!3提高动物生长性能生长激素$FG+在动物生产中基本上采用注射方法,虽然有一定的促生长作用,但程序复杂繁琐,解决思路之一就是采用转基因技术。G(11&/等$35;8+人生长激素$HFG+转基猪研究成功,这种转基因猪的生长速度比对照组高出38I,日增重可达3#:"J,饲料利用率提高#3I,采食量减少#EI,陈永福$3553+用自己构建的融合基因KL9 M NFG获得了转基猪,其生长速度提高33!;I O 3D!#I,饲料利用率提高3EI。另外,转基因羊、转基因鸡、转基因兔、转基因牛、转基因鱼等研究也相继获得成功。"!#改变动物体内的代谢途径动物营养研究表明,有些生长发育和维持所必需的营养物质必须由外界供给,例如赖氨酸,但是否可以不必由外界供给呢?可行的方案不外乎这么两种:一种是重建动物体内某些丢失的代谢途径;另一种是导入目前在动物体内尚未发现的代谢途径。转基因技术的出现提供了通过改变动物代谢途径从而让动物自身合成赖氨酸的可能性。-&&等$355E+已经清楚大肠杆菌合成赖氨酸途径中的酶基因编码,运用基因转移技术也证明了在细胞中施行这些途径的可行性,因此-&&等提出设想:把赖氨酸在微生物中生物合成的途径导入动物体内,使动物自身就能合成赖氨酸。"!"提高动物产毛性能由于胱氨酸在羊瘤胃中降解,所以饲料中加入胱氨酸并不能提高产毛量。因此能够得到一种自身合成胱氨酸的转基因羊,将会大大提高羊毛产量。P(/Q$3553+发现某些细菌能将硫固定并转化为胱氨酸,他们分别在大肠杆菌和沙门氏菌中分离到了丝氨酸乙酸转移酶基因和K 4乙酰丝氨硫化氢解酶基因,并且将这两种基因与金属硫蛋白$L9+基因启动子联接;并在"R端装上FG基因的序列,然后将这组调控序列通过转基因技术导入羊体内而得到高产羊毛转基因绵羊。D展望综上所述,以基因工程为核心的分子生物学技术应用于动物营养学研究领域,具有很大的潜力,它不仅为动物营养学研究提供了一套全新的技术和方法,而且可在基因水平上解决许多动物机体生理病理变化、营养素的代谢调节机制以及其与机体的相互关系等问题。我们可以设想,基因工程抗菌肽完全可以减少甚至替代抗生素的使用;随着转基因技术的日益完善,各种生长性能优越的动物新品种将层出不穷;用转基因动物来大量生产各种生理活性物质,也将成为现实。无可置疑,#3世纪是高新技术畜牧业应用大发展的时期,以基因工程为主导的分子生物学技术将会为我国的畜牧业的发展开辟广阔前景。
《动物营养学报》(Chinese Journal of Animal Nutrition)由中国科学技术协会主管,中国畜牧兽医学会主办的学术性期刊。《动物营养学报》主要内容涵盖动物营养与饲料科学的各个主要领域。《动物营养学报》主要分专论、综述、猪营养、禽营养、反刍动物与草食动物营养、水产动物营养、特种经济动物营养、饲料营养、饲料安全、饲料资源开发、饲料检测、研究简报等多个栏目。在动物营养学报投稿是有320一版的稿费。